Var-CNN and DynaFlow: Improved Attacks and Defenses for Website Fingerprinting

Sanjit Bhat (PRIMES) David Lu (PRIMES) Albert Kwon (MIT) Srini Devadas (MIT) sanjit.bhat@gmail.com davidboxboro@gmail.com

April 17th, 2018 MIT

Motivation and Background

Anonymity matters

• Whistleblowers

 Governmental suppression of political opinion

 Censorship circumvention

http://blog.transparency.org/2016/06/20/new-whistleblower-protection-law-in-france-not-yet-fit-for-purpose/

http://facecrooks.com/Internet-Safety-Privacy/To-be-anonymous-or-not-to-be-should-you-use-your-real-name-on-the-Internet.html/

http://www.dmnews.com/social-media/what-if-peoplewant-their-internet-anonymity-back/article/338654/ 3

The internet provides limited anonymity

A supposed fix - Tor: The Onion Router

• Alice connects to the Tor network

A supposed fix - Tor: The Onion Router

• Alice obtains a list of Tor nodes from the Tor network

A supposed fix - Tor: The Onion Router

- Alice chooses 3 Tor nodes to make a connection to Bob
- No Tor nodes know the identities of both Bob and Alice

Traffic analysis attacks

- Adversary correlates Alice and Bob's traffic
- Only works when adversary intercepts both entry and exit points

Website fingerprinting (WF) attacks

- Adversary collects database offline and uses it to fingerprint online
- Only needs 1 link in the chain weaker threat model

Receiver

Simplified WF attack scenario

• Each website exhibits characteristic load behavior

Var-CNN: Automated feature extraction using variations on CNNs

Terminology

- True Positive Rate (TPR) Proportion of monitored sites correctly classified
- False Positive Rate (FPR) Proportion of unmonitored sites incorrectly classified

Open-World

Prior attacks

K-Nearest Neighbors (Wang et al. k-NN)

By Antti Ajanki AnAj - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2170282

Random Forest (Hayes et al. *k*-FP)

"Brilliantly Wrong", Alex Rogozhnikov

Prior attacks

Pros:

- Use well-studied machine learning techniques
- Quick to run
- Usually require small amounts of data

Cons:

- Pre-defined features as input
 - Number of packets
 - Packet orderings
 - Burst patterns, etc.
- Switching to other protocols requires feature re-design
- Features might not be optimal

Why deep learning?

- Automated feature extraction
- Resistant to network protocol changes
- Discover more optimal features than humans could define

Var-CNN architecture

- VGG-16 Convolutional Neural Network (CNN) ImageNet competition
- Multiple blocks composed of multiple layers for deeper feature extraction

Dilated convolutions

- Packet sequence inherently time-dependent
- Sacrifice fine-grain detail for broader field of view

A. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv, 2016.

Other techniques

- Cumulative features
 - Total number of packets
 - Number of incoming and outgoing
 - Ratio of incoming to total and outgoing to total
 - Total transmission time
 - Average number of packets per second
- Confidence thresholds
 - Threshold for attacker certainty
 - Adjust TPR-FPR trade-off

Softmax Layer

Ensemble model

- Utilizing timing leakage should yield a stronger model
- No past pre-extracted timing features performed well

Var-CNN Results

Experimental setup

- Wang et al. *k*-NN data set
 - 100 monitored sites (90 instances) Blocked pages from around the world
 - 9000 unmonitored sites Alexa most popular pages
- <= training data used by competing attacks
- Re-randomize train/test sets and average results over 10 trials

Ensemble model and confidence threshold

- Alone, time model is worse than direction model •
- However, their performance is additive

TPR and FPR decrease as confidence threshold increases

Scaling performance - FPR

- FPR is incredibly important as open-world size increases
- Training on greater numbers of unmonitored sites retains TPR while reducing FPR
- Var-CNN scales better to larger open-worlds than prior-art attacks

Scaling performance - runtime

• Runtime scales linearly, better than prior models

Open-world performance

- 5% better TPR than SDAE
- Over a sixth the FPR of SDAE

- 3% better TPR than *k*-FP
- Nearly half the FPR of *k*-FP

All values are in %.

Attack	Auto. Feature Extraction	Accuracy (Closed)	TPR (Open)	FPR (Open)	Precision (Open)
<i>k</i> -NN [40]	×	91 ± 3	85 ± 4	0.6 ± 0.4	<u></u> ;
<i>k</i> -FP [14]	×	91 ± 1	88 ± 1	0.5 ± 0.1	<u> </u>
SDAE [4]	1	88	86	2	—
Var-CNN Ensemble (conf. threshold = 0.0)	 	93.2 ± 0.5	93.0±0.5	0.7 ± 0.1	98.6
Var-CNN Ensemble (conf. threshold = 0.5)	1	93.2 ± 0.5	90.9 ± 0.5	0.3 ± 0.1	99.3

Background: WF Defenses

Limited defenses

Designed to counter existing attacks.

Examples:

- **LLaMA**: adds delays between requests
- **Decoy pages**: loads another page in parallel with the desired website
- WTF-PAD: adds dummy packets to hide unlikely time gaps

Main drawback: no provable guarantees.

Supersequence defenses

Overview:

- 1) Collect a database of traffic traces of many different websites
- 2) Group the traces into sets
- 3) Compute "supersequence" of each set
 - a) Each sequence is a subsequence of the supersequence
- 4) Pad each trace to its supersequence

Examples: Supersequence, Glove, Walkie-Talkie

Drawbacks:

- 1) Requires a large and constantly-updated trace database
- 2) Protects only static content (no AJAX, Javascript)

Constant-flow defenses

Overview: Flood the network with a continuous stream of packets.

BuFLO:

- First constant-flow defense
- Leaked length of each trace

Tamaraw:

- Pads trace lengths
- High overheads: minimum of 100-200%
 - Time overheads
 - Bandwidth overheads

Advantages of DynaFlow

	Low Latency	Low Bandwidth Usage	Strong Security Guarantees	Protects Dynamic Content	No Database Required	Highly Tunable
DynaFlow	1	1	1	1	1	1
BuFLO [13]	×	×	×	1	1	×
Tamaraw [7]	×	×	1	1	1	×
Supersequence [40]	×	×	1	×	×	×
Walkie-Talkie [42]	1	1	1	×	×	1
Glove [29]	×	×	1	×	×	×
WTF-PAD [21]	1	1	×	1	1	×
Decoy Pages [32]	1	×	×	1	1	×
LLaMA [10]	1	1	×	×	×	×

DynaFlow: a new defense based on dynamically-adjusting flows

Overview of DynaFlow

Our goal: construct a defense with similar guarantees as Tamaraw but with significantly lowered overheads.

Three Components:

- 1) Burst-pattern morphing
- 2) Constant traffic flow with dynamically changing intervals
- 3) Padding the number of bursts

Burst-pattern morphing

- Traffic is morphed into fixed **bursts**: *o* outgoing packets followed by *i* incoming packets
- Setting *o* = 1 and *i* = 4 minimized overhead
- Dummy packets added to morph traffic

Before padding:

After padding (red packets are dummy packets):

Inter-packet timing

- Packets are sent every **t** seconds
- The value of *t* dynamically changes to fit the loading page
- There are three tunable parameters: *a*, *b*, *T*
 - The value of **t** changes every **b** bursts
 - Up to *a* adjustments total
 - The value of **t** is chosen from the set $T = \{t_1, \dots, t_k\}$

The number of bursts

- The number of bursts is padded to *{[m], [m²], [m³], ... }*
- Advantages of padding to a power of *m*
 - Significantly mitigate privacy loss
 - Incur reasonably-small overhead
- Example: when *m* = 2, the bandwidth overhead is at most 100%

DynaFlow Results

Open-world eval. against existing attacks

DynaFlow against existing attacks. All values are in %.

	k-NN [40]		k-FP	<i>k</i> - FP [14] V		CNN	тон	BWOH
	TPR	FPR	TPR	FPR	TPR	FPR	Ton	211011
No defense:	84.5	2.5	86.3	1.6	89.1	0.7	0	0
Medium security:	15.4	20.6	5.0	1.6	10.8	3.0	23	59
High security:	5.9	69.0	4.4	40.1	0.6	0.9	28	112

The optimal attacker

Overview:

- Knows the exact probability that a website *w* is visited, generating defended trace
 t
- Uses this information to make the best guess for which website **w** is visited when he sees a trace **t**
- We can use this information to calculate what the optimal attacker would guess.

Measuring accuracy:

• **F1-score** — harmonic mean of precision and recall (TPR)

Open-world eval. against optimal attacker

- 31% F1 score: 29% TPR, 11% FPR
 - DynaFlow: 101% overhead (29% TOH, 73% BWOH)
 - Tamaraw: 138% overhead (40% TOH, 98% BWOH)
- Gap increases for larger F1 scores

Conclusion

- Var-CNN uses novel variants of CNNs to do the following:
 - Scale well in large open-worlds, both in runtime and in FPR
 - Be highly tunable in terms of TPR-FPR trade-off
 - Outperform all prior attacks, all while using <= amount of training data
- DynaFlow overcomes challenges of prior WF defenses:
 - Lower overhead than prior work
 - Strong, provable privacy guarantees
 - Protects dynamic content
 - No database required

• Current status

- Preprint on arXiv
- Under review as conference paper in USENIX Security Symposium
- All code and data sets publically available

Future work

- More powerful deep learning models for Var-CNN
 - Computer vision architectures DenseNet
 - Recurrent Neural Network architectures LSTM with Synthetic Gradients
- Find a better way to determine optimal DynaFlow parameters
 - Currently, we sweep parameters one at a time
- Further reduce DynaFlow overheads
 - Total overhead sum can still exceed 100% for stronger configurations

Acknowledgements

Thank you to:

- Our parents
- Albert Kwon, for providing advice every step of the way
- Prof. Devadas, for giving feedback on the paper and running PRIMES CS
- The PRIMES program and Dr. Gerovitch, for providing research opportunities to high school students and sponsoring AWS bills and a GPU :-)

Closed-world (optimal attacker)

- 50% accuracy with 93% total overhead (Tamaraw: 127% overhead)
- 20% accuracy with 121% total overhead (Tamaraw: 162% overhead)
- 7% accuracy with 213% total overhead (Tamaraw: 419% overhead)

Closed-world (existing attacks)

DynaFlow against existing attacks. All values are in %.

Config.	Parameters	k-NN [40]	k-FP [14]	Var-CNN	ТОН	BWOH
Baseline	N/A	88.0	94.3	95.2	0	0
1	$o = 1, i = 4, t_i = 0.012, b = 160, a = 6$ $m = 1.2, T = \{0.0012, 0.005\}$	17.5	45.0	46.8	31	53
2	$o = 1, i = 4, t_i = 0.012, b = 80, a = 1$ $m = 1.2, T = \{0.0015\}$	6.0	18.4	18.4	38	84