Pipette: Improving Core Utilization
\ on Irregular Applications
through Intra-Core Pipeline Parallelism

Quan Nguyen and Daniel Sanchez
Massachusetts Institute of Technology

g— MICRO-53 l I ﬂ_/LLI
I I I I I Live session: Session 4A: Microarchitecturell | [

(October 20, 2020 at 2 PM EDT) CSAIL

Irregular applications hamper core utilization

* Unpredictable memory accesses, control flow make poor use of OO0 resources

* Decouple applications into pipeline-parallel stages for latency tolerance

* Time-multiplex stages for load balance

Reuse 000 core structures to achieve both!

 Pipette leverages this insight to implement ,{%\: Serial 1-core 1-thread
I Data-parallel 1-core 4-thread

Pipette 1-core 4-thread

fine-grain pipeline-parallel communication
between threads of an SMT core

* Speedup of gmean 1.9%, up to 3.9x over SMT
baseline in challenging irregular benchmarks

Speedup
COm—=INNW
SDnNnOUnNOWNO

Agenda

Background

Pipette

Evaluation

Unpredictable accesses hurt performance

neighbor list

Example: run func() on array data
for each neighbor of vertices @ and‘

2-3 for ngh in neighbor list:

instrs? X = array[ngh]
10s,100s__—¥ TUncx)
instrs?
ey [-9 - (8- - - 8-
1 2 7 37 61 252 114

If func() many instructions, reorder buffer fills
Want to decouple fetches from processin%

Decouple for latency tolerance

»[[

- Separate application into many stages,][> stage P[> stage
allowing producers to run ahead

* Split on long-latency operations for ngh in neighbor list:
X = arraylngh]
func(x)

* Pipeline parallelism a natural fit
 Fine-grain: queue operations every few instructions
* Overheads for software techniques too high
* Prior hardware techniques only for reqular applications

Challenge #1: Irregular application
pipelines have load imbalance

Challenge #1: Irregular application
pipelines have load imbalance

high outdegree

low outdegree

Stage

less work

Challenge #2: Full decoupling
requires several stages

def bfs(src): Current fringe

(CSR format)

for v in current fringe: Edge list

offsets (I)
start, end = offsets[v], offsets[v+1]
for ngh in [neighbors[start:end]:
dist = distances(ngh]

if dist is not set:

Neighbors (J)

Distances

set distance; add to next fringe

Nextfringe‘ ‘ ‘ ‘ ‘ ‘

Challenge #2: Full decoupling
requires several stages

def bfs(src): Process current
fringe
for v in current fringe: Enumerate
start, end = offsets[v], offsets[v+1] neighbors

for ngh in neighbors[start:end]:

dist = distances[ngh] [Visit neighbors]
if dist is not set:

set distance; add to next fringe [ldeaUadata,]

next fringe

Insight: Exploit pipeline parallelism
in a multithreaded core

Process current Enumerate . Update data,
£ i >hb Visit neighbors i
ringe neighbors next fringe

Insight: Exploit pipeline parallelism
in a multithreaded core

Enumerate

]

Multithreaded

00O Core

=

\.

Vi,

Update data,
next fringe

|

—J

Insight: Exploit pipeline parallelism
in a multithreaded core

R

Pipette’s features

Feature Achieves

Reuse PRF to build architecturally-visible \/ Latency tolerance
queues for inter-thread communication

Reuse SMT to time-multiplex stages \/ Load balance

ISA primitives for fast queue operations & \/ High performance

efficient control flow changes

Cheap acceleration of common access patterns

Prior work’s missing ingredients

. Enough Load deFéi’Ssllieng
Prior work stages? balance? & control

|:E| [Decoupled access-execute

A :E:E (DAE [1sca’s2], DeSC [MIcrO’15], X X X
- Streaming multicore

SSSS E (Raw [MICRO’02], MPPA [HPEC’13], ...) X X

Decoupled multithreaded cores
(Outrider [isca’11], DSWP [pACT04], ...) X

Data structure fetchers/prefetchers Domain specific;
(HATS [micro’18], SQRL [pAcT’14]; IMP [MICRO’15], ...) Area & power overheads

11

Pipette accelerates irregular applications

* 6-wide OOO running BFS on large road graph

B Senal B 4-thread Pipette \' SSE
S% i 4-thread Data-Parallel 4-core Streaming Multicore SSSS H
5 - 3.0 -
— 4 - L 2.5 -
oS ~ -
8 2 2 _ ; 15 B
a2 510 -
°1- S 05 -
0 0.0

12

Agenda

Background

Pipette
Architecturally visible queues
Inter-thread control flow
Further accelerating common access patterns

Evaluation

Pipette’s ISA makes queue operations fast
iI:” Front

PC™] End
7\

* Map architectural registers to =

)14 §ay ‘shAyd €

architectural queues Tore] [Corel] [Core] [Cork]
. . L1I/D L1I/D L1I/D L1I/D
* Register write - enqueue; 2 L2 L2 L2
read - dequeue BANe !

Main Memory I

L1 connections |

* Queue operations frequent;

implicit enqueue/dequeue Queue Register
semantics reduce

instruction overheads map_enq Lq1 ’ '”3;1

map_deq f°q2, r4; Reading r4 dequeues g2
. \ Writing r3 enqueues q1
addi r3, r4, 5;

14

Reusing the PRF to build queues

* Physical register file (PRF) underutilized for irregular applications
* Insight: reuse storage & OO0 rename to manage queues!
* Queue Register Map (QRM), a simple extension to manage queues

Queue Register o1l 2 |3l 2

allocated Map (QRM)
% speculative QUEUE ZroWS mmp-
. 0 : .
empty Queue 4 222 .;_l; Phys. register index
A Control value bit

committed

speculative
Dequeues { speculative

committed } Enqueues 15

i

Agenda

Background

Pipette
Architecturally visible queues
Inter-thread control flow
Further accelerating common access patterns

Evaluation

Efficient control flow with Pipette

* Add hardware support to communicate control flow changes
* Producer — Consumer: Control values & dequeue control handlers
e Consumer — Producer: Enqueue control handlers

Y Next! \
[Producer H]—»{ Consumer]

t__l?

No more!]

Efficient control flow with Pipette

* Add hardware support to communicate control flow changes
* Producer — Consumer: Control values & dequeue control handlers
e Consumer — Producer: Enqueue control handlers

Current “tree.,. Current
distance: 3" “*distance: 3

Process current Enumerate . Update data,
i :>hb Visit neighbors i
ringe neighbors next fringe
Fl‘[n
< Change

Efficient control flow with Pipette

* Add hardware support to communicate control flow changes
* Producer — Consumer: Control values & dequeue control handlers
e Consumer — Producer: Enqueue control handlers

Current “tree.,. Current
. eus®” T g .
distance: X4 distance: 3

Process current Enumerate . Update data,
i :>hb Visit neighbors i
ringe neighbors next fringe
Fl‘[n
< Change

Efficient control flow with Pipette

* Add hardware support to communicate control flow changes
* Producer — Consumer: Control values & dequeue control handlers
e Consumer — Producer: Enqueue control handlers

Current “tree.,. Current
. eus®” T g .
distance: X4 distance: 3

Pro rent Enumerate Visit neichbors Update data,
value neighbors 5 next fringe
Fl‘[n

Efficient control flow with Pipette

* Add hardware support to communicate control flow changes
* Producer — Consumer: Control values & dequeue control handlers
e Consumer — Producer: Enqueue control handlers

Current “tree.,. Current
. ‘-“‘ T g .
distance: X4 distance: 3

Process current
fringe

Enumerate
neighbors

Update data,
next fringe

Control
value

Efficient control flow with Pipette

* Add hardware support to communicate control flow changes
* Producer — Consumer: Control values & dequeue control handlers
e Consumer — Producer: Enqueue control handlers

lllllllllllll
...................
n® N
n® N
at®
at®
a®
gt

“e.... Current
“*distance: X 4

Update data,
next fringe

Current
distance: X4

Process current
fringe

Enumerate
neighbors

Agenda

Background

Pipette
Architecturally visible queues
Inter-thread control flow
Further accelerating common access patterns

Evaluation

Further accelerating common access patterns

 Memory access patterns are often easy to compute

* Further decouple long-latency accesses with
reference accelerators (RAs), connected to queues

* Improves decoupling without filling load/store queues

data addr data
{Producer]—ﬂ]—{(ﬁonsumer] [Producer] II —E|:|:|—>[Consumer]

addr‘t

Memory Without RAs Memory | |With an RA

Agenda

Background

Pipette

Evaluation

Evaluation

Applications evaluated:

 Event-driven cycle-level simulator -Graph analytics:

* 6-wide 00O core (similar to Intel Skylake) + Breadth-first search (BFS)
e Baseline: e Connected components (CC)
data_para“el 4_Way ° PageRank—Delta (PRD)
%% multithreaded * Radii Estimation (Radii)

*Sparse linear algebra:

e Sparse matrix-matrix
multiply (SpMM)
*Databases:

 Additional comparison:
SS 4-core “Streaming Multicore”
SS = (using Pipette ISA)

 Silo

Pipette achieves significant speedups
N
B Serial 1-core 1-thread B Pipette 1-core 4-thread

S% @ Data-parallel 1-core 4-thread Streaming 4-core 1-thread SSS (=

=

3 - >

= »

2 2)

’ 5

0 =

N

A)

Pipette effectively tolerates latency
and load imbalance

(5 555

S: Serial D: Data-parallel (baseline) P: Pipette M: streaming Multicore

5 2.5 - y :

e - M M

o X L —

= 1.5-3 BN Other

Q 1.0 - B2 D D, B Queue stalls
% . - P p B Backend stalls
é 0.5 BN [ssued

= 0.0 . y

Z BFS CC PRD Radii SpMM Silo

Pipette reduces impact of memory latency (smaller red bars)

and load imbalance (smaller purple bars) 23
R

Case study:

Multicore, multithreaded BFS

o:f 4 A !
v i|Proc. cur.| |Enum.| | Fetch Upd. data, |!
1 . . . o
SL fringe neighs. kdlsts.) next fring E
|
L | TV £ -
—— 1
,_,:r N\ N\) Y
wi|Proc.cur.| |Enum.| | Fetch Upd.data, :
Sif fri ighs.| | dists next fringe ||
Uip ringe) 851 L y \ 5 i
i — R ——— T A g T — -
I e e e e v v =
N:r N\ [N\ ([) r !
wi|Proc.cur.| |Enum.| | Fetch Upd. data, !
Si fri ighs.| | dist inge ||
Ui\ fringe) \ne|ghsj dists. knextfrlnge !
L'__'__'__'__'__'::::::::::: ::::::::::::;!
P —— :
T i|Proc.cur.| |Enum. | Fetch Upd. data, |
éi fringe neighs.| | dists. next fring i
e

S Serial 1-core 1-thread

NRE

SSSS W Data-parallel 4-core 4-thread
B Pipette 4-core 4-thread
Streaming 4-core 1-thread

Hu Dy (G In Rd gmean

24

See paper for:

* Specifics on 000 core reuse & interaction with speculation

* Low-cost implementation of reference accelerators

* Connecting queues across cores

* Detailed performance analysis, including energy savings up to 2x

 Additional analyses of number of stages, PRF size, use of RAs

Conclusion

* Irregular applications hamper core utilization

* Pipette reuses OOO core structures to efficiently implement
irregular applications as pipeline-parallel programs

» Speedups of gmean 1.9x%, up to 3.9% over SMT baseline in
challenging irregular benchmarks

Thank you!

Pipette: Improving Core Utilization
on Irregular Applications
through Intra-Core Pipeline Parallelism

Quan Nguyen and Daniel Sanchez
gmn@csail.mit.edu and sanchez@csail.mit.edu

MICRO-53

Live session: Session 4A: Microarchitecture Il]r_\r%

I I I o . (October 20,2020 at 2 PM EDT) /_n
il :

This presentation and recording belong to the authors. C S A I I_
No distribution is allowed without the authors' permission.

