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Abstract—Benchmarks that closely match the behavior of
production workloads are crucial to design and provision
computer systems. However, current approaches fall short:
First, open-source benchmarks use public datasets that cause
different behavior from production workloads. Second, black-
box workload cloning techniques generate synthetic code that
imitates the target workload, but the resulting program fails
to capture most workload characteristics, such as microarchi-
tectural bottlenecks or time-varying behavior.

Generating code that mimics a complex application is an
extremely hard problem. Instead, we propose a different and
easier approach to benchmark synthesis. Our key insight is
that, for many production workloads, the program is publicly
available or there is a reasonably similar open-source program.
In this case, generating the right dataset is sufficient to produce
an accurate benchmark.

Based on this observation, we present Datamime, a profile-
guided approach to generate representative benchmarks for
production workloads. Datamime uses the performance profiles
of a target workload to generate a dataset that, when used by
a benchmark program, behaves very similarly to the target
workload in terms of its microarchitectural characteristics.

We evaluate Datamime on several datacenter workloads.
Datamime generates synthetic benchmarks that closely match
the microarchitectural features of these workloads, with a mean
absolute percentage error of 3.2% on IPC. Microarchitectural
behavior stays close across processor types. Finally, time-
varying behaviors are also replicated, making these bench-
marks useful to e.g. characterize and optimize tail latency.

Keywords-benchmarking; workload generation.

I. INTRODUCTION

Representative benchmarks are critical to computer archi-

tects and systems designers. Benchmarks allow architects to

design hardware tailored to their target applications. This is

especially hard to do for modern datacenter workloads [12],

which often operate on confidential and proprietary data.

Unfortunately, existing datacenter benchmarks are rarely

representative of production workloads. These benchmarks

use synthetic or publicly available datasets that are very

different from those in production [12, 31], or use traces that

are representative at the time of construction but become

outdated as user data changes over time without continued

maintenance [16, 19, 54]. Fig. 1(left) shows an example of this

problem: it reports the instructions per cycle (IPC) on a Broad-

well processor for memcached running with two datasets: one

with a publicly available dataset representative of Facebook’s
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Figure 1: Accuracy comparison of benchmark generators when mim-
icking memcached with a Facebook production dataset: IPC (left) and
ICache MPKI (center) on an Intel Broadwell CPU, and IPC (right) on
an AMD Zen 2 CPU. memcached with a public dataset (TailBench’s
default) and the PerfProx-generated code are very different from the
production workload. By contrast, Datamime produces a dataset that
makes memcached closely mimic the production workload.

production environment [3] (in blue), and another with the

default dataset used in the Tailbench benchmark suite [31]

(in red). IPC is 2.4× lower for the Tailbench dataset. This

stark difference comes from very different microarchitectural

behavior. For example, Fig. 1(center) shows that the Tailbench

dataset incurs 3.2× higher instruction cache misses per kilo-

instruction (ICache MPKI), but other metrics (e.g., branch

mispredictions and data misses) are also very different.

Alternatively, black-box workload cloning techniques [4,

5, 27, 41] generate synthetic code that mimics the behavior

of a target workload. These techniques directly analyze the

production workload to generate code, so in theory they need

not suffer from the mismatch between production and public

datasets. But in practice, trying to mach the behavior of a

complex program with synthetic code is very complicated.

Thus, the produced benchmark does not preserve the structure

and high-level behavior of the production workload, resulting

in an inaccurate benchmark. Fig. 1 shows this problem: when

PerfProx [41], a state-of-the-art workload cloning technique,

is used to clone memcached, the resulting benchmark has

a 1.94× higher IPC on Broadwell. PerfProx also produces

very different microarchitectural behavior, with 7.76× lower

ICache MPKI. Beyond this mismatch, the resulting clone

does not capture the overall structure of the workload, e.g.,

its request-driven nature and time-varying behavior, which

is crucial to study and optimize many key metrics, like tail

latency, and mechanisms, like OS interactions. For these
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Figure 2: Brief overview of Datamime. Datamime uses the difference
in performance profiles between the synthetic benchmark and the
production workload to produce representative synthetic datasets.

reasons, black-box workload cloning has seen little adoption

within the architecture community.

We introduce data-centric benchmark generation, a new

insight to generate representative benchmarks. We observe

that the code used by production workloads is often publicly

available (e.g., memcached), or a reasonably similar open-

source alternative exists (e.g., an open-source database or

search engine). Thus, instead of trying to generate code as

in prior work, it is simpler and more effective to generate a

representative dataset, i.e., one that makes the public code

closely mimic the target workload.

Based on this observation, we present Datamime, a tech-

nique to generate representative benchmarks from production

workloads by synthesizing datasets. Fig. 2 gives an overview

of Datamime. Datamime uses three inputs: (1) performance

profiles from the target workload, (2) an existing program,

and (3) a dataset generator for the program. Datamime then

searches for a dataset that produces the closest performance

profiles to those of the target workload.

Fig. 1 shows that, unlike prior work, Datamime accurately

mimics the production Facebook workload. IPC and ICache

MPKI are within 2.8% and 2.6% of the target workload,

and results carry over to other microarchitectures: IPC on an

AMD Zen 2 machine (right of Fig. 1) is within 8.5%, whereas

other techniques vary significantly. Because our performance

profiles include many microarchitectural metrics and time-

varying behavior, Datamime accurately captures these aspects

as well, as we will see later.

We evaluate Datamime in a single-node setup across

five datacenter workloads. Datamime is able to synthesize

datasets that differ from the target workload by a mean

absolute percentage error of 3.2% on IPC. In comparison,

state-of-the-art black-box cloning suffers a 42.9% mean

absolute percentage error on IPC. Trends are similar on

other microarchitectural metrics, like memory traffic.

In addition, Datamime closely matches the distributions

of performance counters and CPU utilization. Datamime can

prioritize matching certain metrics to meet the benchmark

designer’s needs. And Datamime’s optimizer is fast, requiring

6–13 hours of serial work to produce an accurate benchmark.

Overall, Datamime makes it easy to produce benchmarks

that are representative of production services. Datamime

requires collecting a one-time, low-overhead profile of the

target workload. While this profiling step needs to be done

by the operator of the service, is has negligible performance

impact and can be gathered in production. Datamime’s dataset

generation and search can then be performed by either a third

party (e.g., a research group) or the operator of the production

service itself. This enables many use cases, such as producing

open-source benchmarks for the research community, or

quickly producing benchmarks that can be shared with

providers (e.g., processor and system designers) to guide

their designs without revealing proprietary data. Datamime is

publicly available at https://datamime.csail.mit.edu.

In summary, we make the following contributions:

• We introduce data-centric benchmark generation, a general

technique to produce representative benchmarks for pro-

duction workloads by synthesizing a representative dataset.

• We present Datamime, an implementation of data-centric

benchmark generation. Datamime is the first technique to

generate representative synthetic datasets by matching the

performance profiles of production workloads.

• We evaluate Datamime on several datacenter workloads,

showing that it is effective at generating representative

datasets. We show that Datamime can match the profile

distributions of the target application’s key metrics. We also

show that Datamime produces the dataset in few iterations,

and can generate datasets with a wide range of performance

profiles.

II. BACKGROUND

Since many datacenter applications are publicly accessible

(or have a similar open-source counterpart), creating a

representative benchmark can be accomplished by running

the application with a representative dataset. Unfortunately,

companies are often apprehensive about releasing the data

used in production environments due to confidentiality issues.

Given this limited access to production data, prior work

has designed datacenter benchmarks in two different ways.

On the one hand, numerous synthetic benchmark suites have

been proposed [12, 16, 31, 54]. These suites combine a

set of common datacenter applications along with publicly

available datasets. On the other hand, prior work has proposed

black-box workload cloning techniques [4, 5, 17, 27], which

synthesize proxy benchmarks that mimic the behavior of

production workloads. We now discuss the limitations of

these two approaches.

A. Existing Benchmarks use Unrepresentative Datasets

With the rise of numerous cloud services over the past few

decades, a number of cloud benchmark suites have been pub-

lished. Cloudsuite [12] focuses on introducing a set of scale-

out workloads that exhibit significantly different microar-

chitectural characteristics from traditional server workloads,

such as limited instruction- and memory-level parallelism

and large working set sizes. Tailbench [31] aggregates a

set of representative latency-critical applications, providing
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Figure 3: Accuracy comparison of five different target workloads against three other schemes. Each of the five plots shows the comparison of
IPCs of different schemes against each target workload (mem-fb, mem-twtr, silo, xapian, dnn). For each group of bars in a given plot, we
report the IPC measured on a system with different processor microarchitectures (Intel Broadwell, AMD Zen 2, and Intel Silvermont). The
leftmost bar (blue) is the target workload’s IPC, and the red bar is the IPC of the same application with a different dataset. We also report
the IPCs of benchmarks generated by PerfProx and Datamime (orange and green) which mimic the microarchitectural characteristics of the
target workload. See Sec. IV for details on our experimental setup, such as the target and different datasets used for the evaluation.

a testbench where it is possible to run these workloads

with different network configurations. The DeathStarBench

Suite [16] instead shifts its focus onto microservices: tens to

hundreds of loosely-coupled collaborative services that form

a single end-to-end application.

A major shortcoming of cloud benchmark suites is that

the benchmarks are driven with input data that are not repre-

sentative of datasets encountered in production environments.

In part, this is because the benchmark suites use datasets that

were never intended to be representative in the first place.

For example, Cloudsuite and Tailbench both use YCSB [7],

which is intended for performance benchmarking rather than

being a representative workload.

In addition, even when benchmark designers drive the ap-

plications with traces or queries from real-world applications

with anonymized customer data, the fact remains that these

benchmarks cannot represent the wide range of different

datasets that arise in production environments. For instance,

analysis of key-value stores running on Facebook [51] and

Twitter [57] have shown that production datasets differ widely

in many dimensions, like their read/write ratio, hit rate, and

key/value size distributions.

This discrepancy in the input dataset induces significant

differences between the benchmark and the workload it tries

to represent, making it difficult to use these benchmarks

instead of the actual workloads for microarchitectural design-

space exploration. For instance, consider Fig. 3, which

extends the IPC comparison study in Fig. 1 to five target

workloads. mem-fb and mem-twtr both use memcached as

its application; the former uses a public dataset that closely

matches a Facebook production service [3], and the latter

uses a publicly available anonymized trace from Twitter’s

Twemcache [57]. silo is an in-memory database driven with

a synthetic bidding dataset, xapian is a search engine driven

with the default Tailbench dataset [31], and dnn is an object

recognition neural network using the ResNet-50 model [20].

Each target workload (blue) and the same application running

a different dataset (red) are evaluated on three systems with

different microarchitectures (Intel Broadwell, AMD Zen 2,

and Intel Silvermont).

Notice that for the mem-fb workload, running the same

application with a different input can result in as much as 59%

difference in the average IPC on the Broadwell processor,

indicating that a representative input is crucial to producing

accurate benchmarks. Datamime (green) is able to bridge this

gap, generating a representative benchmark that results in

only 4.1% difference in IPC averaged across all three systems.

This trend clearly holds for the four other target workloads

as well (see Sec. IV for details on our experimental setup).

B. Black-Box Workload Cloning Cannot Generate Represen-

tative Benchmarks

Prior work has proposed black-box workload cloning [4,

5, 17, 27] to automatically generate proxy benchmarks that

mimic real-world applications. Black-box workload cloning

operates on the assumption that neither the code nor the

data of the target application can be shared publicly. Thus,

workload cloning first profiles the target application to gather

several key metrics that it seeks to replicate with the synthetic

proxy. These often include instruction mix, basic block size,

and memory access patterns. Based on this information, it

generates a synthetic program that mimics these metrics.

A common shortcoming of black-box workload cloning

techniques is their inability to capture application-level

behavior, instead opting to create a sequence of instructions

that mimic the specific metrics of interest. For instance, Joshi

et al. [27] create a graph of basic blocks where the transition

probability is equal to how often the branch terminating each

basic block was taken, disregarding the application context

within which the branch was taken. This approach extends to

other metrics, such as generating a sequence of instructions

to match instruction mixes, creating data dependences, and

generating synthetic memory access streams.

We observe that this limitation makes black-box cloning

unable to produce benchmarks that match the original work-

load well, limiting its usefulness in microarchitectural design

exploration. Fig. 3 shows the average IPC measurements of

benchmarks created by PerfProx [41] (orange), a state-of-

the-art black-box workload cloning technique, that mimic

the behavior of the five corresponding target workloads.
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Figure 4: Comparison of the empirical cumulative distribution func-
tions (eCDFs) of CPU Utilization and memory bandwidth usage of
mem-fb. Each line shows the samples measured for each scheme against
each metric: the target workload is memcached running a production
dataset, and the two benchmarks are generated by PerfProx and
Datamime, respectively.

The benchmarks are generated on the Broadwell machine,

and validated on the AMD Zen 2 and Intel Silvermont

processors. Notice that PerfProx is unable to generate an

accurate proxy that matches the target workload’s IPC across

all microarchitectures, especially for certain workloads, such

as mem-fb, where its IPC is up to 2.5× higher than the target

workload’s.

In addition, datacenter applications often have important

time-varying behavior that workload cloning techniques fail

to capture. Benchmarks should capture these transients as

they heavily influence the important end-to-end metrics, such

as the tail latency distribution that is shaped by intermittent

long-latency requests [9, 29]. However, black-box cloning

only captures average statistics, such as average IPC and

predominant memory access stride, and reduce the original

application down to a small binary that only mimics aggregate

behavior, and is unable to mimic the different phases of

activity within the real workload.

Fig. 4 shows that datacenter workloads have temporal

changes in their behavior that black-box cloning fails to

address. Each plot shows the empirical cumulative distribution

functions (eCDF) plotted against the CPU utilization (left)

and memory bandwidth usage (right). Each line shows the

eCDF of a single scheme against the respective metrics: The

Target (blue), which is memcached with a dataset that is

representative of Facebook’s production environment, and

the two benchmarks generated by Datamime (green) and

PerfProx (orange) for the target workload. We observe that

the target workload exhibits meaningful distributions in both

metrics, which PerfProx is incapable of imitating with its

benchmark. In contrast, Datamime generates a benchmark

that produces similar distributions for both metrics.

III. DATAMIME DESIGN

We now describe the Datamime data-centric benchmark

generator. Datamime creates representative benchmarks by

automatically synthesizing datasets. Fig. 5 shows an overview

of Datamime’s design and usage flow.

The first step is profiling the target production workload

to gather several key metrics. We choose a set of metrics that

characterizes multiple facets of a program’s behavior, such as

TABLE I. METRICS CAPTURED BY THE DATAMIME PROFILER.

Category Profiled Metrics

Instruction Footprint
Instruction Cache MPKI
Instruction TLB MPKI

Data Footprint
L1 Data Cache MPKI
L2 Cache MPKI
Data TLB MPKI

Cache Sensitivity
Last-level Cache MPKI Curve (across
cache sizes)
IPC Curve (across cache sizes)

Miscellaneous
Branch MPKI
CPU Utilization
Memory Bandwidth Usage (in GB/s)

instruction and data footprint, data locality, and request arrival

rate. These include cache misses per kilo-instruction (MPKI),

memory traffic, TLB misses, CPU utilization, and branch

MPKI (Sec. III-A). In addition, we profile the sensitivity of

the workload to cache capacity by measuring the last-level

cache (LLC) MPKI and overall IPC with respect to various

cache partition sizes.

Datamime uses two other inputs to produce a representative

benchmark: a program (which should be the same or similar

to the target workload’s program), and a dataset generator for

that program. The dataset generator takes a set of parameters

and should be able to generate datasets that produce a wide

range of microarchitectural behaviors. Although the dataset

generator needs to be built for each program, we describe

a systematic procedure for constructing useful generators

(Sec. III-B).

Datamime uses the profiles from the target workload to

search a space of possible dataset configurations (Sec. III-C).

Datamime formulates this search as an optimization problem.

Each iteration of the optimizer runs the program with a

dataset generated from specific parameters, profiles it, and

evaluates the error between the resulting profile and that of

the target workload. The optimizer iterates over the dataset

parameters, exploring the space to find a set of parameters

that minimizes the error with the target workload.

A. Profiling

Datamime begins by gathering detailed profiles of the

target workload. To make sure that we create a benchmark

that is truly representative, the chosen metrics must be diverse

enough to capture the various application behaviors, such

as instruction-level parallelism, memory access patterns, and

frequency of branch mispredictions.

To capture the overall application behavior, we measure

10 metrics of interest, listed in Table I. We choose a wide

variety of metrics such that we capture multiple aspects of

the target workload’s behavior and to avoid overfitting to the

microarchitecture of the machine used to generate the bench-

marks. We track the instruction footprint of the workload

by measuring the instruction cache misses and instruction
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TLB misses. Data footprint is captured by measuring the

miss rate at all cache levels and also measuring data TLB

misses. Other key behaviors are also tracked, including branch

mispredictions (which relate to data-dependent code paths),

CPU utilization (which relate to request arrival rates and

service time distributions in cloud workloads), and memory

bandwidth.

We use hardware performance counters to measure these

metrics over a sufficient period of time. Importantly, we

profile entire distributions of samples (e.g., producing a

histogram of IPC over time), not just average values. Dis-

tributions capture not only the average behavior over the

application’s lifetime, but also the variability in the appli-

cation’s activity across phases of execution. Capturing this

time-varying behavior is important for datacenter workloads

because infrequent events, such as a sudden burst of requests

that induce server-side queueing, can dominate the overall

service-level performance [9].

In addition to the above metrics, we capture the memory

access pattern of the application by measuring its sensitivity

to cache capacity. To measure these we use Dynaway [11],

a technique that measures LLC miss curves and IPC curves

at low overhead. These curves capture the sensitivity of the

workload to different cache sizes.

Our profiling technique generates enough samples to con-

struct accurate distributions of these metrics. Each profiling

iteration takes 2–4 minutes, depending on the CPU utilization

of the profiled workload (lower CPU utilization requires

additional time to capture stable profiles). This profiling time

is important because Datamime not only profiles the target

workload, but also the program and dataset for each iteration

of the search. Datamime converges in under 200 iterations,

so the whole search process takes a few hours.

B. Parameterizing the Dataset

Requirements for dataset parameterization: Having a

good dataset generator is a key requirement for Datamime to

produce accurate benchmarks. Ideally, the dataset generator

should produce datasets that exhibit a wide range of perfor-

mance behaviors and distributions to capture the full range

of behaviors of the production workload. With an appropriate

dataset generator, Datamime’s problem is reduced to finding

a set of parameters that produce similar behavior to the target

workload. However, if the dataset generator is insufficiently

broad, it may miss key characteristics of the target workload’s

dataset, and Datamime will not be able to find a close-enough

dataset no matter how much it searches.

Importantly, Datamime uses an efficient optimizer that

handles high-dimensional search spaces well (Sec. III-C).

Thus, dataset generators can use a large number of parameters

to capture a wide range of behaviors, and when writing a

generator, it is not necessary to skimp on the number of

parameters to keep search cost reasonable.

In addition, parameter selection does not require any

knowledge of the target workload’s dataset. Writing a

generator simply requires some basic understanding of the

target workload’s program so that varying dataset parameters

results in a wide range of behaviors. For example, when

choosing the set of parameters for a web search engine, we

use the fact that processing a request consists of retrieving

the set of documents associated to the search term. Thus,

the distributions of document sizes and search terms are the

natural dataset parameters.

Systematically choosing parameters: Though building a

dataset generator may seem like an ad-hoc process at first, by

building several generators we have realized that the process is

nearly identical across applications, and can be systematized,

at least for request-driven applications. Our approach consists

of parameterizing both requests and program data.

The first set of parameters that we include are ones

that characterize the rate and types of requests for the

application. This can be as simple as just adding the request

rate (in queries per second, QPS) as a parameter for some

applications with uniform requests, such as a search engine.

For programs that have heterogeneous request types, we add

parameters that control the ratio of these requests, such as

the GET/SET request ratio for memcached, or the ratio of

database transaction types for silo.

Next, our parameter selection strategy for the data itself

largely depends on the structure of the resulting dataset.

We categorize a dataset as being unstructured if there are

no restrictions in the organization of the data, such as the
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keys and values of a key-value store. Conversely, structured

datasets have specific schemas that we must adhere to, such

as the organization of tables in a relational database or the

structure of layers in a neural network.

For unstructured data, we opt the simple approach of

creating the datasets following certain distributions about

their sizes. For instance, consider memcached, which simply

consists of two different datatypes: keys and values. We start

with the assumption that their sizes are normally distributed,

then add the mean and standard deviation of each as the

parameters to be adjusted.

For structured data, we take an application-specific strategy,

since each application has different requirements in terms of

how its dataset should be formed. For some, this is as simple

as scaling up an existing synthetic dataset with the required

structure or taking a subset of a publicly existing dataset.

For example, in the case of silo, an in-memory database,

where the dataset structure is tightly linked to the request

types, we choose the scaling of an existing synthetic dataset

(TPC-C). In the case of xapian, which searches through text

documents that have certain properties like word frequency

and sentence structure, we select a subset of documents from

a public web crawl using the document length as its parameter.

Finally, some applications such as dnn, a DNN-as-a-service

application, have datasets which can be composed of simple

building blocks, each of which can be a parameter of the

dataset (in the case of dnn, this would be the number of

layers for each layer type).

Refining parameters iteratively: Beyond the above process,

the user can observe how well the produced dataset matches

the behavior of the target workload, and add, change, or

remove parameters if Datamime does not converge to a

sufficiently accurate benchmark. In our experience, following

the above parameter selection process is sufficient for most

workloads (memcached, silo, dnn), and no refinement was

required. For xapian, we had to refine some parameters

(specifically, generalizing the distributions of document sizes

and search terms) as our initial set of parameters did not

imitate the target workload’s behavior.

We observe that parameterization and subsequent genera-

tion of an application’s synthetic dataset requires a modest

amount of time from the benchmark designer. The only

significant manual work required is the parameterization step,

as exploring the search space is carried out automatically by

Datamime (Sec. III-C). In our experience, all of our workloads

took less than a week of manual work to determine a suitable

set of parameters that resulted in a well-matching dataset.

C. Searching the Parameterized Dataset Space

Error Model: To search the optimal set of parameters, we

must first define the goodness of a given dataset. We do

this by defining the error in performance profiles between

the synthesized benchmark and the target workload. Note

that Datamime aims not only to match the averages of the

performance metrics of interest, but also to match the distri-

butions of the performance profiles between the production

workloads and the corresponding benchmarks. A matching

distribution indicates that the benchmark mimics both the

long-term average behavior of the production workload and

the short-term variations in its performance.

We use the Earth Mover’s Distance (EMD) [46] metric

to quantify the error between two distributions. Given two

distributions with the N samples, we first define the cost

of moving a single sample a unit distance from its original

value as 1
N

. Then, the EMD between the two distributions is

defined as the minimal total cost of moving samples from

one distribution such that it matches the other. In the case of

one-dimensional samples, this is simply the area between the

two cumulative distribution functions [21]. Although other

choices for measuring the error in distributions may be viable

[8, 39], we found EMD to work well in our setting.

Given a set of parameters p = {p1, p2, ..., pn} within the

space of possible parameters P, we define the overall error

Ep̂(p) between the synthetic and target profiles p and p̂ by

summing the pairwise EMDs between individual profiles pi

and p̂i:
Ep̂(p) = ∑

i

EMD(pi, p̂i) (1)

We normalize each metric to lie within [0,1], and weight

all metrics equally to make sure one mismatched metric does

not dominate this error.

Formulating the optimization problem: It is prohibitively

expensive to do a direct search for the right parameters, e.g.,

using random or grid-based search. First, the search space is

extremely large due to the number of parameters we wish to

add for dataset generation. For example, even if we allow

only integer values, memcached has 329 trillion possible

combinations of parameter values. In addition, evaluating

each set of parameter values takes a non-trivial amount of

time—typically a couple of minutes to obtain a sufficient

number of samples—so evaluating even a few thousand points

in the search space would take days to complete.

To search this large space efficiently, we formulate the

search as an optimization problem, where the goal is to find

a set of parameters p that minimize the overall error Ep̂:

p = argmin
x

Ep̂(x) (2)

The major challenges with solving this optimization

problem are that the objective function is black-box, expensive,

and noisy. The objective function being a black-box means

that the function’s analytical form is unknown. Thus, a

gradient can only be approximated by measuring points in the

solution space. Expensiveness indicates that each function

evaluation takes a long time, so we would like to find a

suitable solution with few evaluations. Finally, because the

microarchitectural characteristics that we are measuring are

subject to variations even with the same dataset, two function

evaluations at the same point may result in different errors.
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The black-box nature of the problem excludes simpler

gradient-based optimization techniques such as gradient

descent [33] because the convexity of the solution space is

not guaranteed and exact gradient information is unavailable.

Each function evaluation is expensive since profiling takes

2–4 minutes to complete. This rules out global optimization

algorithms such as Simulated Annealing [32] and Genetic

Algorithms [23] since such global optimization techniques

typically require a large number of function evaluations [26].

The challenges we outlined naturally guided us towards

using Bayesian Optimization, often used for problems with

a noisy, expensive black-box objective function [26, 50].

Bayesian optimization has been successfully used in settings

where the requirements are similar to those we face, such

as hyperparameter tuning for machine learning models [13,

49, 50], robotics [2, 35], and finding optimal job co-location

strategies in datacenters [45]. In addition, Bayesian optimiza-

tion has been shown to handle optimization problems with

up to 20 dimensions [15], which significantly eases the task

of selecting dataset parameters as adding a few ineffectual

ones will not significantly degrade the performance of the

optimizer. We find that, in practice, the Bayesian Optimizer

is very effective at generating a suitable dataset in a few

hundred function evaluations (see Sec. V-D).

After the optimizer provides the next set of dataset param-

eters to evaluate, we generate the dataset and, together with

the application, run the entire benchmark. We generate the

same set of profiles as the target workload for the benchmark,

and measure the EMD error. The measured error between the

two set of profiles is then fed back to the optimizer, which

selects the next point to evaluate in the search space.

D. Limitations of Dataset Generation

Our dataset generators do not produce values that match

those of the target workload (e.g., some use randomly

generated strings, others use a corpus of open-source data).

This will introduce inaccuracies on systems that use value-

dependent techniques, such as cache or memory compression.

(Luckily, few systems use these features.) Solving this

problem in general is hard, because capturing and mimicking

the values of the target workload would leak proprietary data.

However, dataset generators could be extended in technique-

specific ways that allow them to remain representative without

revealing program data. For instance, to evaluate the impact

of cache compression techniques, Datamime could profile

the compression ratio of the target workload’s memory

snapshots, and the dataset generator could then produce

similarly compressible data. We leave this to future work.

IV. METHODOLOGY

Evaluation Platforms: Our evaluation uses three systems

with different processor microarchitectures, listed in Table II

We generate all of our benchmarks with PerfProx and

TABLE II. SPECIFICATIONS OF THE SYSTEMS USED IN THE EVALUATION.

Cores 8 Xeon D-1540 cores (Broadwell), 2.0 GHz

L1 caches 32 KB per core, 8-way set-associative, split D/I

L2 cache 256 KB, core-private, 8-way set-associative

L3 cache

12 MB, shared, 12-way set-associative, inclusive,
DRRIP policy [25, 55]; Way-partitioning with
Intel CAT [22], supports 12 partitions

Memory 32 GB (2 × 16 GB DIMMs), DDR4 2133 MT/s

OS Ubuntu 18.04, Linux kernel version 4.15

Cores
32 Ryzen ThreadRipper PRO 3975WX cores
(Zen2), 3.50 GHz

L1 caches 32 KB per core, 8-way set-associative, split D/I

L2 cache 512 KB, core-private, 8-way set-associative

L3 cache
128 MB, 16 MB per chiplet, 16-way
set-associative

Memory 256 GB, DDR4 3200 MT/s

OS Ubuntu 20.04, Linux kernel version 5.4

Cores 8 Atom C2750 cores (Silvermont), 2.40 GHz

L1 caches
24 KB/32 KB per core, 8-way set-associative,
split D/I

L2 cache 1 MB, core-private, 8-way set-associative

Memory 32 GB, DDR3 1600 MT/s

OS Ubuntu 18.04, Linux kernel version 4.15

Datamime on the 8-core Intel Broadwell system. For cross-

microarchitecture IPC validation (Fig. 3), we use two different

machines: a 32-core AMD Zen2 machine and a 8-core

Silvermont machine. We choose these machines as they

are quite different from the Broadwell machine: the Zen2

machine is more recent, has deeper buffers, and uses different

predictors; and Silvermont is a low-power core with limited

pipeline width and small OOO buffers.

Experimental Setup: We use hardware performance coun-

ters to derive the metrics of interest as discussed in Sec. III-A,

and use Intel CAT [22] to derive IPC and LLC MPKI

curves. All performance counters are measured at 20 M

cycle intervals, and we measure the IPC and memory traffic

curves every 10 B cycles to minimize its effect on application

performance. We disable TurboBoost to prevent performance

fluctuations [30], and make sure that no other processes or

threads are co-located on the same core as the profiled thread.

We generate the PerfProx benchmarks with the original

code, which the PerfProx authors graciously provided. When

generating the benchmarks, we follow the exact steps and

configurations laid out in the original paper. Note that the

PerfProx paper [41] reports generally lower errors in its IPC

and other metrics compared to our findings. We attribute

this to the fact that PerfProx was originally evaluated on

a different set of database applications, whereas we target

workloads that have a wider range of behavioral differences.
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TABLE III. SUMMARY OF DATASET PARAMETERS FOR EACH WORKLOAD.

Workload Parameters

memcached QPS, get/set ratio, key size mean and standard
deviation, value size mean and standard deviation

silo QPS, # warehouses, ratio of TPC-C transactions
(new order, payment, delivery, order status, stock
level)

xapian QPS, Zipfian skew, term frequency, average doc-
ument length

dnn QPS, # 3×3 conv. layers, # 3×3 strided conv.
layers, # maxpool layers, # FC layers, # output
channels of first layer

For all the target workloads and benchmarks generated by

Datamime, the client and the server both reside on the same

machine, and communicate either through the network stack

(mem-fb, mem-twtr) or through shared memory using the

Tailbench integrated configuration [31] (silo, xapian, dnn).

We run Datamime’s optimizer for 200 iterations, and choose

the set of parameters determined as the lowest-cost point by

the optimizer to generate the final synthetic dataset. Datamime

runs each iteration sequentially on a single machine in our

setup. Parallelizing the search process is possible by using

parallel Bayesian optimization [6, 48, 56], but the serial

process is fast enough, so we leave this to future work.

Applications: We evaluate Datamime using four applica-

tions: memcached (in-memory caching), silo (in-memory

database), xapian (search engine), and dnn (object recog-

nition). For each application, we choose an existing public

dataset as the target workload (two for memcached) that

we aim to match with the dataset generated by Datamime.

Table III summarizes our choice of parameters for the dataset

generators. We describe each application, its target dataset(s),

and our selection of synthetic dataset parameters below:

memcached [14] is an open-source distributed in-memory

key-value store widely used in industry. memcached is often

deployed across hundreds of nodes to service millions of

queries per second, where each node caches a portion of

frequently accessed data. memcached-based services are

commonly used in production settings [3, 37, 57].

We target memcached running two different datasets:

a dataset representative of Facebook’s environment [3]

(mem-fb), and an anonymized trace from Twitter’s Twem-

cache [57] (mem-twtr). We use mutilate [34] to generate

requests for memcached according to the input dataset.

Parameters for the synthetic dataset include the QPS and

get/set ratio for request distribution, and knobs to control

the key and value size distributions, which we assume to be

Gaussian. We use the same set of parameters to generate the

synthetic datasets for both target workloads.

silo [53] is a fast transactional in-memory database. In-

memory databases like silo are the backbone of online

transaction processing workloads (OLTP) that have high

throughput and low latency requirements [58].

The target workload for silo uses a synthetic bidding

benchmark, where each transaction generates a bid on a

random item in a table and, if larger than the current bid,

overwrites the current entry. We parameterize the dataset by

scaling the number of warehouses in a TPC-C benchmark,

and varying the transaction ratios.

xapian [1] is an open-source search engine library allowing

easy integration of indexing and search capabilities, and

is used in popular websites (e.g., Debian web search) and

integrated in multiple search applications (e.g., Recoll). Web

search engines in production typically handle petabytes of

data spread across thousands of leaf nodes [12, 31], and each

node is responsible for handling a portion of the queries. We

model our workload as a single leaf node in our setup.

The target workload for xapian uses the default input from

Tailbench, an index of the 2013 English Wikipedia dump

with a Zipfian query distribution. The synthetic dataset is

constructed by indexing pages of a StackOverflow dump [52]

whose sizes are within 50 bytes of the desired average

document length. Queries are generated from a parameterized

portion of all possible terms based on an upper limit of the

term frequency, and we also control the Zipfian skew of the

query distribution.

dnn is an object recognition workload using convolutional

neural networks. Neural network inference in the cloud using

CPUs has been a popular model for cloud providers due to

their flexibility and availability [42]. We implement a simple

inference setup using the PyTorch C++ frontend [43], and

use the Tailbench harness to set up the client-server interface.

We drive the application using validation images from the

ImageNet library [47].

The dataset of interest in this workload is the neural

network model, not the images themselves. The target

workload for dnn uses a pre-trained ResNet-50 [20] model

as its dataset, a popular network for object recognition.

We construct a synthetic dataset using four frequently-

encountered layer types: 3×3 convolution, 2×2 maxpool,

3× 3 strided convolution, and fully-connected layers. We

vary the number and position of each layer, except for the

locations of the fully-connected layers, which are always

positioned at the end of the network. In addition, we vary

the number of output channels of the first layer to vary the

total number of features at each layer.

In addition to the datasets mentioned above, Fig. 1 and

Fig. 3 report results with alternative, publicly available

datasets for each application (shown in red bars). For

memcached and silo, these are Tailbench’s defaults: YCSB-

A and TPC-C. For xapian, we use an index constructed

from a portion of the StackOverflow dump [52]. And for

dnn, we use a pre-trained ShuffleNet model [36].

V. EVALUATION

We now analyze the effectiveness of Datamime in creating

representative benchmarks. We evaluate Datamime’s ability
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Figure 6: Comparison of performance metrics of PerfProx and
Datamime, normalized to the Target metrics for each workload. The
absolute value for each metric is labeled on each bar.

to match various performance profiles on five different target

workloads, and compare it against PerfProx. We also evaluate

Datamime’s ability to accurately match performance profile

distributions. Finally, we analyze various performance aspects

of Datamime: its speed of convergence and the possible range

of profiles it can generate.

A. Datamime matches performance profiles much better than

black-box cloning

Fig. 6 summarizes the effectiveness of Datamime’s bench-

mark generation strategy compared to PerfProx. Each graph

reports results for a different microarchitectural metric:

instructions per cycle (IPC), last-level cache misses per kilo-

instruction (LLC MPKI), instruction cache MPKI (ICache

MPKI), and branch MPKI. Within each graph, each group

of bars reports results for a single application. Each group

consists of three bars: Target is the workload we wish to

mimic, PerfProx is the black-box cloning technique we

compare against, and Datamime is our workload generation

technique. The height of each bar is the average of the

performance metric normalized to Target. Thus, values close

to 1.0 are better. In addition, the bottom of each bar lists the

absolute (non-normalized) average value for each metric.

Datamime matches the target workloads much more closely

than PerfProx. Averaged across workloads, Datamime results

in 3.2% mean absolute percentage error on IPC, which is

defined as |IPCtarget −IPCbenchmark|/IPCtarget averaged across

workloads. By contrast, PerfProx has an 42.9% mean absolute

percentage error on IPC. Datamime also matches other

metrics well, for which we measure the mean absolute error

1 2 4 6 8 10 12
0.0
0.3
0.7
1.0
1.3

IP
C

mem-fb

1 2 4 6 8 10 12
0.0
1.0
1.9
2.9
3.9

LL
C 

M
PK

I

1 2 4 6 8 10 12
0.0
0.2
0.4
0.7
0.9

IP
C

mem-twtr

1 2 4 6 8 10 12
0.0
0.9
1.8
2.7
3.7

LL
C 

M
PK

I

1 2 4 6 8 10 12
0.0
0.3
0.7
1.0
1.4

IP
C

silo

1 2 4 6 8 10 12
0.0
3.8
7.5

11.2
15.0

LL
C 

M
PK

I 67.2

1 2 4 6 8 10 12
0.0
0.5
0.9
1.4
1.8

IP
C

xapian

1 2 4 6 8 10 12
0.0
1.2
2.3
3.5
4.7

LL
C 

M
PK

I

1 2 4 6 8 10 12
Cache Size (MB)

0.0
0.6
1.2
1.8
2.4

IP
C

dnn

1 2 4 6 8 10 12
Cache Size (MB)

0.0
6.2

12.5
18.8
25.0

LL
C 

M
PK

I 55.2

Target PerfProx Datamime

Figure 7: Comparison of IPC and LLC MPKI curves between the
Target workload, PerfProx benchmark, and benchmark generated
by Datamime. Each workload/benchmark is allocated a cache size
between 1MB to 12MB in 1MB increments, and we measure the IPC
and LLC MPKI for each allocation.

defined as |Metrictarget − Metricbenchmark| averaged across

workloads. Datamime achieves an error of 0.34 for LLC

MPKI, 1.16 for ICache MPKI, and 0.47 for branch MPKI.

This is a much smaller gap compared to the error of 1.62

for LLC MPKI, 16.3 for ICache MPKI, and 3.22 for branch

MPKI that PerfProx achieves.

Datamime is particularly effective at matching the key

metrics that most influence the target workload’s behavior.

These include the high instruction cache misses for mem-fb

and mem-twtr, the high LLC MPKI for silo, and the

branch MPKI for all workloads. In contrast, PerfProx is not

able to match the code behavior effectively except for two

workloads (mem-twtr and silo) for which it only matches

the branching behavior well.

Looking at individual workloads, we see that Datamime

matches mem-fb particularly well. This is expected, as its

dataset is unstructured and therefore completely defined by

our distribution parameters. It is noteworthy that we match

mem-fb when our assumed value distribution (Gaussian) is

different from that of the target workload’s dataset (gener-

alized Pareto) [3], indicating that exactly matching all the

characteristics of the target dataset is not needed to match

its performance profile.
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Figure 8: Detailed plots of the distributions of the performance counter samples we measure across all workloads. Each plot shows the empirical
cumulative distribution function (eCDF) of the measured profile for the three schemes: the Target workload, benchmark generated by PerfProx,
and Datamime’s synthetic benchmark.

There are some metrics where Datamime has high relative

errors, such as mem-twtr and xapian’s LLC MPKI and

xapian’s ICache MPKI. However, note that in absolute terms

these metrics are small in the target workload, and their impact

on end-to-end performance is limited. Although we do not

particularly bias the search to prioritize matching metrics

where absolute values are large, by including IPC as one of

the metrics, the search naturally gives more importance to

metrics that have a large influence on end-to-end performance.

Fig. 7 shows the IPC and LLC MPKI of each workload

when different cache sizes are allocated to the worker thread

for the Target workload and the benchmarks generated by

PerfProx and Datamime. Note that dnn has a higher IPC

and lower LLC MPKI at 12MB compared to Fig. 6 because

cache capacity is allocated to a single profiled worker thread.

In general, Datamime is able to match both the shapes

and values of the curves. Even in cases where Datamime is

unable to match the exact curve (e.g., xapian’s LLC MPKI

curve), Datamime matches the shape of the curve, indicating

that the generated benchmark is able to match the memory

access pattern and cache sensitivity of the target workload.

In contrast, PerfProx is unable to match the IPC and LLC

MPKI curves for most applications. In particular, it produces

benchmarks with sharp cache cliffs at 1MB for silo and

dnn, which the target workloads do not exhibit.

B. Datamime matches performance profile distributions

Fig. 8 shows the statistical distributions of several key

metrics: IPC, CPU utilization, ICache MPKI, L2 Cache MPKI,

branch MPKI, and memory bandwidth. Each plot shows

the empirical cumulative distribution function (eCDF, i.e.,

cumulative histogram) of the samples (taken at 20 MCycle

intervals) from the Target workload, and PerfProx’s and

Datamime’s benchmarks. Note that a low slope of the eCDF

curve indicates a high variance in the measured samples.

First, we see that even for metrics where PerfProx matches

the target reasonably well, such as the IPC for silo and

xapian, it cannot match their distributions. PerfProx does

not produce meaningful distributions because its behavior

is static over time. This is expected, as workload cloning

techniques mimic average behavior. This trend is more readily

apparent in certain metrics, such as branch MPKI and memory

bandwidth in dnn, which exhibit wide variances.

In contrast, Datamime clearly follows the time-varying

behavior of the target workloads, such as the variance in

CPU utilization due to long requests. Similar to the memory

traffic curves in Fig. 7, Datamime matches the shapes of the

distributions even when it does not match the values, such

as the branch MPKI for xapian.

Like for averages, Datamime has larger errors on metrics

whose absolute values are small and have little impact on

end-to-end performance.
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Figure 9: Comparison of IPC and LLC MPKI curves between Target,
PerfProx and Datamime for masstree and img-dnn when Datamime
uses different, but functionally similar applications in its search
(memcached for masstree, and dnn for img-dnn).

C. Case study: Targeting a workload with a different program

So far we have assumed that the target workload’s appli-

cation is publicly available, and produced benchmarks using

the same program as the target workload. We now show that

Datamime is able to match a workload’s behavior in certain

dimensions even when using a different program.

We target two workloads from Tailbench: masstree, a key-

value store driven with YCSB, and img-dnn, a handwriting

recognition engine that uses a deep neural network-based au-

toencoder driven with the MNIST dataset [10]. For Datamime,

we choose the programs that most closely match the behavior

of the target workloads: memcached for masstree, and dnn

for img-dnn. We use the same dataset generators as before.

Fig. 9 shows the IPC and LLC MPKI curves of the

Target workload and the two benchmarks generated by

PerfProx and Datamime. Since the source applications

of Datamime roughly imitates the high-level behavior of the

target workloads, Datamime is able to match the IPC and

LLC MPKI curves of masstree even though the code is

different. Datamime also matches the LLC MPKI curve of

img-dnn, but overshoots the IPC due to an inherent trade-off

in how well Datamime can match these two metrics using

dnn. To verify this, we reran Datamime’s search giving higher

weight to IPC, which resulted in an accurate IPC curve match

for img-dnn at the expense of a worse LLC MPKI match.

There are other metrics, such as the ICache and branch

misses, which Datamime cannot match as accurately due to

the differences in the code. For instance, masstree has lower

cache misses in general because it is designed to be cache-

optimized [38], whereas memcached is not. These differences

are summarized in Table IV, along with comparisons against

the proxies for each workload generated with PerfProx. Even

with the large differences in the detailed metrics, Datamime

outperforms PerfProx in matching the important end-to-end

metrics such as IPC (mean absolute percentage error of 8.6%

versus 19.4%) and LLC MPKI (mean absolute error of 1.73

versus 10.9).

TABLE IV. MEASURED METRICS OF THE TARGET WORKLOAD, PERFPROX,
AND DATAMIME FOR masstree AND img-dnn. DATAMIME’S RESULTS

ARE WITH BENCHMARKS GENERATED WITH A different APPLICATION THAN

THE TARGET WORKLOAD (memcached AND dnn, RESPECTIVELY).

Metric

masstree img-dnn

Target PerfProx
Datamime

Target PerfProx
Datamime

w/ different w/ different
program program

IPC 0.79 1.05 0.79 2.25 2.11 2.63
LLC MPKI 11.4 32.7 10.6 0.45 0.02 3.07

CPU Util. 0.57 1.00 0.97 0.39 1.00 1.00
Branch MPKI 14.9 27.7 4.96 0.53 0.09 0.20
ICache MPKI 1.20 0.24 16.3 0.53 0.11 0.21

L1D MPKI 8.80 14.1 34.2 26.1 0.13 9.17
L2 MPKI 6.14 14.7 15.7 1.70 0.05 1.96

ITLB MPKI 0.13 0.02 0.50 0.04 0.02 0.03
DTLB MPKI 2.24 0.52 19.5 0.61 0.87 0.22

Mem. Bw (GB/s) 0.62 4.29 0.97 0.05 0.01 0.96
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Figure 10: Total EMD error of all performance profiles as a function
of the number of iterations performed by the optimizer.

D. Speed of convergence

Fig. 10 shows the rate at which the minimum observed

EMD (Datamime’s error metric) decreases with respect to

the number of iterations. The EMD is the area between the

CDFs of the target workload and the synthesized benchmark

for each metric, where the x- and y-axes are normalized to lie

between zero and one, by dividing them by maximum x and

y values observed. For example, in Fig. 8, the ICache MPKI

plot for xapian has an EMD value 0.23, as the area between

the target and Datamime CDFs is 23% of the plot’s area.

Fig. 10 reports the sum of EMDs across all 10 evaluated

metrics, so for example, a total EMD of 0.7 corresponds to

an average EMD per metric of 0.07, i.e., 7% of the area. An

iteration in this context refers to a single evaluation of a set

of parameters, feeding the resulting EMD to the optimizer,

and choosing the next set of parameters to evaluate.

When evaluated for 200 iterations, we observe that

Datamime approaches to within 90%, 0%, 48.4%, 22.6%,

and 4.7% of the achievable minimum EMD in 50 iterations

for mem-fb, mem-twtr, silo, xapian, dnn respectively,

indicating that our technique is effective at generating a fairly
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Figure 11: Sweep of achievable target IPC and LLC MPKI for
Datamime with the four publicly available applications we use in our
setup. The x-axis is the IPC/LLC MPKI we ask Datamime to produce
with each application, and the y-axis shows the actual IPC/LLC MPKI
Datamime achieves.

representative dataset in a short amount of time. Note that

the absolute time taken per iteration largely depends on the

number of LLC MPKI and IPC curve samples taken, as these

have long profiling intervals (10 B cycles). In practice, we

find that taking 11 samples is an effective tradeoff between

accuracy and speed, resulting in 2–4 minutes per iteration.

This translates to 6–13 hours for Datamime to run 200

iterations and produce each benchmark.

E. Range of possible performance profiles generated by

Datamime

It is important for dataset generators to produce a wide

range of performance profiles. A wide range lets Datamime

match a wide variety of production workloads. We can

measure this range by using Datamime to try to match

an arbitrary value for one or more metrics, rather than the

performance profiles of a particular workload.

Fig. 11 shows the results of such an experiment. Each

graph shows results for a single target metric: IPC (left),

and LLC MPKI (right). Within each graph, each line shows

results for a separate application. For each line, we sweep

the target metric over a wide range of values, shown in the

x-axis, and the y-axis denotes the actual value that Datamime

achieves. For each experiment we configure Datamime to

only match the target metric so that we measure the maximum

achievable range for each metric, sweeping the target metric

at 15 evenly spaced points. As long as Datamime can match

the target, each line falls on the y = x line.

Fig. 11 shows that Datamime matches a varying range

of IPCs across workloads: between 0.48 and 1.14 for

memcached, 0.50 and 1.86 for silo, 1.05 and 1.60 for

xapian, and 0.50 and 2.82 for dnn. The relatively small

range of IPC for memcached and xapian can be attributed

to the fact that their operations are much more uniform

(cache misses and branch mispredictions limit IPC regardless

of the input). In contrast, dnn can have widely different

computations based on the structure of its input neural

network, which results in its wide range of IPCs.
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Figure 12: Key performance metrics of Datamime relative to Target
for mem-fb with the server and client configured to communicate over
the network.
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Figure 13: IPC and LLC MPKI curves of Target and Datamime for
the networked configuration.

Datamime also matches a varying range of LLC MPKIs.

LLC MPKIs ranges between 0.29 and 20.1 for memcached,

0.04 and 6.18 for silo, 0.03 and 2.32 for xapian, and 2.07

and 28.5 for dnn. Just like IPC, the range of LLC MPKI

for each workload depends on the workload’s underlying

structure. For example, for xapian, the most popular queries

dominate execution, so the most frequently accessed docu-

ments are cached on-chip, resulting in limited memory traffic

regardless of the dataset.

F. Datamime on multi-machine benchmarks

So far, we have reported results for single-machine ex-

periments, where the benchmark and request generator run

under the same node. This setup is convenient, but does not

capture the original workload’s interactions with network

I/O. We now show that Datamime remains accurate in a

multi-machine setting. We focus on Memcached, as it is the

benchmark with the shortest requests among our applications

(tens to hundreds of microseconds per request) and therefore

it is the most affected by the additional network latency and

overheads. We modify our experimental setup for mem-fb

where we host the server (Memcached) and our load generator

(mutilate) on two separate machines.

Fig. 12 shows the averages of several key metrics for the

target workload and the synthesized benchmark, similar to

Fig. 6. Datamime synthesizes a benchmark that can closely

mimic the complex networking interactions of the original

workload, resulting in 1% mean absolute percentage error for

IPC and 0.12 mean absolute error for LLC MPKI. Just like

in the single-machine configuration, Fig. 13 also shows that

Datamime closely matches the IPC and LLC MPKI curves

of the target workload.
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VI. ADDITIONAL RELATED WORK

We now discuss related work not covered in Sec. II.

A. Synthetic Cloud Benchmark Suites

Several synthetic cloud benchmark suites exist today.

Cloudsuite [12] gathers a set of scale-out and throughput-

oriented benchmarks, and analyzes the microarchitectural

requirements of cloud applications. BigDataBench [54]

focuses on evaluating a wide variety of data types and a

broader set of workloads. Tailbench [31] includes a set of

latency-critical applications, and introduces an evaluation

methodology focused on tail latency. DeathStarBench [16]

introduces a set of workloads that use the microservices

model, consisting of tens to hundreds of loosely coupled tiny

services instead of one or few large monolithic applications.

All of these benchmark suites are constructed by selecting

a set of datacenter applications and using a set of publicly

available datasets to drive them. Benchmark suites often use

synthetic datasets, such as TPC-C or public web crawls, that

are not representative of production data. Using anonymized

production datasets or traces can temporarily elide this issue,

but a single dataset rarely is enough to model the variety of

data encountered in production settings [3, 51, 57], nor does

it stay representative over time [3, 51]. Datamime resolves

these issues by constructing workloads that accurately imitate

the target workload’s performance profiles. This makes it easy

to keep benchmarks up-to-date with production workloads:

it simply requires generating a new benchmark from a recent

performance profile.

B. Black-Box Workload Cloning

The seminal work in black-box workload cloning is

Bell and John [5], which produces small testcases from

an application’s performance statistics using statistical flow

graphs. Although the original goal was to generate short,

representative test cases that could be simulated and quickly

compared to the target applications, it has spawned a line

of work that leverages the fact that profile-based benchmark

synthesis hides information about the target application’s

code.

Joshi et al. [27] improves upon prior work by using

microarchitecture-independent models to capture program

characteristics, allowing the synthetic workload to preserve

the application characteristics across microarchitectures.

Benchmaker [28] profiles workloads at a much coarser gran-

ularity, collecting average statistics over the entire program

instead of at basic-block granularity. Ganesan et al. [17]

incorporate memory-level parallelism in characterizing the

target workload. WEST [4] generates benchmarks that focus

on accurately mimicking data cache behavior.

While black-box workload cloning does have the benefit

of producing short benchmarks that are quick to evaluate,

they fail to capture the high-level program behavior and

the temporal changes in program characteristics. Workload

cloning techniques reduce the target workload to a few set

of average statistics, a process that loses much of the crucial

information about the program. In contrast, Datamime uses

the same or similar application as that used in the target

workload, thereby preserving the program structure and more

successfully imitating its overall behavior.

C. Synthetic Data Generators

Given the inaccessibility of production datasets, prior work

has also proposed data generators that produce structured

and unstructured data using statistical modeling of the target

dataset [18, 24, 40, 44]. These techniques generate synthetic

data by first modeling existing datasets (either real-world or

synthetic), and then generating datasets that follow this model,

such as the distribution of topics in a text document [40].

These data generation techniques are different in purpose

to the dataset generators used in Datamime, and do not

seek to generate representative benchmarks. The major

shortcoming of prior data generators is that they focus on

matching the characteristics of the real dataset, rather than the

characteristics of the resulting workload. Without guiding

the data generation process with how the dataset would

change the application performance, the representativeness

of the dataset cannot be guaranteed. In addition, all prior data

generators either do not care about the representativeness

of their dataset [18, 24], or never validate their synthetic

data against production workloads [40, 44]. This makes

it difficult to rely on these datasets to provide accurate

performance characteristics of production workloads. In

contrast, Datamime uses profiling information to guide its

dataset generation, and validates its resulting performance

profiles against those of the production workload.

In addition, prior data generators need an accurate model

of the target dataset in generating the synthetic data, which

introduces the danger of leaking information about the

production dataset. For instance, The text data generator

of BigDataBench [54] uses detailed information about an

existing text dataset such as the distribution of words and

topics. If the production dataset is used as the input to the

modeling phase, which is needed if the data generator wishes

to produce representative datasets, the resulting synthetic

dataset may leak information about the confidential data

because it mimics its characteristics.

Lastly, Dataset generation using statistical techniques can

be complementary to Datamime’s profile-guided generation.

Datamime can confine the possible set of synthetic datasets

to those that match the target dataset’s statistical properties,

which would significantly speed up its search process. We

note that this approach requires access to the target dataset

(or its relevant statistical properties), and necessitates the

dataset to be easily modeled statistically. For instance, it

would be difficult to incorporate statistical modeling into

creating a silo benchmark since key aspects such as the

ratio of different transactions is difficult to model statistically.
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VII. CONCLUSION

We have introduced data-centric benchmark generation, a

new insight that shows that using publicly available code

along with synthetically generated datasets is an effective

approach to generating representative benchmarks. We have

presented Datamime, a technique that leverages this insight.

Datamime uses publicly available applications along with syn-

thetically generated datasets to create benchmarks that closely

mimic cloud workloads. We have shown that Datamime

creates benchmarks that are much more representative of

target workloads compared to prior black-box cloning tech-

niques, matches the temporal behavior of workloads, and

also matches key metrics such as IPC and LLC MPKI

even when the target workload’s program is unavailable.

Datamime is publicly available to enable the community

to easily produce representative benchmarks and ultimately

accelerate architecture research and design.
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