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Overview
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 A lot of modern software runs in the cloud
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 FHE enables computation on encrypted data
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If someone hacks the cloud, 
your data is safe!

Problem: the cloud’s 
vulnerabilities become your

vulnerabilities



Fully Homomorphic Encryption (FHE)
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 FHE is a cryptographic system that allows us to 
computation on encrypted data

 It allows arithmetic operations on encrypted vectors

 FHE is expressive enough to implement neural network, 
logistic regression, etc.

 FHE computation is 10,000x slower than unencrypted computation
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 Let’s accelerate it with F1



Ex: Private Deep Learning In the Cloud
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 Use case: inference too expensive to do on the client; data must remain 
private; model is too large

 State of the art: 20 minutes per encrypted DNN inference

 F1 reduces this to 250 milliseconds
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F1 enables real-time 
private deep learning 

in the cloud



Agenda
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 Overview of FHE computations

 Architectural characterization of FHE

 F1 design

 Evaluation and results 



Encryption – Data Types
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 Plaintext vectors are encrypted into pairs of polynomials

 Polynomials are represented as vectors of coefficients
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y.b1 y.b2 y.b3 y.b4
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FHE Operations
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 By computing on the ciphertext polynomials, FHE allows us to add, multiply, 
and rotate the underlying values

Operations on ciphertexts are often quite complex

 Example: to multiply two ciphertexts x and y:

x.a1 x.a2 x.a3 x.a4

x.b1 x.b2 x.b3 x.b4

x

y

×

×

×

×

+

Key Switch Hints (many MBs)

+

+

xy

Key 
Switching 
Algorithm



Multiplying Polynomials
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 We often need to multiply polynomials
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Instead, we can use the Number 
Theoretic Transform (NTT) which is 

like an FFT

NTTs and NTT-1 each take O(nlogn) 
multiplies, making the whole 

operation O(nlogn)



Rough Shape of FHE Programs
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 Ciphertexts start with some initial noise and coefficient width

 As we compute on them, they become noisier, and we chop off the noise, also 
reducing the coefficient width

 Bootstrapping is an expensive procedure to refresh ciphertexts
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Wide Arithmetic Using RNS
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 Problem: our polynomial coefficients are extremely wide 
(up to ~1000 bits)

We also need to support computation on narrower ones
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modulo some large Q as L many polynomials each mod a smaller qi where 

q1q2…qL = Q

a1,1

a2,1

…

aN,1

a1,2

a2,2

…

aN,2

a1,L

a2,L

…

aN,L

…

b1

b2

…

bN

b1,1

b2,1

…

bN,1

b1,2

b2,2

…

bN,2

b1,L

b2,L

…

bN,L

…

× × × ×

Advantage: we can 
perform arbitrarily 

wide modular 
arithmetic with 32-bit 

multipliers

Residue polynomials are 
F1’s primitive datatype
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 Overview of FHE computations

 Architectural characterization of FHE

 F1 design

 Evaluation and results 



Architectural Characteristics of FHE
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 FHE enables many algorithms on encrypted data, not just a single application

 Homomorphic operations all rely on big polynomial arithmetic

 Ciphertexts are large (some are many MBs), so data movement is extremely 
important

 Dataflow is completely static



Accelerating Whole FHE Programs
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 FHE enables many algorithms on encrypted data, not just a single application

 FUs need to be flexible enough to support various polynomial sizes and 
coefficient widths

 Needs to support all possible FHE programs

General, without sacrificing performance

 Prior work only accelerates some FHE operations



Polynomial Arithmetic Primitives
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 Homomorphic operations all rely on big polynomial arithmetic

 F1 accelerates polynomial arithmetic primitives

We support various FHE schemes

Within FHE schemes, we support multiple implementations of ciphertext operations

 Prior work builds overspecialized pipelines



Large Ciphertexts
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 Ciphertexts are large (some are many MBs), so data movement is extremely 
important

 We need a large scratchpad with decoupled loads

 Operand size limits parallelism

Only a small number of operands fit on chip at any time

 FU latency is critical

 Prior work targets FPGAs with limited compute, bypassing
data movement problems



Static Dataflow
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 Dataflow is completely static

 We can avoid expensive scheduling hardware

 Decoupling loads is easier

if (x > 37):

do something

Branching is not possible. We are computing on encrypted data. 
If we can’t decrypt x, we can’t branch on it!



F1 vs. Prior Work
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Prior Work F1

Built for FPGAs → Limited 
compute, ignore data movement 
bottlenecks

Targets ASICs → Designed to 
minimize off-chip data movement

Accelerate only some FHE 
operations, defer others to a host 
processor

Accelerates all FHE operations

Build overspecialized pipelines 
with simple FUs → Hinder 
algorithmic diversity

Accelerates primitive operations

with high throughput FUs

Prior work:
• M Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. 2020. HEAX: An architecture for computing on encrypted data. In Proceedings of the 25th international 

conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS-XXV).

• Sujoy Sinha Roy, Furkan Turan, Kimmo Ja ̈rvinen, Frederik Vercauteren, and Ingrid Verbauwhede. 2019. FPGA-Based High-Performance Parallel Architecture for 
Homomorphic Computing on Encrypted Data. In Proceedings of the 25th IEEE international symposium on High Performance Computer Architecture (HPCA-25). 

• Vincent Migliore, Ce ́dric Seguin, Maria Mendez Real, Vianney Lapotre, Arnaud Tisserand, Caroline Fontaine, Guy Gogniat, and Russell Tessier. 2017. A High-Speed 
Accelerator for Homomorphic Encryption using the Karatsuba Algorithm. ACM Trans. Embedded Comput. Syst. 16, 5s (2017), 138:1ś138:17. 
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F1 Architecture Overview
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 64 MB scratchpad

 16 clusters

 1 TB/s HBM2
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Decentralized Control
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 Each compute cluster has its own independent instruction stream
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Static Scheduling
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 We design and implement a complete software stack 
that compiles a simple DSL to F1 instructions

 FHE programs are static dataflow graphs

 All dependences are precisely 
known at compile-time

 We use an explicitly managed memory hierarchy

 Data is fetched ahead-of-time and replaced using an 
approximation of Bélády’s Min

a = Ciphertext()

b = Ciphertext()

c = a * a + b

a b

×

+



Scheduling Algorithms
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 Traditional VLIW scheduling algorithms don’t scale to our problem size

 We schedule primarily to minimize off-chip data movement

 Data movement is largely dominated by Key Switch Hints, which are required for 
most ciphertext operations

We schedule to maximize KSH reuse



Specialized Functional Units
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 Vector additions

 Vector multiplications

 NTTs 

 Automorphisms

 Primitive ciphertext polynomial operation that enables 
rotations of encrypted slots



F1 Vector Datapath
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 Polynomials divided into 128-coefficient 
chunks.

 Datapath is 128 lanes wide.

 Vector adds and multiplies act coefficient-
wise. Easy to pipeline.

 NTTs and automorphisms have dependencies 
across chunks making them hard to pipeline.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 11 6 1 12 7 2 13 8 3 14 9 4 15 10 5



Vectorized Automorphism Unit
25

 Decomposes automorphisms into a pipeline of fixed permutations

 Each permutation only applied to one chunk at a time

 Relies on novel matrix transpose subunit
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Area and Power Breakdown
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Component Area % TDP %

16× compute clusters 42% 78%

Scratchpad (16×4MB banks) 32% 11%

3×NoC (16×16 512B bit-sliced) 6% 11%

Memory interface (2×HBM2 PHYs) 20% 0%

Total F1 151.43mm2 180.45W

 Uses commercial 14/12nm process



Benchmarks
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 Low Latency CryptoNets (LoLa)
 LoLa-MNIST
 Simple LeNet-style network

 Used on the MNIST dataset

 Available with both encrypted and unencrypted weights

 LoLa-CIFAR

 Large 6-layer network similar to MobileNet v3

 Used on the CIFAR-10 dataset

 Logistic regression
 HELR algorithm for logistic regression in FHE

 Implements logistic regression training with up to 256 features and 
256 samples per batch

 Database lookup
 HELib’s database lookup example

 BGV/CKKS Bootstrapping



Benchmark Speedup

LoLa-CIFAR Unencrypted Weights 5,011×

LoLa-MNIST Unencrypted Weights 17,412×

LoLa-MNIST Encrypted Weights 15,086×

Logistic Regression 7,217×

Database Lookup 6,722×

BGV Bootstrapping 1,830×

CKKS Bootstrapping 1,195×

gmean speedup 5,432×

Results
29



Speedup Breakdown
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Speedup on benchmark vs. wimpy NTT vs. naïve automorph. vs. VLIW scheduler

LoLa-Cifar Unencr. Wghts 3.5× 12.1× --- *

LoLa-MNIST Unencr. Wghts 5.0× 4.2× 1.1×

LoLa-MNIST Encr. Wghts 5.1× 11.9× 7.5×

Logistic Regression 1.7× 2.3× 11.7×

Database Lookup 1.6× 1.1× 5.4×

BGV Bootstrapping 1.1× 1.2× 2.7×

CKKS Bootstrapping 2.8× 2.2× ---*

gmean speedup 2.6× 3.3× 4.2×



Off-chip Data Movement Breakdown
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Conclusions
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 FHE enables computational offloading with guaranteed security

 High computational overhead limits applicability

 F1 accelerates FHE, enabling new applications

 Demonstrates ASIC-level performance without sacrificing programmability
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