F1: A FAST AND PROGRAMMABLE ACCELERATOR FOR FULLY HOMOMORPHIC ENCRYPTION

AXEL FELDMANN*, NIKOLA SAMARDZIC*, ALEKSANDAR KRASTEV, SRINI DEVADAS, RON DRESLINSKI, CHRIS PEIKERT, DANIEL SANCHEZ

9/21/2021

* Authors contributed equally

Overview

□ A lot of modern software runs in the cloud

Problem: the cloud's vulnerabilities become **your** vulnerabilities

FHE enables computation on encrypted data

Fully Homomorphic Encryption (FHE)

- FHE is a cryptographic system that allows us to computation on encrypted data
 - It allows arithmetic operations on encrypted vectors
 - FHE is expressive enough to implement neural network, logistic regression, etc.
- FHE computation is 10,000x slower than unencrypted computation
- Let's accelerate it with F1

Ex: Private Deep Learning In the Cloud

- Use case: inference too expensive to do on the client; data must remain private; model is too large
- □ State of the art: **20 minutes** per encrypted DNN inference
- □ F1 reduces this to 250 milliseconds

Agenda

Overview of FHE computations

□ Architectural characterization of FHE

🗆 F1 design

Evaluation and results

Plaintext vectors are encrypted into pairs of **polynomials** Polynomials are represented as vectors of coefficients

FHE Operations

- By computing on the ciphertext polynomials, FHE allows us to add, multiply, and rotate the underlying values
 - Operations on ciphertexts are often quite complex
 - **Example:** to multiply two ciphertexts **x** and **y**:

□ We often need to multiply polynomials

Naively, this takes O(n²) multiplications

NTTs and NTT⁻¹ each take O(nlogn) multiplies, making the whole operation O(nlogn)

- Ciphertexts start with some initial noise and coefficient width
- As we compute on them, they become noisier, and we chop off the noise, also reducing the coefficient width
- **Bootstrapping** is an expensive procedure to refresh ciphertexts

We must perform computation at multiple bit-widths!

Computation depth (~time)

- Problem: our polynomial coefficients are extremely wide (up to ~1000 bits)
 - We also need to support computation on narrower ones

Residue Number System: we can represent a single wide polynomial modulo some large Q as L many polynomials each mod a smaller q_i where

Advantage: we can perform arbitrarily wide modular arithmetic with 32-bit multipliers

Agenda

- Overview of FHE computations
- Architectural characterization of FHE
- 🗆 F1 design
- Evaluation and results

□ FHE enables many algorithms on encrypted data, not just a single application

- □ Homomorphic operations all rely on big polynomial arithmetic
- Ciphertexts are large (some are many MBs), so data movement is extremely important
- □ Dataflow is completely static

- □ FHE enables many algorithms on encrypted data, not just a single application
- FUs need to be flexible enough to support various polynomial sizes and coefficient widths

- Needs to support all possible FHE programs
 General, without sacrificing performance
- □ Prior work only accelerates some FHE operations

- □ Homomorphic operations all rely on big polynomial arithmetic
- □ F1 accelerates polynomial arithmetic primitives
 - We support various FHE schemes
 - Within FHE schemes, we support multiple implementations of ciphertext operations
- Prior work builds overspecialized pipelines

- Ciphertexts are large (some are many MBs), so data movement is extremely important
- □ We need a large scratchpad with decoupled loads
- Operand size limits parallelism
 - Only a small number of operands fit on chip at any time
 FU latency is critical
- Prior work targets FPGAs with limited compute, bypassing data movement problems

Static Dataflow

Dataflow is completely static

Branching is **not possible**. We are computing on **encrypted data**. If we can't decrypt x, we can't branch on it!

□ We can avoid expensive scheduling hardware

Decoupling loads is easier

Prior Work	F1
Built for FPGAs → Limited compute, ignore data movement bottlenecks	Targets ASICs → Designed to minimize off-chip data movement
Accelerate only some FHE operations, defer others to a host processor	Accelerates all FHE operations
Build overspecialized pipelines with simple FUs → Hinder algorithmic diversity	Accelerates primitive operations with high throughput FUs

Prior work:

- M Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. 2020. HEAX: An architecture for computing on encrypted data. In Proceedings of the 25th international conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS-XXV).
- Sujoy Sinha Roy, Furkan Turan, Kimmo Jarvinen, Frederik Vercauteren, and Ingrid Verbauwhede. 2019. FPGA-Based High-Performance Parallel Architecture for Homomorphic Computing on Encrypted Data. In Proceedings of the 25th IEEE international symposium on High Performance Computer Architecture (HPCA-25).
- Vincent Migliore, Cédric Seguin, Maria Mendez Real, Vianney Lapotre, Arnaud Tisserand, Caroline Fontaine, Guy Gogniat, and Russell Tessier. 2017. A High-Speed Accelerator for Homomorphic Encryption using the Karatsuba Algorithm. ACM Trans. Embedded Comput. Syst. 16, 5s (2017), 138:15138:17.

Agenda

- Overview of FHE computations
- Architectural characterization of FHE

🗆 F1 design

Evaluation and results

- □ 64 MB scratchpad
- □ 16 clusters
- □ 1 TB/s HBM2

□ Each compute cluster has its own independent instruction stream

- We design and implement a complete software stack that compiles a simple DSL to F1 instructions
- FHE programs are static dataflow graphs
 All dependences are precisely known at compile-time

We use an explicitly managed memory hierarchy
 Data is fetched ahead-of-time and replaced using an approximation of Bélády's Min

□ Traditional VLIW scheduling algorithms don't scale to our problem size

□ We schedule primarily to minimize off-chip data movement

- Data movement is largely dominated by Key Switch Hints, which are required for most ciphertext operations
- We schedule to maximize KSH reuse

- Vector additions
- Vector multiplications
- Automorphisms
 - Primitive ciphertext polynomial operation that enables rotations of encrypted slots

F1 Vector Datapath

 \mathbf{x}_1 \mathbf{x}_2

 \mathbf{x}_3

 x_4 x_5

x6

x₇ x₈

x₉ x₁₀ x₁₁

x₁₃

- Polynomials divided into 128-coefficient chunks.
- Datapath is 128 lanes wide.
- Vector adds and multiplies act coefficientwise. Easy to pipeline.
- NTTs and automorphisms have dependencies across chunks making them hard to pipeline.

- Decomposes automorphisms into a pipeline of fixed permutations
- □ Each permutation only applied to one chunk at a time
- Relies on novel matrix transpose subunit

Agenda

- Overview of FHE computations
- □ Architectural characterization of FHE
- 🗆 F1 design
- Evaluation and results

Component	Area %	TDP %
16× compute clusters	42%	78%
Scratchpad (16×4MB banks)	32%	11%
3×NoC (16×16 512B bit-sliced)	6%	11%
Memory interface (2×HBM2 PHYs)	20%	0%
Total F1	151.43mm ²	180.45W

□ Uses commercial 14/12nm process

Benchmarks

- Low Latency CryptoNets (LoLa)
 - LoLa-MNIST
 - Simple LeNet-style network
 - Used on the MNIST dataset
 - Available with both encrypted and unencrypted weights
 - LoLa-CIFAR
 - Large 6-layer network similar to MobileNet v3
 - Used on the CIFAR-10 dataset
- Logistic regression
 - HELR algorithm for logistic regression in FHE
 - Implements logistic regression training with up to 256 features and 256 samples per batch
- Database lookup
 - HELib's database lookup example
- BGV/CKKS Bootstrapping

Benchmark	Speedup
LoLa-CIFAR Unencrypted Weights	5,011×
LoLa-MNIST Unencrypted Weights	17,412×
LoLa-MNIST Encrypted Weights	15,086×
Logistic Regression	7,217×
Database Lookup	6,722×
BGV Bootstrapping	1,830×
CKKS Bootstrapping	1,195×
gmean speedup	5,432×

Speedup on benchmark	vs. wimpy NTT	vs. naïve automorph.	vs. VLIW scheduler
LoLa-Cifar Unencr. Wghts	3.5×	12.1×	(*)
LoLa-MNIST Unencr. Wghts	5.0×	4.2×	1.1×
LoLa-MNIST Encr. Wghts	5.1×	11.9×	7.5×
Logistic Regression	1.7×	2.3×	11.7×
Database Lookup	1.6×	1.1×	5.4×
BGV Bootstrapping	1.1×	1.2×	2.7×
CKKS Bootstrapping	2.8×	2.2×	(*)
gmean speedup	2.6×	3.3×	4.2×

Off-chip Data Movement Breakdown

Conclusions

- □ FHE enables computational offloading with guaranteed security
- □ High computational overhead limits applicability
- □ F1 accelerates FHE, enabling new applications
- Demonstrates ASIC-level performance without sacrificing programmability

THANKS FOR YOUR ATTENTION!

QUESTIONS ARE WELCOME!

