# Chronos: Efficient Speculative Parallelism for Accelerators

MALEEN ABEYDEERA, DANIEL SANCHEZ ASPLOS 2020



# Current hardware accelerators are limited to easy parallelism

## **Current Accelerators**

Target easy parallelism

Tasks and dependences known in advance



e.g.: Deep learning, Genomics

### **Chronos**

Targets hard parallelism

Require speculative execution



e.g.: Graph analytics, simulation, transactional databases

# Problem and Insight

#### **Problem**

Prior speculation mechanisms (Transactional Memory, Thread Level Speculation) require global conflict detection

### Insight

Limit the data that each core can access

Divide work into tiny tasks and send them to data

Coordinate tasks through order constraints



Shared memory system → coherence protocol Coherence poorly suited for accelerators

Local conflict detection → No coherence needed

## Contributions

SLOT (Spatially Located Ordered Tasks): A new execution model that does not require coherence, but relies on task ordering and spatial task mapping to detect conflicts

Chronos: An implementation of SLOT that provides a common framework for acceleration of applications with speculative parallelism



https://chronos-arch.csail.mit.edu/

# Speculative parallelism with single-object tasks

Discrete Event Simulation (DES) for Digital Circuits





# Prior techniques rely on global conflict detection

Why? No restriction on where a task can run





Relies on coherence protocol to find conflicts

# Insight 1: Leveraging spatial task mapping for local conflict detection

Impose restrictions on where a task can run





Conflict detection is local to a core

# Insight 2: Leveraging order to ensure atomicity

## Banking application:

Each transaction decrements the balance of one account and increments another

| Account (object) | Balance |  |
|------------------|---------|--|
| W                | \$100   |  |
| X                | \$1500  |  |
| Υ                | \$200   |  |
| Z                | \$400   |  |



Assign a disjoint timestamp range for each coarse transaction

**Timestamp** 

# Benefits of fine-grained tasks



- ✓ Reduced network traffic
- ✓ Increased parallelism

- aborts
- ✓ Asynchronous communication

# SLOT (Spatially Located Ordered Tasks)

SLOT programs consist of tasks

Tasks can create children tasks through a simple API:

slot::enqueue(fn\_ptr, timestamp, object-id, arguments...);

Timestamp: Specifies order. Tasks appear to execute in timestamp order

Object-id: Specifies dependences. Tasks with same object-id are treated as data-dependent

Tasks with different object-ids can only communicate through arguments

# SLOT programming example (in software)

```
// Simulates an event arriving at a gate
void simToggle(Time time, GateInput input) {
   gate = input.gate;
   toggledOutput = updateState(gate, input);
   if (toggledOutput) {
      // create events for connected gates
      for (GateInput i : gate.connectedInputs()) {
        Time nextTime = time + gate.delay(input, i);
        eventQueue.enqueue(nextTime, i);
PriorityQueue<Time, GateInput> eventQueue;
enqueueInitialEvents()
// event loop. Sequentially execute in ts order
while (!eventQueue.empty()){
    (time, input) = eventQueue.dequeue();
    simToggle(time, input);
```

```
// Simulates an event arriving at a gate
void simToggle(Time time, GateInput input) {
   gate = input.gate;
   toggledOutput = updateState(gate, input);
   if (toggledOutput) {
      // create events for connected gates
      for (GateInput i : gate.connectedInputs()) {
          Time nextTime = time + gate.delay(input, i);
          slot::enqueue(
                 simToggle, nextTime, i.gateID, i);
enqueueInitialTasks()
                                               l ns
slot::run()
                                           5 ns
                            1 ns
```

# Chronos: An implementation of SLOT

## Chronos overview

Chronos provides a framework to build accelerators for applications with speculative parallelism



The developer specifies the tasks and how they are implemented

• Either software routines on soft cores, or specialized Processing Elements (PE)

Framework takes care of task management and speculative execution

# Task life cycle



## Chronos internal dataflow



# Versioning and commit protocol

### **Eager versioning**

Updates speculative values in place



Store old values in an undo log

#### **Key benefits**

Makes the common case (commits) fast
Makes speculative data available before commit

#### **Commit Protocol (GVT – Global Virtual Time)**



#### **Key benefits**

Achieves fast and parallel commits

## Chronos FPGA implementation

Developed an FPGA implementation of Chronos – up to 16 tiles

Running at 125 MHz

High task throughput – can enqueue, dequeue, execute and commit 8 tasks per cycle on a 16-tile system



**AWS Shell** 

# Experimental methodology

Four accelerators built using Chronos framework running on AWS FPGAs

- Discrete Event Simulation (DES)
- Maxflow
- Single Source Shortest Paths (SSSP)
- Astar Search

| Platform     | AWS Instance | Price (\$/hr) |
|--------------|--------------|---------------|
| Baseline CPU | M4.10xlarge  | 2.00          |
| FPGA         | F1.2xlarge   | 1.65          |

Custom PEs per application: 32-way multithreaded PE, single PE/tile

Baseline: Highly optimized software parallel implementations running on a 40-threaded Xeon AWS instance

# Chronos performance vs. 40-threaded Xeon



| Арр     | Concurrent Max. Tasks | FPGA 1t/<br>CPU 1t | Overall<br>Speedup |
|---------|-----------------------|--------------------|--------------------|
| des     | 256                   | 2.45×              | 15.3×              |
| maxflow | 192                   | 0.11×              | 4.3×               |
| sssp    | 512                   | 0.24×              | 3.6×               |
| astar   | 192                   | 0.58×              | 3.5×               |

Runs many more tasks in parallel

Specialization helps to run a single task efficiently (narrowing the 19× frequency gap with CPU)



# Chronos performance analysis



### **Observation:**

Most work is ultimately useful (only 11% of cycles result in wasted work)

**Breakdown of aggregate PE cycles** 

# See the paper for more

Non-speculative applications

Non-rollback applications

Chronos with RISC-V cores

Projected performance on ASIC Chronos

Chronos resource utilization

## Conclusion

Prior speculative parallel systems have relied on cache coherence to detect conflicts, precluding their use in accelerators

SLOT (Spatially Located Ordered Tasks): A new execution model that does not require coherence, but relies on task ordering and spatial task mapping to detect conflicts

Chronos: An implementation of SLOT that provides a common framework for acceleration of applications with speculative parallelism

 Use Chronos to build FPGA accelerators for four challenging applications providing up to 15x speedup over a multicore baseline

https://chronos-arch.csail.mit.edu/