
Towards E�cient Methods for Training Robust

Deep Neural Networks

Sanjit Bhat∗

Acton-Boxborough Regional High School

sanjit.bhat@gmail.com

Dimitris Tsipras

MIT

tsipras@mit.edu

Aleksander M¡dry

MIT

madry@mit.edu

February 13, 2019

Abstract

In recent years, it has been shown that neural networks are vulnerable to adversarial ex-
amples, i.e., specially crafted inputs that look visually similar to humans yet cause machine
learning models to make incorrect predictions. A lot of research has been focused on training
robust models�models immune to adversarial examples. One such method is Adversarial Train-
ing, in which the model continuously trains on adversarially perturbed inputs. However, since
these inputs require signi�cant computation time to create, Adversarial Training is often much
slower than vanilla training. In this work, we explore two approaches to increase the e�ciency
of Adversarial Training. First, we study whether faster yet less accurate methods for generating
adversarially perturbed inputs su�ce to train a robust model. Second, we devise a method for
asynchronous parallel Adversarial Training and analyze a phenomenon of independent interest
that arises�staleness. Taken together, these two techniques enable comparable robustness on
the MNIST dataset to prior art with a 26× reduction in training time from 4 hours to just 9
minutes.

1 Introduction

In recent years, Machine Learning (ML) systems have achieved surprising success in several domains
such as Computer Vision and Natural Language Processing [KSH12, LBH15]. In contrast to tradi-
tional rule-based or symbolic AI systems, ML systems learn input and output pairings automatically
through labeled data. This provides them independence from human programming, allowing them
to act in complex scenarios without being explicitly programmed to. In addition, ML models have
the potential to scale with more powerful hardware and larger datasets, which is not necessarily
true for traditional AI systems.

Combined, these two properties have allowed ML systems to achieve super-human performance in
several settings such as Computer Vision and complex game playing. In Computer Vision, large-scale
datasets such as ImageNet [RDS+15] led to a race that resulted in more accurate Computer Vision
models such as VGG [SZ15] and ResNet [HZRS16]. These ML models eventually surpassed human
level performance in image classi�cation tasks [HZRS15]. In game playing, Google DeepMind's
AlphaGo system used ML to act and perceive in a longstanding open problem, Go [SHM+16]. With

∗Work done while in the MIT PRIMES program.

1

mailto:sanjit.bhat@gmail.com
mailto:tsipras@mit.edu
mailto:madry@mit.edu

(a) Natural Image (b) Adversarial Perturbation (c) Adversarial Image

(d) Natural Prediction (e) Adversarial Prediction

Figure 1: Adversarial examples for self-driving cars (images replicated from Fischer et
al. [FCMB17]). Figure 1a shows a natural image taken from a car camera that is later fed into
an image segmentation model. The output of the model's predictions are shown in Figure 1d, with
the car recognizing pedestrians crossing the street and most likely taking the necessary precautions.
In the adversarial case, however, a small amount of seemingly random noise shown in Figure 1b is
added to the natural image. Even though the resulting image in Figure 1c looks visually indistin-
guishable to humans, it causes the segmentation model to fail to recognize the humans, as shown in
Figure 1e. Thus, the car would act as if no pedestrians were crossing and fail to apply the brakes,
resulting in catastrophic consequences.

a combination of knowledge from prior games and self-play, AlphaGo defeated the foremost human
Go player, Lee Sedol, in 2016 [Dee16].

Owing to its success in several �elds, ML is closer to being adopted in security-critical appli-
cations. For example, Tesla [Lam18] and Waymo [Haw18] use Computer Vision systems to enable
their self-driving cars to perceive their surroundings. Instead of classifying objects, these systems
perform segmentation, distilling an image into its various classes (e.g., road signs, people, trees,
and buildings) to aid the driving system in making critical decisions. Similarly, Apple's new Iphone
X uses Computer Vision to power its facial unlocking system [Tea17]. The phone extracts facial
features, measures similarity to its owner's face, and grants entrance to contacts, passwords, emails,
and bank accounts if the two faces match.

In these security-critical applications, there are concerns about whether ML systems will properly
function to protect one's life and privacy. One prominent concern is the existence of adversarial
examples [GSS15, MMS+18, WK18], inputs that look visually similar to their natural counterparts
yet cause ML models to make wrong predictions. For example, with self-driving cars, the adversary
crafts a perturbation such that to humans both the original and adversarial images look the same
(see Figure 1). However, when fed into the image segmentation model, the adversarial example
causes the car to not recognize the humans. These attacks can be constructed without full access
to the ML model [IEAL18] and can be implemented in the physical world [AEIK18, KGB17].

Given the above discussion, adversarial examples bring into question the reliability of our state-
of-the-art ML systems. Apart from the security implications of malicious actors being able to wreck

2

havoc on large-scale, security-critical systems, these �aws raise two other fundamental issues:

1. Robustness to real-world perturbations. Self-driving cars not only malfunction with
random-noise-like input perturbations, but also on naturally occurring perturbations such as
rain, sleet, and snow [Sto18]. In order to have full trust that ML models will ensure privacy
and safety in all scenarios, including those with real-world perturbations, we need to make
them robust to adversarial examples.

2. Alignment with human intelligence. One of the goals of AI research is to create a general-
purpose system that can solve a wide variety of problems. Oftentimes, we use the human brain
as an example of such a system. However, given that most adversarial examples use small,
quasi-imperceptible perturbations, a human brain would likely not be tricked [Bro14]. Thus,
the existence of adversarial examples points to possible �aw in current ML systems: these
systems do not learn the same way that we humans do. Such human-like intelligence might
be useful in creating general-purpose AI.

Recently, several works have proposed methods for training robust models, models that are
not susceptible to adversarial inputs (see [ACW18] and references therein). While these �defenses�
against adversarial attacks were shown to be robust in their original papers, many were soon cir-
cumvented by more sophisticated attacks [ACW18]. One defense that has withstood counter-attack
is Adversarial Training�continuously augmenting training with adversarially perturbed inputs.
However, while Adversarial Training provides resistance to adversarial attacks, it adds signi�cant
amounts of computational overhead compared to regular training. This reduces its practicality in
the real-world, especially in applications that require frequent model re-training. Consequently, in
this work, we ask the following question:

Can robust ML models be trained e�ciently?

Our contributions. In this work, we study the above question via two complementary ap-
proaches. First, we investigate whether cruder and faster approximations can be used for ad-
versarially perturbed inputs. Our results indicate that a balance point exists between the compu-
tational overhead of the approximation and the model's �nal robustness. Second, we develop an
asynchronous parallel implementation of Adversarial Training that provides a nearly-linear speedup
with multiple GPUs. Of independent interest, we analyze a phenomenon called staleness that arises
from using this parallelization technique. Finally, we bring our �ndings together to improve the
e�ciency of Adversarial Training, reducing the state-of-the-art robust training time on the MNIST
dataset by 26×, from 4 hours to 9 minutes.

2 Background

Regular machine learning training. A standard neural network consists of several weight
layers, parametrized by θ, that de�ne an input-output pairing for a certain data distribution D̂.
By optimizing a loss function, L, the network �nds better values for θ. Since lower loss refers to
a better prediction, the training procedure for a regular neural network corresponds to solving the

3

following optimization problem:

min
θ

[
E

(x,y)∼D̂
L(x, y, θ)

]
. (1)

This optimization is typically done using Stochastic Gradient Descent.

Adversarial examples. Recall that adversarial examples are small input perturbations1 that
cause ML models to make wrong predictions. Fooling the model corresponds to maximizing the
loss L. In addition, to make �small input perturbations� concrete, we de�ne the set of possible
perturbations to be S. Thus, the adversary tries to achieving the following:

max
δ∈S
L(x+ δ, y, θ). (2)

Set of allowed perturbations. The set of small perturbations is broad, including natural se-
mantically similar perturbations such as rain and snow and other distortions such as rotations
and translations [ETT+17]. While robustness to all perturbations is an important topic of re-
search, it is di�cult to mathematically de�ne perturbations such as rain and snow. In the ab-
sence of a concrete de�nition of small perturbations, we use the `∞ metric, consistent with prior
work [GSS15, MMS+18]. Speci�cally, every perturbation δ with components x1, x2, . . . , xn must
adhere to the following constraint:

max
i
|xi| ≤ ε. (3)

Using this constraint, we precisely de�ne the set S of allowable perturbations, which forms an ε-ball
around the natural point.

Computing adversarial examples. In prior work, researchers proposed algorithms such as the
Fast Gradient Sign Method (FGSM) [GSS15] to optimize Equation 2. FGSM uses the gradient of
the loss with respect to the input to form a locally linear approximation of the loss for any change in
input. It then takes a step in the direction of the gradient to maximize the predicted loss. The �fast�
in FGSM refers to the fact that the algorithm only takes one step of size ε, computing gradients
once and hitting the edge of the `∞ ε-ball immediately:

x+ ε sgn(∇xL(x, y, θ)). (4)

While FGSM provides a fast method for �nding adversarial examples, it relies too heavily on the
local linearity assumption. In reality, neural networks have complex, non-linear loss landscapes (see
Figure 2), which makes it hard to predict the loss of a point far out in the ε-ball [MMS+18]. As such,
a natural extension to FGSM known as Projected Gradient Descent (PGD) [KGB17, MMS+18] uses
κ smaller steps of size α. At each step, PGD re-computes gradients relative to its current solution and
projects back into the ε-ball. Intuitively, by re-measuring the local linearity at several checkpoints
along its optimization trajectory, PGD relies less on any one approximation. This leads to better
adversarial examples than those produced by FGSM [MMS+18]:

xt+1 = Πx+S(xt + α sgn(∇xtL(xt, y, θ))). (5)

1After all, if the adversary was unconstrained, he could simply use an image from a di�erent class.

4

Figure 2: An actual neural network loss landscape from Li et al. [LXT+17]. Although the x and y
axes represent changes in the network parameters rather than the network inputs, the visualization
still leads to an important observation: neural networks have highly complex, non-concave loss
landscapes. If a single-step adversary such as FGSM [GSS15] tries to approximate a far-away local
maxima with locally linear information, it might not arrive at a reasonable solution.

In Equation 5, Πx+S refers to projection back into the ε-ball surrounding the natural point.
By projecting at each timestep, we ensure we always stay within the constraints. Speci�cally, for
an adversarial example v with components v1, v2, . . . , vn, a natural example x with components
x1, x2, . . . , xn, and an `∞ constraint, projection ensures that vi lies between xi − ε and xi + ε.

Training a robust deep neural network (DNN). One natural way of achieving robustness is
Adversarial Training. Instead of training on natural examples, the DNN simulates the adversary,
computes adversarial examples, and trains on them. It then updates its weight parameters, θ, to
re�ect its new knowledge of the adversary and its own prior �aws. Since the adversary continually
points out new �aws to the network, the DNN needs several timesteps of Adversarial Training to
achieve robustness.

Combining Equation 1 for natural DNN training with Equation 2 for the adversary's objective,
we arrive at the following min-max saddle-point formulation for Adversarial Training:

min
θ
ρ(θ), where ρ(θ) = E

(x,y)∼D̂

[
max
δ∈S
L(x+ δ, y; θ)

]
. (6)

This equation can be solved in practice using Danskin's Theorem [Dan67, Ber99], which says
that the gradients of the loss, ∇θL(x + δ; y; θ), are equivalent to the gradients of the max loss,
∇θ maxδ∈S L(x+δ; y; θ), when δ is a global maximum. However, as the loss function is non-concave
(see Figure 2), the solutions yielded by PGD are actually local maxima, not global maximum.
Nonetheless, using a su�ciently large number of steps usually leads to strong-enough local maxima
to solve the min-max problem.

Thus, we use the descent direction provided by ∇θL(x + δ; y; θ) to minimize the max loss
and solve the saddle point problem. For a strong-enough inner adversary, this procedure yields
universally robust DNNs (i.e., DNNs robust to any �rst-order adversary constrained by the `∞
norm) [MMS+18, ACW18].

5

Intuitively, Adversarial Training corresponds to a two-player game. When competing against an
�opponent�, it is necessary to understand how that opponent �plays�. Similarly, training a robust
DNN can be viewed within this context. Throughout the training procedure, the adversary tries
to exploit the DNN's �awed feature mappings. To defeat the adversary, the DNN must then
�understand� how it is being exploited by training on adversarial examples.

3 Towards E�cient Robust Training

As the universal robustness described in Section 2 is highly desirable, we improve the practicality
of Adversarial Training in the following sections by addressing its e�ciency.

While PGD builds upon FGSM by using a multi-step optimization procedure, it also introduces
signi�cant computation overhead. For each added step, the algorithm must compute one additional
set of gradients using the Backpropagation algorithm [RHW86], a slow process. For example, with
the current implementation of PGD in the M¡dry Lab MNIST Challenge [Lab17], the added bene�t
of increased strength maximizers comes at the cost of a roughly 40× longer training procedure.
In Section 4, we study the broad impact of using a fewer number of steps and use our �ndings to
drastically reduce the computational overhead of Adversarial Training.

Another downside of Adversarial Training is its synchronous nature. With each iteration of the
min-max problem in Equation 6, the outer minimization process waits for the inner maximization to
�nish, and vice-versa. This increases the overall time to execute Adversarial Training. In addition,
we cannot use multiple GPUs to speed up computation of a single adversarial batch since PGD is
an inherently sequential process.

Instead, in Section 5 we develop an asynchronous implementation of PGD wherein the adversary
and trainer work independently. This allows for multiple GPUs to drastically speed up adversarial
example computation. However, it also results in staleness, or the adversarial examples pointing out
�aws from previous network timesteps. We study staleness in-depth through extensive experiments,
and we arrive at a �nal asynchronous implementation that gains a roughly-linear speedup as more
GPUs become available.

Finally, combining our studies of attacker power and asynchrony, we present our results for
e�cient Adversarial Training on the MNIST dataset [LBBH98]. Using both techniques, we achieve
a 26× reduction in training time from 4 hours to 9 minutes.

4 Understanding Attacker Power

To solve the min-max optimization problem in Equation 6 and train a robust model, Danskin's
Theorem proves that we should use a global maximum adversarial example to calculate gradients
for descent directions. However, �nding the global maximum in a non-concave, highly complex
loss landscape is nearly impossible and would take far too long to compute. As such, researchers
have used �rst-order methods such as FGSM and PGD to compute approximate global maximum,
sacri�cing quality for speed of computation [GSS15, MMS+18]. While it has been shown that
FGSM Adversarial Training is not robust (see [MMS+18] and references therein), a less powerful
PGD attack might still provide robustness. Thus, in this section, we investigate the trade-o�
between the quality of adversarial examples and their computational overheads.

The quality of adversarial examples (e.g., their ability to maximize loss) is a function of the
number of steps used to create them. Given a constant epsilon, ε, we split the overall trajectory

6

0 10000 20000 30000 40000 50000 60000
Training Steps

0

5

10

15

20

25

30
Ad

ve
rs

ar
ia

l T
es

t L
os

s k=1 adv
k=4 adv
k=8 adv
k=128 adv

(a) Trained with FGSM

0 10000 20000 30000 40000 50000 60000
Training Steps

0

5

10

15

20

25

30

Ad
ve

rs
ar

ia
l T

es
t L

os
s

k=1 adv
k=4 adv
k=8 adv
k=128 adv

(b) Trained with κ = 4 PGD

0 10000 20000 30000 40000 50000 60000
Training Steps

0

5

10

15

20

25

30

Ad
ve

rs
ar

ia
l T

es
t L

os
s k=1 adv

k=4 adv
k=8 adv
k=128 adv

(c) Trained with κ = 8 PGD

0 10000 20000 30000 40000 50000 60000
Training Steps

0

5

10

15

20

25

30

Ad
ve

rs
ar

ia
l T

es
t L

os
s k=1 adv

k=4 adv
k=8 adv
k=128 adv

(d) Trained with κ = 128 PGD

Figure 3: Figures 3a, 3b, 3c, and 3d show adversarial loss on the testing set for networks trained
with a κ = 1, 4, 8, and 128 PGD adversary, respectively. The four lines within each �gure display
the loss graph for a κ = 1, 4, 8, and 128 PGD adversary attacking that respective network. While
the networks trained with κ = 1 and 4 PGD adversaries are only robust to the attacks they trained
on, the κ = 8 and 128 networks exhibit robustness against a wide range of attacks.

into κ equally sized steps, recalculating gradients and a descent direction at each step. Since PGD
uses �rst-order gradients to form a locally linear approximation at each step, a larger number of
steps results in a smaller step size and less reliance on the approximation. Given how actual neural
network landscapes are complex and non-linear, using more steps should therefore yield better
quality adversarial examples, helping both the inner maximization, outer minimization, and overall
robustness.

While using more steps results in better maxima, it also comes with signi�cant computational
costs. With normal training, each iteration of the outer minimization problem would only take
one pass of the relatively slow Backpropagation algorithm. Adversarial Training, however, requires
additional passes for each additional step, a linear increase in training time. With the trade-o�
between strength of adversarial examples and training time, the following question arises:

Is there a balance between attacker strength and training time?

Adversarial Training with a weak attack. Upon �rst glance, low-power and high-power PGD
adversaries all perform the same for a network trained with a powerful adversary such as PGD with
κ = 8 or 128 (see Figures 3c and 3d). However, their similar loss values result from the network's
strong robustness: every �rst-order attack will have low loss because the network has become robust
to all of them. Conversely, Figures 3a and 3b show the intriguing di�erence between adversarial

7

0 10000 20000 30000 40000 50000 60000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0
Ad

ve
rs

ar
ia

l T
ra

in
 A

cc
ur

ac
y

k=1 adv
k=4 adv
k=8 adv
k=128 adv

(a) Train Accuracy, FGSM Training

0 10000 20000 30000 40000 50000 60000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ad
ve

rs
ar

ia
l T

ra
in

 A
cc

ur
ac

y

k=1 adv
k=4 adv
k=8 adv
k=128 adv

(b) Train Accuracy, κ = 4 PGD Training

0 10000 20000 30000 40000 50000 60000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ad
ve

rs
ar

ia
l T

es
t A

cc
ur

ac
y

k=1 adv
k=4 adv
k=8 adv
k=128 adv

(c) Test Accuracy, FGSM Training

0 10000 20000 30000 40000 50000 60000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ad
ve

rs
ar

ia
l T

es
t A

cc
ur

ac
y

k=1 adv
k=4 adv
k=8 adv
k=128 adv

(d) Test Accuracy, κ = 4 PGD Training

Figure 4: Figures 4a and 4b show adversarial accuracy on the training set for networks trained
with a κ = 1 and 4 PGD adversary, respectively. Figures 4c and 4d show adversarial accuracy on
the testing set for networks trained with a κ = 1 and 4 PGD adversary, respectively. The four
lines within each �gure display the accuracies for a κ = 1, 4, 8, and 128 PGD adversary attacking
that respective network. The 100% train accuracy against the κ = 1 adversary in Figure 4a and
the κ = 4 adversary in Figure 4b point towards these networks memorizing their attacker training
distribution. The corresponding near-100% test accuracy in Figures 4c and 4d points to a much
more intriguing phenomenon: gradient shattering [ACW18].

power when weak attacks are used to train the model. Not only do higher power adversaries yield
higher loss, but also the adversary used to train the network has a loss near 0 for a signi�cant
portion of training. Is this because the network has simply gained robustness against the weak
adversary it was trained on, or is something more interesting going on?

Our evidence points to the latter. First, observe that for the networks trained with κ = 1 and
4 PGD, adversarial accuracy on the training set for that speci�c attacker goes to nearly 100% after
a small number of training steps (see Figures 4a and 4b). Since natural accuracy for these MNIST
models hovers around 98% and the adversarial setting is harder than its natural counterpart, these
networks likely memorized the distribution of possible weak adversarial examples in the training
set to achieve 100% adversarial accuracy. Indeed, recent work has shown that even state-of-the-art
CNN's are capable of memorizing completely random input data [ZBH+17]. Since the adversarial
examples are not fully random and instead rely on the underlying distribution of natural training
images, the network could certainly have memorized them.

However, more intriguing is the near 100% adversarial accuracy on the testing set (see Figures 4c
and 4d). Firstly, adversarial accuracy for a higher κ, stronger adversary should never be higher than
that of a lower κ, but it is in Figure 4d. In addition, the network never had the opportunity to

8

Table 1: Adversarial accuracy on the testing set for various attacks. Each value represents a testing
set created with a certain κ PGD adversary on a certain κ source network and evaluated on a certain
κ target network. The diagonal represents white-box attacks whereas the o�-diagonal represents
black-box attacks. The highlighted values show evidence of gradient shattering [ACW18]: weak
white-box attacks on a weak network are not e�ective, but the same strength attack transferred
over from a di�erent network is e�ective.

Target κ
Source Source Source Source

Adv κ
κ = 1 κ = 4 κ = 8 κ = 128

1 98.55% 48.63% 27.16% 28.36% 1
4 57.34% 99.98% 54.18% 60.31% 4
8 96.40% 97.27% 93.88% 94.26% 8
128 96.28% 96.69% 93.92% 91.70% 128

memorize images in the testing set, yet it still managed near-perfect accuracy against an adversarial
attack of the same strength it was trained on. Taken together, both observations point to a phenom-
ena called gradient shattering introduced by Athalye et al. [ACW18]. When one trains a network
with a weak adversary, the model learns to augment its loss landscape such that any adversary
with the same strength cannot generate meaningful gradients. Thus, even though the testing set
consists of new natural images, the adversary cannot generate strong adversarial examples due to
the network's corrupted loss landscape.

The gradient shattering phenomena can be further evidenced in Table 1. All of the above
experiments have been in the white-box setting, where the adversary has access to the model's
parameters and directly uses them to create examples. In this black-box setting, the adversary is
not provided access to the model, needing to use a surrogate �source� network to transfer adversarial
examples to a �target� network. For a black-box attack on the networks trained with κ = 1 and
4, notice how an adversary using the exact same power PGD manages to break the networks even
though that same adversary cannot break the networks in a white-box setting. This indicates that
networks trained with weak adversaries shatter their gradients to achieve robustness. Unfortunately,
this method does not provide robustness to higher strength adversarial examples or even same-
strength examples transferred from a surrogate network.

Towards a balance point. In our experiments, we search from κ = 1 to κ = 128 in powers of 2
to understand whether certain strength attackers yield favorable balance points between the quality
of adversarial examples and their computational overhead. In the white-box setting, observe that
networks trained with a κ = 8 and a κ = 128 adversary both yield strong robustness against the
full spectrum of �rst-order attackers (see Figures 3c and 3d). This is unexpected since the network
trained with a κ = 8 adversary never saw the more powerful κ = 128 adversary during its training
procedure. One likely explanation is that with κ ≥ 8, PGD produces su�cient approximates to the
global maximum adversarial example, allowing the network to gain full, universal robustness on the
MNIST dataset. Thus, even attackers using a greater numbers of steps cannot fool these networks.

Furthermore, moving from κ = 4 to κ = 8 and κ = 128, we see no evidence of gradient shattering
in either of the latter two networks (see Table 1). For example, for the target network trained with
κ = 8 PGD, computing a κ = 8 example on the κ = 128 source network yields marginal di�erences

9

in adversarial accuracy (93.88% and 94.26%, respectively).
In summary, while networks trained with κ ≤ 4 lead to faster training times, they lack universal

robustness and exhibit gradient shattering. Conversely, networks trained with κ ≥ 8 o�er these
desirable traits while remaining otherwise indistinguishable (e.g., all such networks achieved around
98% natural accuracy and 89�91% adversarial accuracy on the test set). As such, we train our
�nal network with κ = 8 compared to the κ = 40 in the M¡dry Lab MNIST Challenge to balance
robustness with training time. This technique provides a roughly 5× improvement in training time.

5 Asynchronous Parallelization

In Section 4, we studied trade-o�s with attacker strength to arrive at a 5× reduction in training
time. Here, we look at an orthogonal idea involving asynchronous parallelization to arrive at even
greater speedups.

Traditionally, researchers have solved Equation 6 in a synchronous manner, simulating the ad-
versary in the inner loop, feeding the adversarial examples to the model, and using the model
to create adversarial examples. While this makes the adversarial examples used by the network
fresh�they are computed for the most recent timestep�it also introduces signi�cant delays; the
minimization process must wait for the much slower maximization process before continuing. This
raises the following question:

Can we parallelize the inner maximization to make it faster?

Unfortunately, due to the inherently serial nature of PGD wherein each step builds o� of the
previous step (see Equation 5), we cannot achieve parallelism by applying multiple GPUs to a single,
small batch. Instead, we achieve parallelism by using multiple worker GPUs to simultaneously create
adversarial batches and store them in a queue once completed. Later, a separate trainer GPU picks
up batches from the queue, calculates gradients from them, and uses the gradients to minimize loss.

To demonstrate asynchronous parallelization, consider a scenario with one trainer GPU and
two worker GPUs. The workers start computing an adversarial batch using parameters θt from the
network at time t. Since both workers perform the same optimization, they �nish at around the same
time and add their batches to the queue. Assuming the trainer GPU was previously unoccupied,
it takes the �rst batch and uses it to calculate new parameters, θt+1, that minimize the adversarial
loss. Now, when the trainer takes the second batch from the queue, there exists a discrepancy
between timesteps. Since the second adversarial batch was computed for θt while the network now
has parameters θt+1, it points out slightly older network �aws, reducing its e�ectiveness. We call
this phenomenon staleness and study its e�ects in greater depth to arrive at a �nal asynchronous
parallelization implementation.

Simulating staleness. Real-world multi-GPU parallelization has several tunable parameters,
making it hard to evaluate staleness. Instead, we use a single GPU with a queue of size s to
simulate an exact staleness s that persists throughout network training. Speci�cally, at the start of
training, we �ll the queue to its maximum capacity and iterate through the normal, synchronous
training procedure. Since each example is processed in one timestep, if the example at the back of
the queue enters at timestep t, it will exit at timestep t + s. The di�erence between entrance and
exit timesteps, s, matches the di�erence in the network parameters used to create the adversarial

10

0 10000 20000 30000 40000 50000 60000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0
Ad

ve
rs

ar
ia

l T
ra

in
 A

cc
ur

ac
y

stale adv
fresh adv

(a) Trained with s = 32

0 10000 20000 30000 40000 50000 60000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ad
ve

rs
ar

ia
l T

ra
in

 A
cc

ur
ac

y

stale adv
fresh adv

(b) Trained with s = 64

Figure 5: Figures 5a and 5b show adversarial accuracy on the training set for networks trained with
s = 32 and 64 staleness, respectively. The two lines within each �gure represent the accuracy on
fresh and stale adversarial examples. Even though each network was trained on stale examples,
we evaluate fresh accuracy by generating fresh examples for the current network timestep. The
di�erence between fresh and stale training accuracy in Figure 5b indicates that s = 64 networks
memorize the stale data distribution, lacking robustness to fresh adversarial examples. In contrast,
the s = 32 network achieves high accuracy on both fresh and stale examples.

example. Since every example has this exact timestep di�erence s, we have a constant staleness s
for every adversarial batch.

The downsides of high staleness. Just as the models trained with weak attacks in Section 4
over�t to their speci�c attack, high staleness networks over�t to stale data. Within the context of
staleness, we use the terms �fresh� and �stale� to refer to accuracy on adversarial examples generated
at the current timestep and at a previous timestep, respectively. Consider Figures 5a and 5b, which
show fresh and stale adversarial accuracy for networks trained with s = 32 and s = 64. While
fresh accuracy tracks stale accuracy for s = 32, it is much lower than stale accuracy for s = 64.
This indicates that high staleness networks memorize the stale data distribution, failing to become
robust to fresh adversarial examples. In the following discussion, we hypothesize on what happens
in the network training procedure to cause these issues.

The cyclic behavior caused by high staleness. Consider taking a snapshot of the stale ad-
versarial examples created throughout the training procedure, the same examples as those used for
network training. For regular robust training with an `∞ constraint, the adversary does not care
how many individual pixels it perturbs since the constraint restricts the maximum perturbation
(see Equation 3). Figures 6a through 6d show the adversary's choice to perturb what looks like a
large number of random pixels. In contrast, we notice that with s = 64 in Figures 6e through 6l,
the adversarial examples look a lot less random. Speci�cally, the set of stale examples shadows a
line segment that moves through the image and back again.

A game-playing analogy. Why do the adversarial examples cycle for high staleness? To under-
stand further, consider a thought experiment with a game of rock, paper, and scissors. For each
move made by a player, there is exactly one other move that wins against it, losses against it, and
ties against it. Thus, if the adversary played randomly, the optimal move is to randomly choose

11

(a) s = 0 (b) s = 0 (c) s = 0 (d) s = 0

(e) s = 64 (f) s = 64 (g) s = 64 (h) s = 64

(i) s = 64 (j) s = 64 (k) s = 64 (l) s = 64

Figure 6: Figures 6a through 6d show adversarial examples at sequential timesteps for a network
trained with no staleness. Figures 6e through 6l show adversarial examples at sequential timesteps
for a network trained with s = 64. Note how the former looks nearly random while the latter
shows a line segment cycling through the image. This cyclic behavior is one the drawbacks of high
staleness: the network and adversary become entranced in a cat-and-mouse game trying to catch
up with each other.

an action, yielding a 1/3 chance of winning, a 1/3 chance of losing, and a 1/3 chance of tying.
Now consider a large lag between the adversary's actions and when they are played out (i.e., add
staleness). If by random chance the player has several rocks that win, he might put more weight
into that action, playing it more often. The adversary would certainly punish this decision, but his
paper moves would not appear for several more turns.

Finally, once the model gets �ooded by paper, it learns to switch its weights, constantly playing
scissors instead. In response, the adversary changes to rock, but its actions still show paper due
to the lag. This cat and mouse game would continue with the model switching to paper and the
adversary switching to scissors until the model �nally ends back where it started�rock.

12

0 50000 100000 150000 200000 250000 300000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ai
n

Ac
cu

ra
cy

fresh adv
stale adv
natural

Figure 7: The broken s = 64 network training for 300,000 steps instead of our usual 60,000.

21 23 25 27 29

Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Ad
ve

rs
ar

ia
l T

es
t A

cc
ur

ac
y

(a) Final Adversarial Accuracy

21 23 25 27 29

Staleness

0.0

0.2

0.4

0.6

0.8

1.0

Na
tu

ra
l T

es
t A

cc
ur

ac
y

(b) Final Natural Accuracy

Figure 8: Figures 8a and 8b show �nal adversary and natural accuracies, respectively, on the testing
set for varying values of staleness. We increment staleness on the x-axis in powers of 2.

This rock, paper, scissors analogy intuitively shows that cyclic behavior is caused by staleness
between the player and the adversary. Both parties play the same move for a considerable amount of
time due to the lag in their actions, resulting in a seemingly never-ending cycle. Drawing parallels
between the rock, paper, scissors thought experiment and Adversarial Training, we believe high
staleness also causes cyclic behavior, as evidenced by the line segments in Figure 6.

Breaking the cycles. Interestingly enough, we found that in some cases the cycles can be stopped
by training the network with more timesteps. We took a network trained with s = 64 that previously
exhibited memorization issues and let it run for 300,000 training steps instead of 60,000 training
steps.

Figure 7 shows the results. About halfway through training, fresh adversarial accuracy suddenly
climbs up to match stale adversarial accuracy and closely tracks it for the rest of training. While
it is unclear what exactly happened here, one theory is that the cyclic staleness behavior has a
certain entropy over time. For higher staleness, it takes a longer build-up of this entropy to break
the network's paralysis, but eventually it could happen.

Unfortunately, in the real-world it is impractical to train networks for 300,000 timesteps due to
the signi�cantly increased computation time. Thus, we pursue a balance between high staleness,
which allows for greater parallelization, and its drawbacks, which include memorization, lack of
robustness, and cyclic behavior.

13

1 2 3 4 5 6 7 8
Number of GPUs

2

4

6

8

Sp
ee

du
p

Measured Speedup
Linear Speedup

Figure 9: The speedup we achieve from using more GPUs in our asynchronous implementation of
Adversarial Training. The baseline here (i.e., number of GPUs = 1) is regular PGD Adversarial
Training with κ = 8. All subsequent runs use that same number of steps. Using asynchronous
parallelization, we achieve a roughly-linear speedup as more GPUs are added.

Towards a suitable staleness value. In our experiments, we search between staleness values
from 1 to 1024 in powers of 2 to determine if there is a clear breaking point where the e�ects of
staleness hinder robustness. In Figure 8a, we plot the �nal adversarial accuracy on the test set as
a function of a greater variety of staleness values.

We note a similar phenomena as before (see Figure 5) regarding the di�erence between s = 32
and 64. For s ≤ 32, the �nal adversarial accuracy on the testing set remains about the same at 90%.
However, after s = 32, adversarial accuracy drops down from 90% to around 5%, a major decrease
that indicates a lack of robustness. Thus, for MNIST it appears that a network trained with s = 32
manages to achieve su�cient robustness, all while keeping a natural accuracy of around 98% (see
Figure 8b).

Implementing Asynchronous Parallelization Finally, we bring staleness into the real world
by implementing asynchronous parallelization. To achieve parallelism, we use between 0�7 worker
GPUs and 1 trainer GPU. Between the workers and trainer sits a shared memory queue to store
completed adversarial batches, and we restrict the queue's maximum size to mitigate staleness.
Finally, we curb staleness by also having the trainer GPU re-save the model's parameters every 100
training steps, a fairly rapid pace.

In Figure 9, we plot the speedup as a function of the number of GPUs. Speedup is the time
taken to train the baseline divided by the time taken to run the actual trial. Compared to the ideal
linear-speedup shown in orange, we achieve slightly worse speedup for 2 GPUs since the trainer
spends most of its time waiting for adversarial batches on the queue. We note that this can be �xed
if the trainer also computes adversarial examples in its spare time waiting.

However, after 2 GPUs, we see an almost-linear speedup as the number of GPUs increases. By
the time we get to 7 GPUs, we reach a nearly 5× speedup and start to plateau. By this time, the
worker GPUs combined begin to produce adversarial batches at a faster rate than the network can
consume them. This causes the queue to �ll up, blocking the workers from being utilized until the
queue has more space. It makes sense that this saturation point should occur with 8 GPUs. We
used κ = 8 for these experiments, so it takes approximately 8× as long to make an adversarial batch
as it does to train on it.

14

Comparison with the baseline. With our �nal 8 GPU con�guration, we reach over a 5×
speedup compared to the κ = 8 baseline with one GPU. This con�guration took a total of 9
minutes to train while achieving an adversarial accuracy of around 90% and a natural accuracy
of 98%. Compared to the 4 hours for the M¡dry Lab MNIST challenge code with k = 40 and
synchronous training, we achieve an overall 26× reduction in training time for the same level of
robustness and same natural accuracy.

6 Experimental Setup

We perform all our experiments on the MNIST Computer Vision dataset [LBBH98], which consists
of 65,000 labeled, grayscale, 28× 28 images of handwritten digits. After feeding an MNIST image
into a classi�er, it must output the correct label, an integer from 0�9 that the image refers to. We use
MNIST here since it has been widely studied not only in regular Machine Learning community, but
also in the Adversarial Machine Learning community [GSS15, ETT+17, ACW18, WK18, MMS+18].

For all our tests, we use the same Convolutional Neural Network (CNN) used by M¡dry et
al. [MMS+18] and the TensorFlow MNIST tutorial [Dev18]. This network consists of two convo-
lutional and max pooling layers with 32 and 64 �lters, respectively, and a receptive �eld of size 5.
After being sent through the convolutional layers, data is passed through a fully-connected layer
with 1024 neurons before �nally reaching a 10 neuron fully-connected output layer. We use the
ReLU activation function for all layers except the �nal layer, which uses the softmax function to
create a discrete probability distribution. The CNN is trained with the Adam optimizer [KB15], a
variant of Stochastic Gradient Descent with fast convergence. We use categorical crossentropy for
our loss function, a common choice for multinomial classi�cation problems. The same random seed
is used throughout all experiments, and we randomly shu�e the entire MNIST dataset and feed it
in batches of 128 samples to the model.

To evaluate model performance, we use accuracy and loss across the train and test sets. The
train set consists of 55,000 examples, while the test set contains 10,000 di�erent examples. Since
they are mutually exclusive, accuracy on the test set measures the generalization capability of the
model to unseen data. In addition, we measure both accuracy and loss in the adversarial and natural
setting. In the former, we replace the natural examples with adversarial examples to measure the
model's robustness.

Unless otherwise noted, we use 60,000 training steps for each experiment and �x ε = 0.3, one
third of the 0�1 grayscale range for each pixel. For a given number of steps, the step size is calculated
as follows:

α =
ε

κ
× 2.5.

This ensures that the full optimization trajectory is divided into κ equally-sized steps. In addition,
we scale step size by 2.5 since all of our experiments use random restarts (i.e., before starting PGD,
we move to a random starting point within the ε-ball). Random restarts allow PGD to explore
new areas of the ε-ball. However, just as it takes 2 radii to travel from one end of a diameter to
another, it takes at least 2ε to travel from one end of the ε-ball to another. The 0.5 adds a little
extra tolerance for PGD to explore far-out adversarial examples.

Our baseline experiment is the randomly initialized model from M¡dry et al.'s MNIST challenge,
which achieves 89%�91% adversarial accuracy and 98% natural accuracy on the test set and takes
roughly 4 hours to train.

15

7 Discussion

Other parallelization approaches. In this work, we approached parallelization through mul-
tiple GPUs asynchronously computing small batches of adversarial examples. Another possible
approach is to use a large batch size, split the batch into several small chunks that �t into an
individual GPU's memory, and give the large batch to the trainer GPU. In recent work using this
parallelization technique, researchers trained a Computer Vision model to achieve high natural
accuracy on the ImageNet dataset [GDG+17] in just one hour.

Instead of viewing this technique as competing, we view it as an orthogonal idea. To further
improve practicality, it is likely that techniques such as asynchronous parallelization must join with
other approaches such as large batch size training.

8 Conclusion

In this work, we present two approaches for reducing the computational overhead of Adversarial
Training: cruder approximations of adversarial perturbations and asynchronous parallelization. We
present in-depth studies of both techniques, push their limits, and search for balance points wherein
we do not sacri�ce crucial traits such as adversarial robustness. Combining these two techniques,
we achieve a 26× reduction in robust training time on the MNIST dataset, going from 4 hours to
just 9 minutes. Overall, our work moves an important step towards developing e�cient methods
for training robust DNNs.

References

[ACW18] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated Gradients Give a False Sense of
Security: Circumventing Defenses to Adversarial Examples. In Proceedings of the International

Conference on Machine Learning, 2018.

The authors, researchers at MIT and UC Berkeley, �nd that most prior Adversarial
ML defenses (except Adversarial Training) use a form of obfuscated gradients to
provide security. Obfuscated gradients, they argue, provide a false sense of security and
can be circumvented through their techniques. Among all defenses tested, Adversarial
Training remains unbroken.

[AEIK18] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing Robust Adver-
sarial Examples. In Proceedings of the International Conference on Machine Learning, 2018.

In this paper, the authors, resarchers at MIT, 3D print robust physical adversarial
examples that trick a state-of-the-art ML model over a variety of natural transforma-
tions (e.g., viewpoint shifts and camera noise).

[Ber99] Dimitri P. Bertsekas. Nonlinear Programming. Athena Scienti�c, 1999.

Bertsekas, an MIT professor, is one of the leading professors working in the �eld of
mathematical optimization. He has written several books, including this one, where
he provides a proof of a more general version of Danskin's theorem [Dan67].

[Bro14] Bethany Brookshire. How brains �lter the signal from the noise. https://www.sciencenews.

org/blog/scicurious/how-brains-filter-signal-noise, 2014.

16

https://www.sciencenews.org/blog/scicurious/how-brains-filter-signal-noise
https://www.sciencenews.org/blog/scicurious/how-brains-filter-signal-noise

In this article from ScienceNews, the author describes how humans have a key struc-
ture in their minds that allows them to �lter out unnecessary random-noise from
auditory stimuli. In contrast to humans, the article points out how ML systems might
have a tougher time doing this.

[Dan67] John M. Danskin. The Theory of Max-Min and its Application to Weapons Allocation Problems.
Springer-Verlag Berlin Heidelberg, 1967.

In this classic monograph, Danskin provides a way of calculating the directional
derivative of the maximum of an arbitrary directionally di�erentiable function. His
theorem relies on �nding the global maximum of the function, which we are unable to
do since PGD converges to local maxima. In practice, we use iterative optimization
methods such as PGD to reliably �nd close approximates to the global maximum
perturbation.

[Dee16] Google DeepMind. The Google DeepMind Challenge Match, March 2016. https://deepmind.
com/research/alphago/alphago-korea/, 2016.

In this o�cial blog post from Google DeepMind, their team announces a 4�1 win over
Lee Sedol, a top Go player.

[Dev18] TensorFlow Developers. Build a Convolutional Neural Network using Estimators. https://www.
tensorflow.org/tutorials/estimators/cnn, 2018.

This is an o�cial TensorFlow tutorial made by Google. The authors provide code for
creating a basic Convolutional Neural Network for running on the MNIST dataset.
We, along with M¡dry et al. [MMS+18], use this code for our DNNs.

[ETT+17] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander M¡dry. A
Rotation and a Translation Su�ce: Fooling CNNs with Simple Transformations. arXiv preprint
arXiv:1712.02779, 2017.

This paper from authors at MIT �nds that neural networks are not only fooled by
complicated optimizations, but also by rotations and translations, perturbations more
likely to be found in the real world. This sheds light on the numerous invariances that
could possibly be addressed in Adversarial ML.

[FCMB17] Volker Fischer, Kumar Mummadi Chaithanya, Jan Hendrik Metzen, and Thomas Brox. Adver-
sarial Examples for Semantic Image Segmentation. In Proceedings of the International Conference
on Learning Representations�Workshop Track, 2017.

The authors show the existence of imperceptible adversarial perturbations for image
segmentation, a technique used by self-driving cars to parse their surroundings. This
may show that self-driving cars can be tricked to misclassify large numbers of pixels
belonging to a particular class.

[GDG+17] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, Large Minibatch SGD: Training
ImageNet in 1 Hour. arXiv preprint arXiv:1706.02677, 2017.

The authors, researchers at Facebook, develop analysis and techniques for large mini-
batch training in a distributed synchronous environment. Their techniques allow natu-
ral training on the ImageNet dataset in just 1 hour with comparable accuracy to small
minibatch training. Although they do not study the adversarial setting, their tech-
niques could potentially be transferred to this domain. However, further work must
�rst be done on the possible side-e�ects of large minibatch Adversarial Training.

17

https://deepmind.com/research/alphago/alphago-korea/
https://deepmind.com/research/alphago/alphago-korea/
https://www.tensorflow.org/tutorials/estimators/cnn
https://www.tensorflow.org/tutorials/estimators/cnn

[GSS15] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Adver-
sarial Examples. In Proceedings of the International Conference on Learning Representations,
2015.

This paper by Goodfellow et al. at Google is one of the earliest and most cited works
in Adversarial Deep Learning. It relies on the linear properties of neural networks
to create a fast, one-step optimization using �rst-order information�FGSM. One
criticism of this work is the fact that neural networks often have complex, non-concave
landscapes, which makes �nding adversarial examples di�cult. M¡dry et al. point out
this �aw and propose PGD, a multi-step attack, and we extend their work here by
further studying the e�ects and tradeo�s of single vs. multi-step attacks.

[Haw18] Andrew J. Hawkins. Inside Waymo's Strategy to Grow the Best Brains
for Self-Driving Cars. https://www.theverge.com/2018/5/9/17307156/

google-waymo-driverless-cars-deep-learning-neural-net-interview, 2018.

This article from popular science and technology magazine The Verge breaks down
some of the technological background behind Waymo. While it does not go deep into
technical details, it does outline how Waymo primarily uses AI and Deep Learning to
power its self-driving car system.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep into Recti�ers: Surpass-
ing Human-Level Performance on ImageNet Classi�cation. In Proceedings of the International

Conference on Computer Vision, pages 1026�1034, 2015.

In this paper, the authors develop two techniques that extend the traditional Recti-
�ed Linear Unit (ReLU)�Parametric Recti�ed Linear Unit and a robust initialization
method for ReLUs. Together, these enable the authors to build a deep recti�ed net-
work that surpasses human-level performance, 5.1% top-5 test error, on the ImageNet
2012 classi�cation dataset.

[HZRS16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. 2016.

In this seminal paper from Microsoft Research, the authors propose the Residual
Network (ResNet) architecture for training deeper networks. This enables them to
achieve high accuracy on datasets such as Imagenet.

[IEAL18] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin. Black-box Adversarial Attacks
with Limited Queries and Information. In Proceedings of the International Conference on Ma-

chine Learning, 2018.

This paper is one of many demonstrating the power of black-box adversarial attacks�
attacks in which the attacker only has query access to the model. Speci�cally, this
paper de�nes three di�erent sub-settings of black-box attacks and develops novel
methods to fool models in each setting.

[KB15] Diederik P. Kingma and Jimmy Ba. Adam: AMethod for Stochastic Optimization. In Proceedings
of the International Conference on Learning Representations, 2015.

This paper proposes Adam, a �rst-order method for performing stochastic gradient
descent. Consistent with M¡dry et al., we use Adam to train our DNN.

[KGB17] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adversarial Examples in the Physical
World. In Proceedings of the International Conference on Learning Representations�Workshop

Track, 2017.

18

https://www.theverge.com/2018/5/9/17307156/google-waymo-driverless-cars-deep-learning-neural-net-interview
https://www.theverge.com/2018/5/9/17307156/google-waymo-driverless-cars-deep-learning-neural-net-interview

This paper introduces the Basic Iterative Method (BIM), an extension to Goodfellow
et al.'s FGSM that uses multi-step optimization. The authors apply BIM to synthe-
size real-world adversarial examples that fool a state-of-the-art ML model taking in
cellphone images. M¡dry et al. [MMS+18] will later recognize that BIM is equivalent
to Projected Gradient Descent, (PGD) a multi-step optimization method proposed in
prior mathematical literature.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E. Hinton. ImageNet Classi�cation with Deep
Convolutional Neural Networks. In Proceedings of the Conference on Neural Information Pro-

cessing Systems, pages 1097�1105, 2012.

In this seminal paper from researchers at the University of Toronto, the authors show
the e�cacy of deep convoluional neural networks on the Imagenet Challenge. This
paper provided the impetus for the resurgence of deep learning over the past several
years.

[Lab17] M¡dry Lab. M¡dry Lab MNIST Challenge. https://github.com/MadryLab/mnist_challenge,
2017.

This is code from M¡dry et al.'s paper [MMS+18]. We use it as the basis for our code,
including our DNN architecture and our implementation of PGD and Adversarial
Training.

[Lam18] Fred Lambert. Tesla deploys massive new Autopilot neural net in v9, impressive new capabilities,
report says. https://electrek.co/2018/10/15/tesla-new-autopilot-neural-net-v9/,
2018.

This article was written by Fred Lambert, Editor in Chief at Electrek, a news site
that tracks progress related to electric transportation. In his article, Fred discusses
the new deep neural network in the latest Tesla autonomous driving system, quoting
o�cial Tweets from Elon Musk, CEO of Tesla.

[LBBH98] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Ha�ner. Gradient-Based Learning Ap-
plied to Document Recognition. Proceedings of the IEEE, 86(11):2278�2324, 1998.

In this seminal paper, the authors show the power of convolutional neural networks
in handwritten character recognition tasks. It introduces the MNIST dataset that is
still used today, especially in Adversarial ML research, as a benchmark for model
performance.

[LBH15] Yann LeCun, Yoshua Bengio, and Geo�rey E. Hinton. Deep Learning. Nature, 521:436�444,
2015.

This article, written by three of the leading Deep Learning researchers in the world
and published in Nature, provides an overview of the current state of Deep Learning
cerca 2015. It also touches upon the numerous applications of unsupervised learning,
CNNs, and RNNs.

[LXT+17] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the Loss
Landscape of Neural Nets. arXiv preprint arXiv:1712.09913, 2017.

In this paper, the authors develop techniques for visualizing the loss landscape of
neural networks. They use these techniques to arrive at high-resolution 3D models
that show the complex nature of deep neural networks. We note that while they
generated loss landscapes with respect to model training parameters, here we refer to
loss landscape with respect to the model inputs.

19

https://github.com/MadryLab/mnist_challenge
https://electrek.co/2018/10/15/tesla-new-autopilot-neural-net-v9/

[MMS+18] Aleksander M¡dry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards Deep Learning Models Resistant to Adversarial Attacks. In Proceedings of the Interna-

tional Conference on Learning Representations, 2018.

This paper, written by researchers at MIT, is the central paper on which we base
our resarch. They show that robust deep neural networks can be trained through
an intuitive process called Adversarial Training, in which the trainer simulates an
adversary and augments the dataset with adversarially perturbed inputs. Adversarial
Training has withstood attacks from Athalye and Carlini [ACW18] and has shown to
be robust to all �rst-order attacks bounded by a particular `p norm.

[RDS+15] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei.
ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision,
115(3):211�252, 2015.

This paper introduces the ImageNet Challenge, a benchmark for large-scale object
category classi�cation and detection. Since 2010, ImageNet has been cited thousands
of times and has spurred several new neural network architectures and training tech-
niques.

[RHW86] David E. Rumelhart, Geo�rey E. Hinton, and Ronald J. Williams. Learning Representations by
Back-Propagating Errors. Nature, 323:533�536, 1986.

In this classic paper co-authored by one of the godfathers of deep learning, Geo�rey
Hinton, the authors introduce the Backpropagation Algorithm for e�cient gradient
computations in neural networks.

[SHM+16] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game
of Go with deep neural networks and tree search. Nature, 529:484�489, 2016.

In this paper, the authors, researchers at Google DeepMind, explain the intricacies
of their system AlphaGo. AlphaGo uses deep reinforcement learning and deep neural
networks to synthesize highly competitive Go-playing. This led to its 4�1 victory
against Lee Sedol in 2016 [Dee16].

[Sto18] Kyle Stock. Self-Driving Cars Can Handle Neither Rain nor Sleet
nor Snow. https://www.bloomberg.com/news/articles/2018-09-17/

self-driving-cars-still-can-t-handle-bad-weather, 2018.

In this article from Bloomberg Businessweek, the author points out inclement weather
(e.g., rain, sleet, and snow) as a major barrier to current self-driving car systems. This
goes to show how some natural invariances that humans can sometimes deal with pose
a major problem to current deep neural networks. One drawback of this article is its
release time. Even though it was released on September 17, 2018, AI often progresses
at a fast pace. It is possible that companies such as Waymo or Tesla have found ways
to make robust self-driving systems in the rain, although to our best e�orts we have
found no reliable press releases indicating such feats.

[SZ15] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale
Image Recognition. Proceedings of the International Conference on Learning Representations,
2015.

20

https://www.bloomberg.com/news/articles/2018-09-17/self-driving-cars-still-can-t-handle-bad-weather
https://www.bloomberg.com/news/articles/2018-09-17/self-driving-cars-still-can-t-handle-bad-weather

This paper introduces the VGG network architecture, a relatively simple architecture
consisting of several layers of 3 × 3 convolutions. Using the VGG architecture, the
authors achieve �rst and second places in the localization and classi�cation tasks,
respectively, at the 2014 ImageNet Challenge.

[Tea17] Apple Computer Vision Machine Learning Team. An On-device Deep Neural Network for Face
Detection. https://machinelearning.apple.com/2017/11/16/face-detection.html, 2017.

In this o�cial technical report by the Apple Computer Vision Machine Learning
Team, the authors describe Apple's use of deep learning Computer Vision algorithms
in their face detection system. Furthermore, they discuss the e�ciency challenges they
incurred as well as their e�orts to preserve user privacy.

[WK18] Eric Wong and J. Zico Kolter. Provable Defenses against Adversarial Examples via the Convex
Outer Adversarial Polytope. In Proceedings of the International Conference on Machine Learning,
2018.

The authors, researchers from Carnegie Mellon University, use a convex outer ap-
proximation to build a deep ReLU-based classi�er that is provably robust to any
norm-bounded adversarial attack. The authors apply their method to the MNIST
dataset for digit recognition.

[ZBH+17] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
Deep Learning Requires Rethinking Generalization. In Proceedings of the International Confer-

ence on Learning Representations, 2017.

The authors provide evidence contrary to conventional wisdom, which attributes the
performance of deep neural networks to properties of the model family or regulariza-
tion techniques. Speci�cally, they show that even state-of-the-art CNNs with regu-
larization techniques can easily �t a random labeling of the training data or random
noise data. This provides evidence for CNNs lacking inherent architectural choices or
reguralization techniques that bene�t generalization. It also illucidates the fact that
even state-of-the-art CNNs can be easily fooled to memorize the training set.

21

https://machinelearning.apple.com/2017/11/16/face-detection.html

	Introduction
	Background
	Towards Efficient Robust Training
	Understanding Attacker Power
	Asynchronous Parallelization
	Experimental Setup
	Discussion
	Conclusion

