
Pipette: Improving Core Utilization
on Irregular Applications

through Intra-Core Pipeline Parallelism
Quan Nguyen and Daniel Sanchez

Massachusetts Institute of Technology

MICRO-53
Live session: Session 4A: Microarchitecture II

(October 20, 2020 at 2 PM EDT)

• Unpredictable memory accesses, control flow make poor use of OOO resources

• Decouple applications into pipeline-parallel stages for latency tolerance

• Time-multiplex stages for load balance

Reuse OOO core structures to achieve both!

• Pipette leverages this insight to implement
fine-grain pipeline-parallel communication
between threads of an SMT core

• Speedup of gmean 1.9×, up to 3.9× over SMT
baseline in challenging irregular benchmarks

Irregular applications hamper core utilization

2

Agenda

Background

Pipette

Evaluation

3

...

1 2 7 37 61 252 714

neighbor list

Unpredictable accesses hurt performance

4

2
252

1

37

714

61

7
array

…
for ngh in neighbor list:

x = array[ngh]
func(x)

…

Example: run func() on array data
for each neighbor of vertices and 1 2

miss
miss

misshit? miss

If func() many instructions, reorder buffer fills
Want to decouple fetches from processing

2-3
instrs?

10s, 100s
instrs?

Decouple for latency tolerance

• Separate application into many stages,
allowing producers to run ahead

• Split on long-latency operations

• Pipeline parallelism a natural fit
• Fine-grain: queue operations every few instructions
• Overheads for software techniques too high
• Prior hardware techniques only for regular applications

5

…
for ngh in neighbor list:

x = array[ngh]
func(x)

…

Stage Stage

Challenge #1: Irregular application
pipelines have load imbalance

6

2
252

1

37

714

61

7

Stage Stage

Challenge #1: Irregular application
pipelines have load imbalance

6

2 2521 37 714 61 7

high outdegree
more work

low outdegree
less work

(CSR format)

Challenge #2: Full decoupling
requires several stages

7

Current fringe ...

Edge list
offsets (I)

Neighbors (J)

...

...

Distances

Next fringe

...

def bfs(src):

…

for v in current fringe:

start, end = offsets[v], offsets[v+1]

for ngh in neighbors[start:end]:

dist = distances[ngh]

if dist is not set:

set distance; add to next fringe

…

8

Process current
fringe

Enumerate
neighbors

Visit neighbors

Update data,
next fringe

def bfs(src):

…

for v in current fringe:

start, end = offsets[v], offsets[v+1]

for ngh in neighbors[start:end]:

dist = distances[ngh]

if dist is not set:

set distance; add to next fringe

…

Challenge #2: Full decoupling
requires several stages

Insight: Exploit pipeline parallelism
in a multithreaded core

9

Process current
fringe

Enumerate
neighbors Visit neighbors Update data,

next fringe

Multithreaded
OOO Core

Insight: Exploit pipeline parallelism
in a multithreaded core

9

Process current
fringeEnumerate

neighbors
Visit neighbors

Update data,
next fringe

Multithreaded
OOO Core

Insight: Exploit pipeline parallelism
in a multithreaded core

9

Process current
fringeEnumerate

neighbors
Visit neighbors

Update data,
next fringe

Pipette’s features

Reuse PRF to build architecturally-visible
queues for inter-thread communication

Reuse SMT to time-multiplex stages

ISA primitives for fast queue operations &
efficient control flow changes
Cheap acceleration of common access patterns

10

Latency tolerance

Load balance

High performance

AchievesFeature

✓
✓
✓

Prior work’s missing ingredients

11

Prior work

Streaming multicore
(Raw [MICRO’02], MPPA [HPEC’13], ...)

A E Decoupled access-execute
(DAE [ISCA’82] , DeSC [MICRO’15], ...)

Enough
stages?

Data structure fetchers/prefetchers
(HATS [MICRO’18], SQRL [PACT’14]; IMP [MICRO’15], ...)

Domain specific;
Area & power overheads

Decoupled multithreaded cores
(Outrider [ISCA’11], DSWP [PACT’04], ...)

✘

✘

Load
balance?

Flexible
decoupling

& control

✘ ✘
✘

✘
✘

0
1
2
3
4
5

Sp
ee

du
p

ov
er

se
ria

l

Serial
4-thread Data-Parallel

4-thread Pipette
4-core Streaming Multicore

0.0
0.5
1.0
1.5
2.0
2.5
3.0

In
st

rs
/c

yc
le

Pipette accelerates irregular applications

12

• 6-wide OOO running BFS on large road graph

Agenda

Background

Pipette
Architecturally visible queues
Inter-thread control flow
Further accelerating common access patterns

Evaluation

13

Pipette’s ISA makes queue operations fast

• Map architectural registers to
architectural queues
• Register write → enqueue;

read → dequeue
• Queue operations frequent;

implicit enqueue/dequeue
semantics reduce
instruction overheads

14

Core

L2
L3 Cache

L1I/D

Main Memory

Core
L1I/D

Core
L1I/D

Core
L1I/D

L2 L2 L2

L1 connections

Front
End ROB

Ld/St Bufs

PC
OOO
Core

Phys. Reg
File

Functional
Units…

Renam
e

Issue Dispatch

QRM

RAs

map_enq q1, r3;
map_deq q2, r4;
...
addi r3, r4, 5;

Reading r4 dequeues q2
Writing r3 enqueues q1

Queue Register

Reusing the PRF to build queues

• Physical register file (PRF) underutilized for irregular applications
• Insight: reuse storage & OOO rename to manage queues!
• Queue Register Map (QRM), a simple extension to manage queues

15

0 1 2 3 4 ...

`

Queue Register
Map (QRM)

Queue grows

Queue 4 Phys. register index
Control value bit

allocated

empty

speculative

Enqueuesspeculative
committedDequeues

committed
speculative

Agenda

Background

Pipette
Architecturally visible queues
Inter-thread control flow
Further accelerating common access patterns

Evaluation

16

Efficient control flow with Pipette

• Add hardware support to communicate control flow changes
• Producer ⟶ Consumer: Control values & dequeue control handlers
• Consumer ⟶ Producer: Enqueue control handlers

17

Next!

No more!

Producer Consumer

Efficient control flow with Pipette

• Add hardware support to communicate control flow changes
• Producer ⟶ Consumer: Control values & dequeue control handlers
• Consumer ⟶ Producer: Enqueue control handlers

17

Producer ConsumerProcess current
fringe Visit neighbors Update data,

next fringe
Enumerate
neighbors

Current
distance: 3

Current
distance: 3

Fringe change

Efficient control flow with Pipette

• Add hardware support to communicate control flow changes
• Producer ⟶ Consumer: Control values & dequeue control handlers
• Consumer ⟶ Producer: Enqueue control handlers

17

Producer ConsumerProcess current
fringe Visit neighbors Update data,

next fringe
Enumerate
neighbors

Current
distance: 3

Current
distance: 3

Fringe change

✘ 4

Efficient control flow with Pipette

• Add hardware support to communicate control flow changes
• Producer ⟶ Consumer: Control values & dequeue control handlers
• Consumer ⟶ Producer: Enqueue control handlers

17

Producer ConsumerProcess current
fringe Visit neighbors Update data,

next fringe
Enumerate
neighbors

Current
distance: 3

Current
distance: 3

Fringe change

✘ 4
Control

value

Efficient control flow with Pipette

• Add hardware support to communicate control flow changes
• Producer ⟶ Consumer: Control values & dequeue control handlers
• Consumer ⟶ Producer: Enqueue control handlers

17

Producer ConsumerProcess current
fringe Visit neighbors Update data,

next fringe
Enumerate
neighbors

Current
distance: 3

Current
distance: 3

Fringe change

✘ 4

Control
value

DequeueControl handler

DequeueControl handler

Efficient control flow with Pipette

• Add hardware support to communicate control flow changes
• Producer ⟶ Consumer: Control values & dequeue control handlers
• Consumer ⟶ Producer: Enqueue control handlers

17

Producer ConsumerProcess current
fringe Visit neighbors Update data,

next fringe
Enumerate
neighbors

Current
distance: 3

Current
distance: 3

Fringe change

✘ 4 ✘ 4

Control
value

DequeueControl handler

DequeueControl handler

DequeueControl handler

Agenda

Background

Pipette
Architecturally visible queues
Inter-thread control flow
Further accelerating common access patterns

Evaluation

18

Further accelerating common access patterns

• Memory access patterns are often easy to compute
• Further decouple long-latency accesses with

reference accelerators (RAs), connected to queues
• Improves decoupling without filling load/store queues

19

Producer Consumer

Memory

Producer Consumer

Memory

RA

Without RAs With an RA

addr

data dataaddr

Agenda

Background

Pipette

Evaluation

20

Evaluation

• Event-driven cycle-level simulator
• 6-wide OOO core (similar to Intel Skylake)
• Baseline:

data-parallel 4-way
multithreaded

• Additional comparison:
4-core “Streaming Multicore”
(using Pipette ISA)

21

Applications evaluated:
•Graph analytics:
• Breadth-first search (BFS)
• Connected components (CC)
• PageRank-Delta (PRD)
• Radii Estimation (Radii)

•Sparse linear algebra:
• Sparse matrix-matrix

multiply (SpMM)
•Databases:
• Silo

Pipette achieves significant speedups

BFS
CC PRD

Radii
SpMM

Silo
0

1

2

3

Sp
ee

du
p

Serial 1-core 1-thread
Data-parallel 1-core 4-thread

Pipette 1-core 4-thread
Streaming 4-core 1-thread

BFS
CC PRD

Radii
SpMM

Silo
0.0
0.5
1.0
1.5
2.0
2.5
3.0

Sp
ee

du
p

pe
r

co
re

22

Pipette effectively tolerates latency
and load imbalance

BFS CC P5D 5Ddii SS00 SiOR
0.0
0.5
1.0
1.5
2.0
2.5

1
Rr

P
DO

iz
ed

 F
yF

Oe
s

S
D

P

0
S

D

P

0 S

D

P

0 S
D

P

0

S D
P

0 S

D
P

0

2ther
Queue stDOOs
BDFNeQd stDOOs
Issued

23

S: Serial D: Data-parallel (baseline) P: Pipette M: streaming Multicore

Pipette reduces impact of memory latency (smaller red bars)
and load imbalance (smaller purple bars)

Case study:
Multicore, multithreaded BFS

24

Enum.
neighs.

Proc. cur.
fringe

Fetch
dists.

Upd. data,
next fringeCo

re
 0

Enum.
neighs.

Proc. cur.
fringe

Fetch
dists.Co

re
 1 Upd. data,

next fringe

Enum.
neighs.

Proc. cur.
fringe

Fetch
dists.Co

re
 2 Upd. data,

next fringe

Enum.
neighs.

Proc. cur.
fringe

Fetch
dists.

Co
re

 3 Upd. data,
next fringe Hu Dy Ci In Rd gmean

0
2
4
6
8

Sp
ee

du
p

Serial 1-core 1-thread
Data-parallel 4-core 4-thread
Pipette 4-core 4-thread
Streaming 4-core 1-threadx4

x4

See paper for:

• Specifics on OOO core reuse & interaction with speculation
• Low-cost implementation of reference accelerators
• Connecting queues across cores
• Detailed performance analysis, including energy savings up to 2×
• Additional analyses of number of stages, PRF size, use of RAs

25

Conclusion

• Irregular applications hamper core utilization
• Pipette reuses OOO core structures to efficiently implement

irregular applications as pipeline-parallel programs
• Speedups of gmean 1.9×, up to 3.9× over SMT baseline in

challenging irregular benchmarks

26

Thank you!
Pipette: Improving Core Utilization

on Irregular Applications
through Intra-Core Pipeline Parallelism

Quan Nguyen and Daniel Sanchez
qmn@csail.mit.edu and sanchez@csail.mit.edu

MICRO-53
Live session: Session 4A: Microarchitecture II

(October 20, 2020 at 2 PM EDT)

This presentation and recording belong to the authors.
No distribution is allowed without the authors' permission.

