
F1: A FAST AND PROGRAMMABLE ACCELERATOR FOR

FULLY HOMOMORPHIC ENCRYPTION

AXEL FELDMANN*, NIKOLA SAMARDZIC*, ALEKSANDAR KRASTEV, 
SRINI DEVADAS, RON DRESLINSKI, CHRIS PEIKERT, DANIEL SANCHEZ

9/21/2021

* Authors contributed equally



Overview
2

 A lot of modern software runs in the cloud
x

f(x)

server

 FHE enables computation on encrypted data

f(x)

x

server

Encrypt

Decrypt

Encrypted(x)

Encrypted(f(x))

If someone hacks the cloud, 
your data is safe!

Problem: the cloud’s 
vulnerabilities become your

vulnerabilities



Fully Homomorphic Encryption (FHE)
3

 FHE is a cryptographic system that allows us to 
computation on encrypted data

 It allows arithmetic operations on encrypted vectors

 FHE is expressive enough to implement neural network, 
logistic regression, etc.

 FHE computation is 10,000x slower than unencrypted computation

f(x)

x

server

Encrypt

Decrypt

Encrypted(x)

Encrypted(f(x))

F1

 Let’s accelerate it with F1



Ex: Private Deep Learning In the Cloud
4

 Use case: inference too expensive to do on the client; data must remain 
private; model is too large

 State of the art: 20 minutes per encrypted DNN inference

 F1 reduces this to 250 milliseconds

XwrfvAuw3“Taylor Swift”

x

f(x)
server

Encrypt

Decrypt

Encrypted(x)

Encrypted(f(x))

F1

F1 enables real-time 
private deep learning 

in the cloud



Agenda
5

 Overview of FHE computations

 Architectural characterization of FHE

 F1 design

 Evaluation and results 



Encryption – Data Types
6

 Plaintext vectors are encrypted into pairs of polynomials

 Polynomials are represented as vectors of coefficients

m1

m2

…

mN

a1

a2

…

aN

+1

-1

…

0

encryption

plaintext values (~8 bit values)

b1

b2

…

bN

small random noise

secret key

ciphertext 
polynomial

coefficients are up to ~1000 bits wide

each ciphertext is a pair 
of polynomials



y.b1 y.b2 y.b3 y.b4

y.a1 y.a2 y.a3 y.a4

FHE Operations
7

 By computing on the ciphertext polynomials, FHE allows us to add, multiply, 
and rotate the underlying values

Operations on ciphertexts are often quite complex

 Example: to multiply two ciphertexts x and y:

x.a1 x.a2 x.a3 x.a4

x.b1 x.b2 x.b3 x.b4

x

y

×

×

×

×

+

Key Switch Hints (many MBs)

+

+

xy

Key 
Switching 
Algorithm



Multiplying Polynomials
8

 We often need to multiply polynomials

x1

x2

x3

x4

x1

x2

x3

x4

Naively, this takes O(n2) 
multiplications

NTT

x1

x2

x3

x4

NTT

x1

x2

x3

x4

n1

n2

n3

n4

n1

n2

n3

n4

×

×

×

×

NTT-1

x1

x2

x3

x4

Instead, we can use the Number 
Theoretic Transform (NTT) which is 

like an FFT

NTTs and NTT-1 each take O(nlogn) 
multiplies, making the whole 

operation O(nlogn)



Rough Shape of FHE Programs
9

 Ciphertexts start with some initial noise and coefficient width

 As we compute on them, they become noisier, and we chop off the noise, also 
reducing the coefficient width

 Bootstrapping is an expensive procedure to refresh ciphertexts

Computation depth (~time)

C
o
e
ff

ic
ie

nt
 b

it
-w

id
th

bootstrapping
We must perform 

computation at multiple 
bit-widths!



Wide Arithmetic Using RNS
10

 Problem: our polynomial coefficients are extremely wide 
(up to ~1000 bits)

We also need to support computation on narrower ones

a1

a2

…

aN

Residue Number System: we can represent a single wide polynomial 
modulo some large Q as L many polynomials each mod a smaller qi where 

q1q2…qL = Q

a1,1

a2,1

…

aN,1

a1,2

a2,2

…

aN,2

a1,L

a2,L

…

aN,L

…

b1

b2

…

bN

b1,1

b2,1

…

bN,1

b1,2

b2,2

…

bN,2

b1,L

b2,L

…

bN,L

…

× × × ×

Advantage: we can 
perform arbitrarily 

wide modular 
arithmetic with 32-bit 

multipliers

Residue polynomials are 
F1’s primitive datatype



Agenda
11

 Overview of FHE computations

 Architectural characterization of FHE

 F1 design

 Evaluation and results 



Architectural Characteristics of FHE
12

 FHE enables many algorithms on encrypted data, not just a single application

 Homomorphic operations all rely on big polynomial arithmetic

 Ciphertexts are large (some are many MBs), so data movement is extremely 
important

 Dataflow is completely static



Accelerating Whole FHE Programs
13

 FHE enables many algorithms on encrypted data, not just a single application

 FUs need to be flexible enough to support various polynomial sizes and 
coefficient widths

 Needs to support all possible FHE programs

General, without sacrificing performance

 Prior work only accelerates some FHE operations



Polynomial Arithmetic Primitives
14

 Homomorphic operations all rely on big polynomial arithmetic

 F1 accelerates polynomial arithmetic primitives

We support various FHE schemes

Within FHE schemes, we support multiple implementations of ciphertext operations

 Prior work builds overspecialized pipelines



Large Ciphertexts
15

 Ciphertexts are large (some are many MBs), so data movement is extremely 
important

 We need a large scratchpad with decoupled loads

 Operand size limits parallelism

Only a small number of operands fit on chip at any time

 FU latency is critical

 Prior work targets FPGAs with limited compute, bypassing
data movement problems



Static Dataflow
16

 Dataflow is completely static

 We can avoid expensive scheduling hardware

 Decoupling loads is easier

if (x > 37):

do something

Branching is not possible. We are computing on encrypted data. 
If we can’t decrypt x, we can’t branch on it!



F1 vs. Prior Work
17

Prior Work F1

Built for FPGAs → Limited 
compute, ignore data movement 
bottlenecks

Targets ASICs → Designed to 
minimize off-chip data movement

Accelerate only some FHE 
operations, defer others to a host 
processor

Accelerates all FHE operations

Build overspecialized pipelines 
with simple FUs → Hinder 
algorithmic diversity

Accelerates primitive operations

with high throughput FUs

Prior work:
• M Sadegh Riazi, Kim Laine, Blake Pelton, and Wei Dai. 2020. HEAX: An architecture for computing on encrypted data. In Proceedings of the 25th international 

conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS-XXV).

• Sujoy Sinha Roy, Furkan Turan, Kimmo Ja ̈rvinen, Frederik Vercauteren, and Ingrid Verbauwhede. 2019. FPGA-Based High-Performance Parallel Architecture for 
Homomorphic Computing on Encrypted Data. In Proceedings of the 25th IEEE international symposium on High Performance Computer Architecture (HPCA-25). 

• Vincent Migliore, Ce ́dric Seguin, Maria Mendez Real, Vianney Lapotre, Arnaud Tisserand, Caroline Fontaine, Guy Gogniat, and Russell Tessier. 2017. A High-Speed 
Accelerator for Homomorphic Encryption using the Karatsuba Algorithm. ACM Trans. Embedded Comput. Syst. 16, 5s (2017), 138:1ś138:17. 



Agenda
18

 Overview of FHE computations

 Architectural characterization of FHE

 F1 design

 Evaluation and results 



Compute clusters

(x16)

F1 Architecture Overview
19

 64 MB scratchpad

 16 clusters

 1 TB/s HBM2

High-Bandwidth Memory

Mem ctrlMem ctrlMem ctrlMem ctrl

Scratchpad

banks (x16)

On-chip network

(3 16x16 crossbars)

...

M
e
m

o
ry

 hie
ra

rchy

...

D
istrib

ute
d

 co
ntro

l

Vector Register

File (banked)

x128 lanes

NTT

Automorphism

V
e
cto

r functio
na

l units

Compute cluster

Mod mult...x x x
...

... ...

Mod mult...x x x

Mod add...+ + +

Mod add...+ + +



MUL R4, R2, R1 2 AUTO R3, R7, 12

NTT R1, R2 37 ADD R3, R4, R5 9

Decentralized Control
20

 Each compute cluster has its own independent instruction stream

Cluster 1

reg

reg

reg

reg

FU

FU

FU

Cluster 16

reg

reg

reg

reg

FU

FU

FU

…



Static Scheduling
21

 We design and implement a complete software stack 
that compiles a simple DSL to F1 instructions

 FHE programs are static dataflow graphs

 All dependences are precisely 
known at compile-time

 We use an explicitly managed memory hierarchy

 Data is fetched ahead-of-time and replaced using an 
approximation of Bélády’s Min

a = Ciphertext()

b = Ciphertext()

c = a * a + b

a b

×

+



Scheduling Algorithms
22

 Traditional VLIW scheduling algorithms don’t scale to our problem size

 We schedule primarily to minimize off-chip data movement

 Data movement is largely dominated by Key Switch Hints, which are required for 
most ciphertext operations

We schedule to maximize KSH reuse



Specialized Functional Units
23

 Vector additions

 Vector multiplications

 NTTs 

 Automorphisms

 Primitive ciphertext polynomial operation that enables 
rotations of encrypted slots



F1 Vector Datapath
24

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

Chunk

 Polynomials divided into 128-coefficient 
chunks.

 Datapath is 128 lanes wide.

 Vector adds and multiplies act coefficient-
wise. Easy to pipeline.

 NTTs and automorphisms have dependencies 
across chunks making them hard to pipeline.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 11 6 1 12 7 2 13 8 3 14 9 4 15 10 5



Vectorized Automorphism Unit
25

 Decomposes automorphisms into a pipeline of fixed permutations

 Each permutation only applied to one chunk at a time

 Relies on novel matrix transpose subunit

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Input

0

3

2

1

4

7

6

5

8

11

10

9

12

15

14

13

Permute column

0

4

8

12

3

7

11

15

2

6

10

14

1

5

9

13

Transpose

0

11

6

1

12

7

2

13

8

3

14

9

4

15

10

5

Transpose

0

12

8

4

11

7

3

15

6

2

14

10

1

13

9

5

Permute row
(i.e., transposed column)



Agenda
26

 Overview of FHE computations

 Architectural characterization of FHE

 F1 design

 Evaluation and results 



Area and Power Breakdown
27

Component Area % TDP %

16× compute clusters 42% 78%

Scratchpad (16×4MB banks) 32% 11%

3×NoC (16×16 512B bit-sliced) 6% 11%

Memory interface (2×HBM2 PHYs) 20% 0%

Total F1 151.43mm2 180.45W

 Uses commercial 14/12nm process



Benchmarks
28

 Low Latency CryptoNets (LoLa)
 LoLa-MNIST
 Simple LeNet-style network

 Used on the MNIST dataset

 Available with both encrypted and unencrypted weights

 LoLa-CIFAR

 Large 6-layer network similar to MobileNet v3

 Used on the CIFAR-10 dataset

 Logistic regression
 HELR algorithm for logistic regression in FHE

 Implements logistic regression training with up to 256 features and 
256 samples per batch

 Database lookup
 HELib’s database lookup example

 BGV/CKKS Bootstrapping



Benchmark Speedup

LoLa-CIFAR Unencrypted Weights 5,011×

LoLa-MNIST Unencrypted Weights 17,412×

LoLa-MNIST Encrypted Weights 15,086×

Logistic Regression 7,217×

Database Lookup 6,722×

BGV Bootstrapping 1,830×

CKKS Bootstrapping 1,195×

gmean speedup 5,432×

Results
29



Speedup Breakdown
30

Speedup on benchmark vs. wimpy NTT vs. naïve automorph. vs. VLIW scheduler

LoLa-Cifar Unencr. Wghts 3.5× 12.1× --- *

LoLa-MNIST Unencr. Wghts 5.0× 4.2× 1.1×

LoLa-MNIST Encr. Wghts 5.1× 11.9× 7.5×

Logistic Regression 1.7× 2.3× 11.7×

Database Lookup 1.6× 1.1× 5.4×

BGV Bootstrapping 1.1× 1.2× 2.7×

CKKS Bootstrapping 2.8× 2.2× ---*

gmean speedup 2.6× 3.3× 4.2×



Off-chip Data Movement Breakdown
31

LoLa CIFAR-10

LoLa MNIST 
Unencrypted Weights

LoLa MNIST 
Encrypted Weights

Logistic Regression

BGV Bootstrapping

CKKS 
Bootstrapping

Database 
Lookup

81GB

130MB

228MB

702MB

1GB

727MB

721MB
N

0.0 1.00.80.60.40.2

Compulsory keyswitch hints
Compulsory input

Intermediate load

Intermediate store

Non-compulsory keyswitch hints
Non-compulsory input



Conclusions
32

 FHE enables computational offloading with guaranteed security

 High computational overhead limits applicability

 F1 accelerates FHE, enabling new applications

 Demonstrates ASIC-level performance without sacrificing programmability



THANKS FOR YOUR ATTENTION!

QUESTIONS ARE WELCOME!


