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Fully homomorphic encryption (FHE) allows computing on encrypted data, enabling

secure offloading of computation to untrusted servers. Though it provides ideal security,

FHE is prohibitively expensivewhen executed in software. These overheads are amajor

barrier to FHE's widespread adoption.We present F1, thefirst FHE accelerator that is

capable of executing full FHEprograms. F1 builds onan in-depth architectural analysis of

the characteristics of FHE computations that reveals acceleration opportunities. F1 is a

wide-vector processorwith novel functional units deeply specialized to FHE primitives,

suchasmodular arithmetic, number-theoretic transforms, and structured permutations.

This organization provides somuch compute throughput that datamovement becomes

the bottleneck. Thus, F1 is primarily designed tominimize datamovement. F1 is thefirst

system to accelerate complete FHE programs, and outperforms state-of-the-art

software implementations by gmean 5,400x. These speedups counter FHE’s overheads

and enable newapplications, like real-time private deep learning in the cloud.

D
espite massive efforts to improve the security

of computer systems, security breaches are

only becoming more frequent and damaging,

as more sensitive data is processed in the cloud. Cur-

rent encryption technology is of limited help because

servers must decrypt data before processing it. Once

data is decrypted, it is� vulnerable to breaches.

Fully homomorphic encryption (FHE) is a class of

encryption schemes that address this problem by

enabling generic computation on encrypted data. Figure 1

shows how FHE enables secure offloading of computa-

tion. The clientwants to compute an expensive function f

(e.g., a deep learning inference) on some private data x.

To do this, the client encrypts x and sends it to an

untrusted server, which computes f on these encrypted

data directly using FHE, and returns the encrypted result

to the client. FHE provides ideal security properties: even

if the server is compromised, attackers cannot learn any-

thing about the data, as it remains encrypted throughout.

FHE is a young but quickly developing technology.

First realized in 2009,7 early FHE schemes were about a

billion times slower than performing computations on

unencrypted data. Since then, improved FHE schemes

have greatly reduced these overheads and broadened

their applicability. FHE has inherent limitations—for

example, data-dependent branching is impossible, since

data is encrypted—so it will not subsume all computa-

tions. Nonetheless, important classes of computations,

such as deep learning inference, linear algebra, and other

machine learning tasks are a good fit for FHE. This has

recently sparked significant industry and government

investments towidely deploy FHE.

Unfortunately, FHE still carries substantial perfor-

mance overheads: despite recent advances, FHE is still

10,000� to 100,000� slower than unencrypted computa-

tion when executed in carefully optimized software.

Though this slowdown is large, it can be addressed with

hardware acceleration: if a specialized FHE accelerator

provides large speedups over software execution, it can
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bridgemost of this performance gap and enable new use

cases.

For an FHE accelerator to be broadly useful, it should

be programmable, i.e., capable of executing arbitrary FHE

computations. While prior work has proposed several FHE

accelerators, they do not meet this goal. Prior FHE accel-

erators2,3,11,14–16 target individual FHE operations, andmiss

important ones that they leave to software. These designs

target field-programmable gate arrays (FPGAs), so they

are small and miss the data movement issues facing FHE

accelerators that target an application-specific integrated

circuit (ASIC) implementation. These designs also over-

specialize their functional units (FUs) to specific para-

meters, and cannot efficiently handle the range of

parameters neededwithin a programor across programs.

In our MICRO’21 paper4 we introduced F1, the first

programmable FHE accelerator. F1 builds on an in-

depth architectural analysis of the characteristics of

FHE computations, which exposes the main chal-

lenges and reveals the design principles a programma-

ble FHE architecture should exploit. Specifically, F1 is

tailored to the three defining characteristics of FHE:

1) Complex operations on long vectors: FHE encodes

information using very large vectors, several thou-

sandelements long, andprocesses themusingmod-

ular arithmetic. F1 employs vector processing with

wide FUs tailored to FHE operations to achieve large

speedups. The challenge is that two key operations

on these vectors, the number-theoretic transform

(NTT) and automorphisms, are not elementwise and

require complex dataflows that are hard to imple-

ment as vector operations. To tackle these chal-

lenges, F1 features specialized NTT units, and the

first vector implementation of an automorphismFU.

2) Regular computation: FHE programs are dataflow

graphs of arithmetic operations on vectors. All

operations and their dependencies are known

ahead of time (since data is encrypted, branches

or dependences determined by runtime values are

impossible). F1 exploits this by adopting static

scheduling: in the style of very long instruction

word (VLIW) processors, all components have

fixed latencies and the compiler is in charge of

scheduling operations and datamovement across

components, with no hardware mechanisms to

handle hazards (i.e., no stall logic). Thanks to this

design, F1 can issue many operations per cycle

with minimal control overheads; combined with

vector processing, F1 can cheaply issue tens of

thousands of scalar operations per cycle.

FOR AN FHE ACCELERATOR TO BE

BROADLY USEFUL, IT SHOULD BE

PROGRAMMABLE, I.E., CAPABLE OF

EXECUTING ARBITRARY FHE

COMPUTATIONS.

3) Challenging data movement: In FHE, encrypting

data increases its size (typically by about 50�); data

is grouped in long vectors; and some operations

require large amounts (tens of megabytes) of auxil-

iary data. Thus, we find that data movement is the

key challenge for FHE acceleration: despite requir-

ing complex FUs, in current technology, limited on-

chip storage andmemory bandwidth are the bottle-

neck for most FHE programs. Therefore, F1 is pri-

marily designed to minimize data movement. First,

F1 features an explicitly managed on-chip memory

hierarchy, with a heavily banked scratchpad and

distributed register files. Second, F1 uses mecha-

nisms to decouple data movement and hide

access latencies by loading data far ahead of its

use. Third, F1 uses new, FHE-tailored scheduling

algorithms that maximize reuse andmake the best

out of limited memory bandwidth. Fourth, F1 uses

relatively few FUs with extremely high throughput,

rather than lower throughput FUs as in prior work.

This reduces the amount of data that must reside

on-chip simultaneously, allowing higher reuse.

As a result of these innovations, F1 outperforms a

general-purpose multicore by gmean 5,400� and by up

to 17,000� ona variety of FHE programs. These dramatic

speedups counter most of FHE’s overheads and enable

newapplications. For example, F1 executes a deep learn-

ing inference that used to take 20 min in 240 ms,

enabling real-time private deep learning in the cloud.

FULLY HOMOMORPHIC
ENCRYPTION

FHE allows performing arbitrary arithmetic on encrypted

plaintext values, via appropriate operations on their

ciphertexts. Decrypting the resulting ciphertext yields

FIGURE 1. FHE allows a user to securely offload computation

to an untrusted server. F1 can perform a DNN inference in

240 ms versus 20 min for prior work.
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the same result as if the operations had been performed

on the plaintext values.

Over the last decade, prior work has proposed multi-

ple FHE schemes, eachwith somewhat different capabili-

ties and performance tradeoffs. Brakerski–Gentry–

Vaikuntanathan (BGV), Brakerski/Fan-Vercauteren (B/

FV), Gentry-Sahai-Waters (GSW), and Cheon-Kim-Kim-

Song (CKKS) are popular FHE schemes. Though these

schemes differ in how they encrypt plaintexts, they all

use the same data type for ciphertexts: polynomials

where each coefficient is an integermoduloQ. This com-

monality makes it possible to build a single accelerator

that supports multiple FHE schemes; F1 supports BGV,

GSW, and CKKS.

We describe FHE in a layered fashion: we first

introduce FHE’s interface, i.e., its programming

model and operations; then describe how FHE oper-

ations are implemented; and finally present imple-

mentation optimizations.

FHE ProgrammingModel and

Operations
In FHE, unencrypted (plaintext) data values are vec-

tors. For example, in BGV, each plaintext is a vector

of N integers modulo some integer t. FHE schemes

provide a limited set of operations on these vectors.

For example, BGV allows elementwise addition (mod

t), elementwise multiplication (mod t), and a small set

of particular vector permutations.

We stress that this is FHE’s interface, not its imple-

mentation: it describes unencrypted data and the

homomorphic operations that the FHE scheme pro-

vides on that data in its encrypted form.

At a high level, FHE provides a vector program-

ming model with restricted operations where individ-

ual vector elements cannot be directly accessed. This

causes some overheads in certain algorithms. For

example, summing up the elements of a vector is

nontrivial, and requires a sequence of permutations

and additions.

FHE Implementation Overview
We now describe how FHE encodes and processes

ciphertexts. We focus on BGV for concreteness, but

other FHE schemes work similarly.

Data types: BGV encrypts each plaintext vector

as a pair of degree-N polynomials with coefficients

modulo an integer Q. N and Q are often large (e.g.,

N=16,384 coefficients with a 512-bit modulus Q),

leading to very large (multimegabyte) ciphertexts.

Homomorphic operations: A homomorphic opera-

tion is the implementation of each computation on

ciphertexts. For example, the homomorphic multipli-

cation of two ciphertexts yields another ciphertext

that, when decrypted, is the elementwise multiplica-

tion of the input plaintexts.

BGV implements homomorphic addition, multiplica-

tion, and permutation using operations on ciphertext

polynomials. Our full paper4 details their implementa-

tion; here, we highlight two key characteristics:

1) Homomorphic operations use a small set of

operations on polynomials: polynomial addition

(mod Q), polynomial multiplication (mod Q), and

automorphisms, special structured permuta-

tions of ciphertext coefficients.

2) While homomorphic addition is cheap (cipher-

text polynomials are simply added together),

homomorphic multiplication and permutation

are costly, as they depend on a computation-

ally expensive subroutine called key switching.

Key switching often dominates the perfor-

mance of FHE applications. Key switching fea-

tures numerous polynomial multiplications and

large pieces of auxiliary data called key-switch

hints (KSHs). KSHs are even larger than cipher-

texts, usually taking up tens of megabytes.

FHE PROVIDES A VECTOR

PROGRAMMINGMODELWITH

RESTRICTED OPERATIONSWHERE

INDIVIDUAL VECTOR ELEMENTS

CANNOT BE DIRECTLY ACCESSED.

Noise management: To prevent decryption without

the secret key, FHE schemes add some random noise to

ciphertexts when encrypting them. Unfortunately, this

noise grows with each homomorphic operation, and

especially with multiplications. To a first order, the

amount of noise is determined by the program’smultipli-

cative depth, i.e., its longest chain ofmultiplications.

Noise forces the use of large polynomials. For

example, an FHE program with a multiplicative depth

of 16 needs Q to be about 512 bits. To maintain secu-

rity, N=logQ must be above a certain threshold, which

also forces the use of large N , e.g., 16,384 coefficients

for a 512-bit Q (which requires 2 MB per ciphertext).

As ciphertexts undergo homomorphic operations,

they are rescaled to use a smaller modulus. This trims

noise, slowing its growth. For instance, to execute an
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FHE program with multiplicative depth 16, we would

start with a 512-bit modulusQ. After eachmultiplication,

we would switch to a modulus that is 32 bits smaller,

until reaching a 32-bit modulus at the largest depth.

Thus, beyond reducing noise, this modulus switching

reduces ciphertext sizes and computation costs.

To enable computations of unbounded depth, FHE

schemes can use a procedure called bootstrapping

that refreshes the noise in the ciphertext. But boot-

strapping is expensive and consumes many levels, so

it must be applied infrequently. Thus, FHE schemes

need a large noise budget.

Algorithmic Optimizations
F1 leverages two common optimizations in FHE.

Fast polynomial multiplication via NTTs: Multiplying

two polynomials requires convolving their coefficients,

an expensive [naively OðN2Þ] operation. Just like convo-

lutions can be made faster with the fast Fourier trans-

form, polynomial multiplication can be made faster with

NTT,12 a variant of the discrete Fourier transform formod-

ular arithmetic. Specifically, polynomial multiplication

becomes elementwise multiplication in the NTT domain:

NTTðabÞ ¼ NTTðaÞ � NTTðbÞ. (For this relation to hold

withN-point NTTs, a negacyclic NTT10must be used.)

Because an NTT requires only OðN logNÞ operations,

multiplication becomesOðN logNÞ. And because the NTT

is a linear transform, other operations can be performed in

the NTT domain. Thus, FHE implementations often store

polynomials in the NTT domain rather than in coefficient

formacross operations to reduce the number ofNTTs.

Avoiding wide arithmetic via residue number system

(RNS) representation: FHE requires wide ciphertext

coefficients (e.g., 512 bits), but wide arithmetic is expen-

sive: the cost of a modular multiplier (which takes most

of the compute) grows quadratically with bit width in

our range of interest. Moreover, F1 must efficiently

support a broad range of widths (e.g., 64–512 bits in 32-

bit increments), both because programs need different

widths, and because modulus switching progressively

reduces coefficientwidths.

RNS representation6 enables representing a single

polynomial with wide coefficients as multiple polyno-

mials with narrower coefficients, called residue polyno-

mials. Q is chosen to be the product of L smaller

distinct primes, Q ¼ q1q2 . . . qL. Then, a polynomial in

RQ can be represented as L polynomials inRq1 ; . . . ; RqL ,

where the coefficients in the ith polynomial are simply

the wide coefficients modulo qi. For example, with

W ¼ 32-bit words, a ciphertext polynomial with 512-bit

modulusQ is represented as L ¼ logQ=W ¼ 16 polyno-

mials with 32-bit coefficients.

All FHE operations can be carried out under RNS

representation, and have either better or equivalent

bit-complexity than operating on one wide-coefficient

polynomial. By adopting RNS, F1 can efficiently sup-

port a wide range of coefficient widths effectively.

F1 ARCHITECTURE
Figure 2 shows an overview of F1. We now highlight

F1’s design approach and key features.

Vector processing with specialized FUs:

F1 features wide-vector execution with FUs tailored to

FHE primitive operations. Specifically, F1 implements

vector FUs formodular addition, modular multiplication,

NTTs (forward and inverse in the same unit), and auto-

morphisms. Because we leverage RNS representation,

these FUs use a fixed, small arithmetic word size (32 bits

in our implementation), avoidingwide arithmetic.

FUs process vectors of the configurable length N

using a fixed number of vector lanesE. Our implementa-

tion uses E ¼ 128 lanes and supports power-of-two

lengthsN from 1,024 to 16,384. This covers the common

range of FHE polynomial sizes, so a residue polynomial

FIGURE 2. Overview of the F1 architecture.
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maps to a single vector. Larger polynomials (e.g., of

32,768 elements) can usemultiple vectors.

All FUs are fully pipelined, so they achieve the

same throughput of E ¼ 128 elements/cycle. FUs con-

sume their inputs in contiguous chunks of E elements

in consecutive cycles. This is easy for elementwise

operations, but hard for NTTs and automorphisms.

The “Functional Units” section details our novel FU

implementations, including the first vector implemen-

tation of automorphisms. Our evaluation shows that

these FUs achieve much higher performance than

those of prior work. This is important because having

fewer high-throughput FUs reduces the amount of

data that is accessed concurrently, improving reuse.

Compute clusters: FUs are grouped in compute

clusters, as Figure 2 shows. Each cluster features sev-

eral FUs (one NTT, one automorphism, two multipliers,

and two adders in our implementation) and a register

file that is banked to cheaply supply enough operands

each cycle to keep all FUs busy. The chip has multiple

clusters (16 in our implementation).

Memory system: F1 features an explicitly managed

memory hierarchy. As Figure 2 shows, F1 features a

large, highly banked scratchpad (64 MB across 16

banks in our implementation). The scratchpad interfa-

ces with both high-bandwidth off-chip memory (HBM2

in our implementation) and with compute clusters

through an on-chip network.

F1 uses decoupled data orchestration13 to hide

memory latency. Scratchpad bankswork autonomously,

fetching data from main memory far ahead of its use.

Since memory has relatively low bandwidth, off-chip

data is always staged in scratchpads, and compute clus-

ters do not accessmainmemory directly.

The on-chip network connecting scratchpad banks

and compute clusters provides very high bandwidth,

which is necessary because register files are small and

achieve limited reuse. We implement a bit-sliced cross-

bar network that provides full bisection bandwidth.

Banks and the network have wide ports (512 bytes) so

that a single scratchpad bank can send a vector to a

compute unit at the rate it is consumed (and receive it

at the rate it is produced). Avoids long staging of vectors

at register files.

Static scheduling: Because FHE programs are

completely regular, F1 adopts a static, exposed micro-

architecture: all components have fixed latencies,

which are exposed to the compiler. The compiler is

responsible for scheduling operations and data trans-

fers in the appropriate cycles to prevent structural or

data hazards. This is in the style of VLIW processors.5

Static scheduling simplifies logic throughout the

chip. For example, FUs need no stalling logic; register

files and scratchpad banks need no dynamic arbitra-

tion to handle conflicts; and the on-chip network uses

simple switches that change their configuration inde-

pendently over time, without the buffers and arbiters

of packet-switched networks.

Because memory accesses do have variable

latency, we assume the worst-case latency and buffer

data that arrives earlier (since we access large chunks

of data, e.g., 64 KB, this worst case latency is not far

from the average).

Distributed control: Though F1 uses static schedul-

ing, its implementation differs significantly from that

of VLIW processors: instead of a single stream of

instructions, each packed with many operations, in

F1 each component has an independent instruction

stream.

F1’s lack of control flow makes this possible:

though FHE programs can have loops, they do not

have data-dependent branches. Therefore, we can

unroll all loops and compile programs into linear

instruction sequences.

This approach may seem costly in terms of instruc-

tion footprint. However, because operands are very

long vectors and each instruction encodes a lot of

work, instruction fetch overhead is well-amortized. To

further reduce these overheads, we adopt a compact

instruction format where each instruction encodes a

single operation in addition to the number of cycles to

stall until running the next instruction. Overall, instruc-

tion fetches consume less than 0.1% of memory traffic.

SCHEDULING DATA AND
COMPUTATION

F1’s compiler translates FHE programs to use hard-

ware well. To achieve high utilization, we find that it is

crucial to minimize off-chip data movement, the criti-

cal bottleneck. We contribute new scheduling algo-

rithms to achieve this.

Figure 3 shows an overview of F1’s compiler. The com-

piler takes as input an FHE programwritten in a high-level

domain-specific language. The compiler is structured in

three stages. First, the homomorphic operation compiler

orders high-level operations tomaximize reuse and trans-

late the program into a computation dataflow graph,

where operations are computation instructions but there

are no loads or stores. Second, the off-chip data move-

ment scheduler schedules transfers betweenmain mem-

ory and the scratchpad to achieve decoupling and

maximize reuse. This stage uses a simplified view of hard-

ware, considering it as a scratchpad directly attached to

FUs. The result is a dataflow graph that includes loads

and stores from off-chip memory. Third, the cycle-level
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scheduler refines this dataflow graph. It uses a cycle-

accurate hardware model to divide instructions across

compute clusters and schedule on-chip data transfers.

This stage determines the exact cycles of all operations

andproduces the instruction streams for all components.

This multipass scheduling primarily minimizes off-

chip data movement. Only in the last stage do we con-

sider on-chip placement and data movement.

The full paper4 compares our approach to prior work.

FUNCTIONAL UNITS
In this section, we describe F1’s novel FUs. These

include the first vectorized automorphism unit, the

first fully pipelined flexible NTT unit, and a new simpli-

fied modular multiplier adapted to FHE.

Automorphism Unit
Because F1 uses E vector lanes, each residue polyno-

mial is stored and processed as G groups, or chunks,

of E elements each (N ¼ G � E). An automorphism sk

maps the element at index i to index ki mod N ; there are

N automorphisms total, two for each odd k < N . The

key challenge in designing an automorphism unit is that

these permutations are hard to vectorize: this unit should

consume and produce E ¼ 128 elements/cycle, but vec-

tors are much longer, with N up to 16,384, and elements

are permuted across different chunks. Moreover, we

must support variableN and all automorphisms.

Standard solutions fail: a 16,384x16,384 crossbar is

much too large; a scalar approach, such as reading ele-

ments in sequence from an SRAM, is too slow (taking N

cycles); and using banks of SRAM to increase throughput

runs into frequent bank conflicts: each automorphism

“spreads” elements with a different stride, so regardless

of the banking scheme, some automorphisms will map

many consecutive elements to the same bank.

We contribute a new insight that makes vectorizing

automorphisms simple: if we interpret a residue poly-

nomial as aG� Ematrix, an automorphism can always

be decomposed into two independent column and row

permutations. If we transpose this matrix, both column

and row permutations can be applied in chunks of E

elements. Figure 4(a) shows an example of how auto-

morphism s3 is applied to a residue polynomial with

N ¼ 16 and E ¼ 4 elements/cycle. Note that the

permute column and row operations are local to each

4-element chunk. Other sk induce different permuta-

tions, but with the same row/column structure.

Our automorphism unit, shown in Figure 4(b), uses

this insight to be both vectorized (consuming E ¼ 128

elements/cycle) and fully pipelined. Given a residue

polynomial of N ¼ G � E elements, the automorphism

unit first applies the column permutation to each

E-element input. Then, it feeds this to a transpose

subunit that reads in the whole residue polynomial

interpreting it as a G� E matrix and produces its

transpose E �G. The transpose subunit outputs E

elements per cycle (outputting multiple rows per cycle

when G < E). Row permutations are applied to each

E-element chunk and the reverse transpose is applied.

To enable a fully pipelined design, we contribute a

novel transpose subunit design, which our full paper4

describes in detail.

Four-Step NTT Unit
An NTT is like an FFT but with a butterfly that usesmodu-

lar multipliers. We implement N-element NTTs (from 1

to 16,384) as a composition of smaller E ¼128-element

NTTs, since implementing a full 16,384-element NTT data-

path is prohibitive. The challenge is that standard

approaches produce hard-to-vectorize memory access

patterns.

To that end, we use the four-step variant of the

FFT algorithm, which adds a round of multiplication

to produce a vector-friendly decomposition. Figure 4(c)

illustrates our four-step NTT pipeline for E ¼ 4;

E ¼ 128 uses the same structure. The unit is fully pipe-

lined and consumes E elements per cycle. To compute

an N ¼ E � E NTT, the unit first computes an E-point

FIGURE 3. Overview of the F1 compiler.
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NTT on each E-element group, multiplies each group

with twiddles, transposes the E groups, and computes

another E-element NTT on each transpose. The same

NTT unit implements the inverse NTT by storing multipli-

cative factors (twiddles) required for both forward and

inverseNTTs in a small twiddle SRAM.

Crucially, we are able to support all values of N

using a single four-step NTT pipeline by conditionally

bypassing layers in the second NTT butterfly.

Our four-step pipeline supports negacyclic NTTs,

which are more efficient than standard NTTs (which

would require padding). Our contribution is to support

both forward and inverse negacyclic NTTs using the

same amount of hardware as a standard NTT (see the

our full paper4 work for more details).

The NTT unit is large, requiring 1,024 multipliers.

But its high throughput improves performance over

many low-throughput NTTs. This is the first imple-

mentation of a fully pipelined four-step NTT unit,

improving NTT performance by 1,600� over the state

of the art.

Optimized Modular Multipliers
Multipliers dominate F1’s compute area and power.

We contribute a new modular multiplier design that is

restricted to work only with moduli relevant to FHE.

This reduces area by 30% and power by 19% over the

state-of-the-art multiplier design.4

F1 EVALUATION

Synthesis Results
We have implemented F1’s components in RTL, and

synthesize them in a commercial 14/12-nm process

using state-of-the-art tools. These include a commer-

cial SRAM compiler that we use for scratchpad and

register file banks.

We evaluate an F1 chip with 16 compute clusters, a

64-MB scratchpad, and a 1-TB/s main memory imple-

mented with two HBM2 PHYs. We target a 1-GHz fre-

quency for logic (register files and scratchpads run at

2 GHz to reduce ports). This configuration takes an

area of 151 mm2 and a TDP of 180 W. FUs take 42% of

the area, with 32% going to memories, 6% to the on-

chip network, and 20% to the two HBM2 PHYs.

This design is constrained by memory bandwidth:

though it has 1 TB/s of bandwidth, the on-chip net-

work’s bandwidth is 24 TB/s, and the aggregate band-

width between RFs and FUs is 128 TB/s. This is why

maximizing reuse is crucial.

Performance Evaluation Methodology
We use a cycle-accurate simulator to execute

F1 programs. We use activity-level energies from RTL

synthesis to produce energy breakdowns. We compare

F1 with a CPU system running the baseline programs

(a 4-core, 8-thread, 3.5-GHz Xeon E3-1240v5).

FIGURE 4. F1 contributes new automorphism and NTT FUs. (a) Example decomposing automorphism s3 into row and column

permutations. (b) Vectorized automorphism FU. (c) Four-step NTT FU.
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We evaluate F1 on several existing FHE benchmark

applications:

Neural networks are adapted from Low-Latency

Cryptonets,1 using the CKKS scheme. LoLa-MNIST is a

simple LeNet-style network used on the MNIST data

set. LoLa-CIFAR is a larger six-layer network with simi-

lar computation toMobileNet v3, used on the CIFAR-10

dataset. LoLa-MNIST has two variants with encrypted

and unencrypted weights; LoLa-CIFAR is only available

with unencrypted weights.

Logistic regression uses HELR,9 a CKKS-based

algorithm. It implements logistic regression training

with up to 256 features and 256 samples per batch.

Database lookup is adapted from HELib’s data-

base lookup example as a BGV benchmark.

Bootstrapping: We implement unpacked boot-

strapping for both BGV and CKKS. Bootstrapping

refreshes noise in an L ¼ 1 ciphertext by bringing it to

a top value of L ¼ Lmax, then performing the boot-

strapping computation to obtain a usable ciphertext

at a lower depth (e.g., Lmax � 15 for BGV). The

unpacked variants process ciphertexts that encode a

single element each, which simplifies bootstrapping.

Due to F1’s programmability, each program is exe-

cuted with the security level at which it was originally

designed. For example, LoLa neural networks have

128-bit security, while HELR logistic regression and our

bootstrapping benchmarks have 80-bit security.

Performance Results
Figure 5(a) compares the performance of F1 and

the CPU on full benchmarks. It reports execution

time in milliseconds for each program (lower is better),

and F1’s speedup over the CPU (higher is better).

F1 achieves dramatic speedups, from 1,195� to

17,412� (5,432� gmean). CKKS bootstrapping has the

lowest speedups as it is highly memory bound; other

speedups are within a relatively narrow band, as com-

pute and memory traffic are more balanced.

These speedups greatly expand the applicability of

FHE. Consider deep learning: in software, even the simple

LoLa-MNIST network takes seconds per inference, and a

single inference on the more realistic LoLa-CIFAR net-

work takes 20min. F1 brings this down to 240ms, making

real-time deep learning inference practical: when offload-

ing inferences to a server, this time is comparable to the

roundtrip latency between the server and the client.

Prior accelerators do not support full FHE pro-

grams, so we can only compare F1 against them on

microbenchmarks. Our full paper4 includes a microbe-

nchmark-based comparison with HEAX14; F1 outper-

forms HEAX by 172�–1,866�.

Architectural Analysis
To gain more insights into these results, we now ana-

lyze F1’s data movement and power consumption.

Data movement: Figure 5(b) shows a breakdown of

off-chip memory traffic across data types: KSH, inputs/

outputs, and intermediate values. KSH and input/output

traffic are broken into compulsory and noncompulsory

(i.e., caused by limited scratchpad capacity). Intermedi-

ates, which are always noncompulsory, are classified as

loads or stores.

Due to our scheduler design, F1 approaches compul-

sory traffic for most benchmarks, with noncompulsory

access adding only 5%–18% of traffic. The exception is

LoLa-CIFAR, where intermediates consume 75% of traf-

fic. LoLa-CIFAR has a very high reuse of KSH, and

exploiting it requires spilling intermediate ciphertexts.

Figure 5(b) shows that KSH dominate in high-depth

workloads (LogReg, DB lookup, and bootstrapping), tak-

ing up to 94% of traffic. KSHs are also significant in the

LoLa-MNIST variants. To maximize performance, our

scheduler is designed to prioritize their reuse.

FIGURE 5. (a) Performance results. (b) Per-benchmark breakdowns of off-chip data movement. (c) Power consumption.
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Power consumption: Figure 5(c) reports the average

power for each benchmark, broken down by compo-

nent. Results show reasonable power consumption for

an accelerator card. Overall, computation consumes

20%–30% of power, and datamovement dominates.

CONCLUSIONS AND FUTURE
WORK

FHE enables computation offloading with guaranteed

security, which other techniques cannotmatch. For exam-

ple, secure enclaves, such as Intel’s SGX, havemuch lower

overheads than FHE, but are vulnerable to attacks.8,17 By

never decrypting data, FHE provides cryptographic secu-

rity guarantees. But FHE’s high computation overheads

currently limit its applicability to narrow cases—simple

computations where privacy is paramount. F1 tackles this

challenge, accelerating full FHE computations by over 3–4

orders of magnitude. This enables new use cases for FHE,

like secure real-time deep learning inference.

F1 OPENS UP EXCITING AVENUES FOR

FUTUREWORK. WE BELIEVE THAT

ALGORITHM-HARDWARE CO-DESIGN

IS A KEY OPPORTUNITY.

F1 is the first FHE accelerator that is programmable,

i.e., capable of executing full FHE programs. In contrast to

prior accelerators, which build fixed pipelines tailored to

specific FHE schemes and parameters, F1 introduces a

more effective design approach: it accelerates the primi-

tive computations shared by higher-level operations

using novel high-throughput FUs, and hardware and com-

piler are co-designed to minimize data movement, the

key bottleneck. This flexibility makes F1 broadly useful:

the same hardware can accelerate all operationswithin a

program, arbitrary FHE programs, and even multiple FHE

schemes. In short, our key contribution is to show that,

for FHE, we can achieve ASIC-level performance without

sacrificing programmability.

F1 opens up exciting avenues for future work. We

believe that algorithm-hardware co-design is a key

opportunity. Prior FHE optimizations have mostly come

from the cryptographic community, with a focus on

improving FHE performance on CPUs. But specialization

transforms the optimization landscape: whereas CPUs

are mainly compute-bound, specialization makes data

movement the key challenge, requiring new algorithmic

optimizations. Moreover, there is ample room for further

hardware improvements. For example, large applications

that need frequent bootstrapping require using very

large ciphertexts, about an order of magnitude larger

than those in our benchmarks, to amortize bootstrap-

ping costs. These computations demand further hard-

ware techniques to copewith their extreme footprints.

FHE today has many parallels to deep learning a

decade ago. Back then, neural networks were considered

impractical over alternative machine learning algorithms,

which provided similar accuracy with much cheaper

computation. But around 2011, hardware acceleration

made deep neural networks practical, bringing them into

themainstream. This unleashed a revolution that drove a

decade of investment into improving deep learning at all

layers of the stack, from algorithms to architectures. Sim-

ilarly, hardware acceleration can bring FHE into themain-

stream, as we have shown with F1. We hope this will

spark a virtuous cycle that will further improve perfor-

mance and efficiency, ultimately making FHE an integral

part of the secure computer systems of the future.
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