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Motivation and Background
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Anonymity matters

● Whistleblowers

● Governmental 
suppression of political 
opinion

● Censorship 
circumvention

http://blog.transparency.org/2016/06/20/new-whistleblower-protection-law-in-france-not-yet-fit-for-purpose/

http://facecrooks.com/Internet-Safety-Privacy/To-be-anonymous-or-not-t
o-be-should-you-use-your-real-name-on-the-Internet.html/

http://www.dmnews.com/social-media/what-if-people-
want-their-internet-anonymity-back/article/338654/
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The internet provides limited anonymity

Sender 
(Alice)

Receiver 
(Bob)Adversary
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From: Alice
To: Bob

From: Alice
To: Bob



A supposed fix - Tor: The Onion Router

● Alice connects to the Tor network 
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A supposed fix - Tor: The Onion Router

● Alice obtains a list of Tor nodes from the Tor network
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A supposed fix - Tor: The Onion Router

● Alice chooses 3 Tor nodes to make a connection to Bob 
● No Tor nodes know the identities of both Bob and Alice
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Traffic analysis attacks

● Adversary correlates Alice and Bob’s traffic
● Only works when adversary intercepts both entry and exit points
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Website fingerprinting (WF) attacks

● Adversary collects database offline and uses it to fingerprint online
● Only needs 1 link in the chain - weaker threat model Receiver

Sender

Tor Network

Adversary
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Simplified WF attack scenario
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● Each website exhibits characteristic load behavior



Var-CNN: Automated feature 
extraction using variations on CNNs
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Terminology
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● True Positive Rate (TPR) - Proportion of monitored sites correctly classified
● False Positive Rate (FPR) - Proportion of unmonitored sites incorrectly classified

Open-World



Prior attacks
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K-Nearest Neighbors (Wang et al. k-NN) Random Forest (Hayes et al. k-FP)

By Antti Ajanki AnAj - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=2170282

“Brilliantly Wrong”, Alex Rogozhnikov



Prior attacks

Pros:

● Use well-studied machine learning 
techniques

● Quick to run
● Usually require small amounts of 

data
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Cons:

● Pre-defined features as input
○ Number of packets
○ Packet orderings
○ Burst patterns, etc.

● Switching to other protocols 
requires feature re-design

● Features might not be optimal



Why deep learning?
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● Automated feature extraction
● Resistant to network protocol changes
● Discover more optimal features than humans could define

“Convolutional Neural Network”, MathWorks



Var-CNN architecture

● VGG-16 Convolutional Neural Network (CNN) - ImageNet competition
● Multiple blocks composed of multiple layers for deeper feature extraction
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Dilated convolutions 

● Packet sequence inherently time-dependent
● Sacrifice fine-grain detail for broader field of view

17A. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu.
Wavenet: A generative model for raw audio. arXiv, 2016.



Other techniques

● Cumulative features
○ Total number of packets 
○ Number of incoming and outgoing 
○ Ratio of incoming to total and outgoing to total
○ Total transmission time
○ Average number of packets per second

● Confidence thresholds
○ Threshold for attacker certainty
○ Adjust TPR-FPR trade-off
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S1: 0.5 S2: 0.4 UM: 0.1

S1 

UM 

Conf = 0.7 

Normal Output

Softmax Layer



Ensemble model

19

● Utilizing timing leakage should yield a stronger model
● No past pre-extracted timing features performed well 



Var-CNN Results
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Experimental setup
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● Wang et al. k-NN data set
○ 100 monitored sites (90 instances) - Blocked pages from around the world
○ 9000 unmonitored sites - Alexa most popular pages

● <= training data used by competing attacks
● Re-randomize train/test sets and average results over 10 trials



Ensemble model and confidence threshold
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● Alone, time model is worse than direction model
● However, their performance is additive

● TPR and FPR decrease as confidence 
threshold increases



Scaling performance - FPR

● FPR is incredibly important as open-world size increases
● Training on greater numbers of unmonitored sites retains TPR while reducing FPR
● Var-CNN scales better to larger open-worlds than prior-art attacks
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Scaling performance - runtime

● Runtime scales linearly, better than prior models
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Open-world performance

● 5% better TPR than SDAE
● Over a sixth the FPR of SDAE
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● 3% better TPR than k-FP
● Nearly half the FPR of k-FP

All values are in %.



Background: WF Defenses
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Limited defenses

Designed to counter existing attacks.

Examples:
● LLaMA: adds delays between requests
● Decoy pages: loads another page in parallel with the desired website
● WTF-PAD: adds dummy packets to hide unlikely time gaps

Main drawback: no provable guarantees. 
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Supersequence defenses

Overview:
1) Collect a database of traffic traces of many different websites
2) Group the traces into sets
3) Compute “supersequence” of each set

a) Each sequence is a subsequence of the supersequence

4) Pad each trace to its supersequence 

Examples: Supersequence, Glove, Walkie-Talkie

Drawbacks:
1) Requires a large and constantly-updated trace database
2) Protects only static content (no AJAX, Javascript)
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Constant-flow defenses

Overview: Flood the network with a continuous stream of packets.

BuFLO:
● First constant-flow defense
● Leaked length of each trace

Tamaraw:
● Pads trace lengths
● High overheads: minimum of 100-200%

○ Time overheads
○ Bandwidth overheads
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Advantages of DynaFlow 
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DynaFlow: a new defense based on 
dynamically-adjusting flows
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Overview of DynaFlow

Our goal: construct a defense with similar guarantees as 
Tamaraw but with significantly lowered overheads.

Three Components:
1) Burst-pattern morphing
2) Constant traffic flow with dynamically changing intervals
3) Padding the number of bursts
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Burst-pattern morphing

● Traffic is morphed into fixed bursts: o outgoing packets followed by i incoming packets
● Setting o = 1 and i = 4 minimized overhead
● Dummy packets added to morph traffic 

Before padding:

After padding (red packets are dummy packets):
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Inter-packet timing

● Packets are sent every t seconds 
● The value of t dynamically changes to fit the loading page
● There are three tunable parameters: a, b, T

○ The value of t changes every b bursts
○ Up to a adjustments total 
○ The value of t is chosen from the set T = {t1, … , tk}
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The number of bursts

● The number of bursts is padded to {[m], [m2], [m3], … }
● Advantages of padding to a power of m

○ Significantly mitigate privacy loss
○ Incur reasonably-small overhead 

● Example: when m = 2, the bandwidth overhead is at most 100%
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DynaFlow Results
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Open-world eval. against existing attacks
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DynaFlow against existing attacks. All values are in %.

No defense:
Medium security:

High security:



The optimal attacker

Overview:
● Knows the exact probability that a website w is visited, generating defended trace 

t
● Uses this information to make the best guess for which website w is visited when 

he sees a trace t
● We can use this information to calculate what the optimal attacker would guess.

Measuring accuracy: 
● F1-score — harmonic mean of precision and recall (TPR)
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Open-world eval. against optimal attacker
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● 31% F1 score: 29% TPR, 11% FPR
○ DynaFlow: 101% overhead (29% TOH, 73% BWOH)
○ Tamaraw: 138% overhead (40% TOH, 98% BWOH)

● Gap increases for larger F1 scores



Conclusion

● Var-CNN uses novel variants of CNNs to do the following:
○ Scale well in large open-worlds, both in runtime and in FPR
○ Be highly tunable in terms of TPR-FPR trade-off
○ Outperform all prior attacks, all while using <= amount of training data

● DynaFlow overcomes challenges of prior WF defenses: 
○ Lower overhead than prior work
○ Strong, provable privacy guarantees 
○ Protects dynamic content
○ No database required

● Current status
○ Preprint on arXiv
○ Under review as conference paper in USENIX Security Symposium
○ All code and data sets publically available
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Future work

● More powerful deep learning models for Var-CNN
○ Computer vision architectures - DenseNet
○ Recurrent Neural Network architectures - LSTM with Synthetic Gradients 

● Find a better way to determine optimal DynaFlow parameters
○ Currently, we sweep parameters one at a time

● Further reduce DynaFlow overheads
○ Total overhead sum can still exceed 100% for stronger configurations  
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Closed-world (optimal attacker)
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● 50% accuracy with 93% total overhead (Tamaraw: 127% overhead) 
● 20% accuracy with 121% total overhead (Tamaraw: 162% overhead)
● 7% accuracy with 213% total overhead (Tamaraw: 419% overhead)



Closed-world (existing attacks)
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DynaFlow against existing attacks. All values are in %.


