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Motivation and Background




Anonymity matters

e Whistleblowers

e Governmental
suppression of political
opinion

e Censorship
circumvention

http://facecrooks.com/Internet-Safety-Privacy/To-be-anonymous-or-not-t http://www.dmnews.com/social-media/what-if-people-
o-be-should-you-use-your-real-name-on-the-Internet.html/ want-their-internet-anonymity-back/article/338654/



The internet provides limited anonymity
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A supposed fix - Tor: The Onion Router T@f

e Alice connects to the Tor network
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A supposed fix - Tor: The Onion Router T@f

e Alice obtains a list of Tor nodes from the Tor network




A supposed fix - Tor: The Onion Router T@'

e Alice chooses 3 Tor nodes to make a connection to Bob
e No Tor nodes know the identities of both Bob and Alice
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Traffic analysis attacks

e Adversary correlates Alice and Bob’s traffic

e Only works when adversary intercepts both entry and exit points
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Website fingerprinting (WF) attacks

e Adversary collects database offline and uses it to fingerprint online
e Onlyneeds 1linkin the chain - weaker threat model Receiver
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Simplified WF attack scenario

Each website exhibits characteristic load behavior
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Var-CNN: Automated feature
extraction using variations on CNNs




Terminology

e True Positive Rate (TPR) - Proportion of monitored sites correctly classified
e False Positive Rate (FPR) - Proportion of unmonitored sites incorrectly classified
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Open-World
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Prior attacks
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K-Nearest Neighbors (Wang et al. k-NN) Random Forest (Hayes et al. k-FP)
“Brilliantly Wrong”, Alex Rogozhnikov

By Antti Ajanki AnAj - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=2170282



Prior attacks

Pros: Cons:
e Use well-studied machine learning e Pre-defined features as input
techniques o Number of packets
e Quicktorun o Packet orderings
e Usually require small amounts of o Burst patterns, etc.
data e Switching to other protocols

requires feature re-design
e Features might not be optimal

14



Why deep learning?

e Automated feature extraction
e Resistant to network protocol changes
e Discover more optimal features than humans could define
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“Convolutional Neural Network”, MathWorks
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Var-CNN architecture

e VGG-16 Convolutional Neural Network (CNN) - ImageNet competition
e Multiple blocks composed of multiple layers for deeper feature extraction
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Dilated convolutions

e Packetsequenceinherently time-dependent
e Sacrifice fine-grain detail for broader field of view
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A. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu.
Wavenet: A generative model for raw audio. arXiv, 2016.
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Other techniques

e Cumulative features

o Total number of packets

o Number of incoming and outgoing

o Ratio of incoming to total and outgoing to total

o Total transmission time Softmax Layer

o Average number of packets per second
e Confidence thresholds

o Threshold for attacker certainty l Normal Output

o Adjust TPR-FPR trade-off S1
l Conf=0.7
UM

S1:0.5 ' S2:0.4 | UM:0.1
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Ensemble model

e Utilizing timing leakage should yield a stronger model
e No past pre-extracted timing features performed well
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Fully-connected Layer + ReLU + Batch Normalization + Dropout
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Var-CNN Results




Experimental setup

e Wangetal. k-NN data set
o 100 monitored sites (90 instances) - Blocked pages from around the world
o 9000 unmonitored sites - Alexa most popular pages

e <=training data used by competing attacks

e Re-randomize train/test sets and average results over 10 trials
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Ensemble model and confidence threshold

e Alone, time model is worse than direction model e TPR and FPR decrease as confidence
e However, their performance is additive threshold increases
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Scaling performance - FPR

e FPRisincredibly important as open-world size increases
e Training on greater numbers of unmonitored sites retains TPR while reducing FPR
e Var-CNN scales better to larger open-worlds than prior-art attacks
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Scaling performance - runtime

e Runtime scales linearly, better than prior models
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Open-world performance

e 5% better TPR than SDAE ® 39% better TPR than k-FP
e Overasixth the FPR of SDAE e Nearly half the FPR of k-FP

All values are in %.

Auto. Feature

Attack . Accuracy (Closed) TPR (Open) FPR (Open) Precision (Open)
Extraction

k-NN [40] x 9143 85+ 4 0.6+0.4 _
k-EP [14] x 9141 88 4 | 0.540.1 =
SDAE [4] 88 36 2 _
Var-CNN Ensembl

AR 932405  93.0+05 0.740.1 98.6
(conf. threshold = 0.0)
e S B |

S 932405  90.9+0.5 03+0.1 993

(conf. threshold = 0.5)
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Background: WF Defenses




Limited defenses

Designed to counter existing attacks.

Examples:
e LLaMA: adds delays between requests
e Decoy pages: loads another page in parallel with the desired website

e WTF-PAD: adds dummy packets to hide unlikely time gaps

Main drawback: no provable guarantees.
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Supersequence defenses

Overview:
1) Collect a database of traffic traces of many different websites
2) Group the traces into sets

3) Compute “supersequence” of each set
a) Eachsequenceisasubsequence of the supersequence

4) Pad each trace to its supersequence
Examples: Supersequence, Glove, Walkie-Talkie

Drawbacks:
1) Requires a large and constantly-updated trace database
2) Protects only static content (no AJAX, Javascript)
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Constant-flow defenses

Overview: Flood the network with a continuous stream of packets.

BuFLO:
e First constant-flow defense
e Leaked length of each trace

Tamaraw:
e Padstrace lengths

e High overheads: minimum of 100-200%
o Time overheads
o Bandwidth overheads
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Advantages of DynaFlow

Low Low Bandwidth Strong Security Protects No Database Highly

Latency Usage Guarantees  Dynamic Content Required Tunable
DynaFlow : -. .
BuFLO [13] X % X ¢
Tamaraw [7] X X ' : ; X
Supersequence [40] X X - X X X
Walkie-Talkie [42] v ‘ , X X :
Glove [29] X X X X X
WTE-PAD [21] - X X
Decoy Pages [32] X X v X
LLaMA [10] X X X X




DynaFlow: a new defense based on
dynamically-adjusting flows




Overview of DynaFlow

Our goal: construct a defense with similar guarantees as
Tamaraw but with significantly lowered overheads.

Three Components:
1) Burst-pattern morphing

2) Constant traffic flow with dynamically changing intervals
3) Paddingthe number of bursts
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Burst-pattern morphing

e Trafficis morphed into fixed bursts: o outgoing packets followed by i incoming packets
e Settingo=1andi=4 minimized overhead
e Dummy packets added to morph traffic

Before padding:

out] i Joulm ] m

After padding (red packets are dummy packets):

ouiag) | n | n JORIIRSNRRNAY
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Inter-packet timing

e Packets are sent every t seconds
e Thevalue of t dynamically changes to fit the loading page
e There arethree tunable parameters:a, b, T

o Thevalue of t changes every b bursts

o Up to aadjustments total

o Thevalue of tischosen fromtheset T={t, ..., t,}
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The number of bursts

e The number of bursts is padded to {{m], [m?], [m?], ... }
e Advantages of padding to a power of m
o Significantly mitigate privacy loss
o Incurreasonably-small overhead
e Example: when m =2, the bandwidth overhead is at most 100%
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DynaFlow Results




Open-world eval. against existing attacks

DynaFlow against existing attacks. All values are in %.

k-NN [40] k-FP [14] Var-CNN o ok

TPR FPR TPR FPR TPR FPR
No defense: 845 2.5 86.3 1.6 89.1 0.7 0 0
Medium security: 154 20.6 5.0 1.6 10.8 3.0 23 59

H|gh secu rity: 59 69.0 4.4 40.1 0.6 0.9 28

112
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The optimal attacker

Overview:
e Knows the exact probability that a website w is visited, generating defended trace
t

e Uses this information to make the best guess for which website w is visited when

he sees atrace t
e We can use this information to calculate what the optimal attacker would guess.

Measuring accuracy:
e F1-score — harmonic mean of precision and recall (TPR)
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Open-world eval. against optimal attacker
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Attacker F1 score

31% F1 score: 29% TPR, 11% FPR

o DynaFlow: 101% overhead (29% TOH, 73% BWOH)
o Tamaraw: 138% overhead (40% TOH, 98% BWOH)

Gap increases for larger F1 scores
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Conclusion

e Var-CNN uses novel variants of CNNs to do the following:
o Scalewellin large open-worlds, both in runtime and in FPR
o  Behighly tunable in terms of TPR-FPR trade-off
o  Outperform all prior attacks, all while using <= amount of training data

e DynaFlow overcomes challenges of prior WF defenses:
o Lower overhead than prior work
o  Strong, provable privacy guarantees
o  Protects dynamic content
o No database required

e Currentstatus
o  Preprinton arXiv
o  Under review as conference paper in USENIX Security Symposium
o All code and data sets publically available
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Future work

e More powerful deep learning models for Var-CNN

o Computer vision architectures - DenseNet

o Recurrent Neural Network architectures - LSTM with Synthetic Gradients
e Find a better way to determine optimal DynaFlow parameters

o Currently, we sweep parameters one at a time
e Further reduce DynaFlow overheads

o Total overhead sum can still exceed 100% for stronger configurations
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Closed-world (optimal attacker)
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50% accuracy with 93% total overhead (Tamaraw: 127% overhead)
20% accuracy with 121% total overhead (Tamaraw: 162% overhead)
7% accuracy with 213% total overhead (Tamaraw: 419% overhead)
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Closed-world (existing attacks)

DynaFlow against existing attacks. All values are in %.

Config. Parameters k-NN [40] k-FP[14] Var-CNN TOH BWOH
Baseline  N/A 88.0 94.3 95.2 0 0
! - 11""2;4’:"' {T)'(())'(?ll 22 ’5(;) 51 }6 Gha=0 17.5 45.0 468 3l 53
) 0=1,i=4,1;,=0.012,b=80,a=1 6.0 18.4 18.4 18 24

m=1.2,T={0.0015}
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