Esercizio n. 1

Date le seguenti funzioni:

F1 =
$$ON(1,3,9,10,12,13)$$
 $DC(0,2,8)$
F2 = $ON(2,5,7,9,12,13,14,15)$ $DC(0,8)$

Prima parte

Si esegua la sintesi ottima con il metodo di Quine McCluskey a più funzioni. In particolare si svolgano i sequenti passi:

- dati gli implicanti primi sotto riportati, si definisca la tabella di copertura adottando per ogni implicante il costo convenzionale del numero di letterali
- 2. si determini la copertura minima utilizzando con criterio di costo la minimizzazione dei letterali
- 3. si indichino le espressioni logiche di copertura e si calcoli del costo della copertura

Seconda parte

- 1. Disegnare le mappe di Karnaugh delle 3 funzioni: F1, F2 e F3=F1 and F2
- 2. Individuare graficamente <u>tutti gli implicanti primi delle funzioni al punto precedente</u> e darne l'espressione algebrica
- 3. Spiegare la relazione tra gli implicanti primi dati nella parte QuineMcCluskey e quelli appena individuati con le mappe di Karnaugh

Esercizio n. 2

Sia data una macchina combinatoria a 5 ingressi (a, b, c, d, e) e 3 uscite (Y) rappresentata dalla seguente rete multilivello:

$$V_1 = a + c + V5$$

$$V_2 = V_3 + c\overline{e}$$

$$V_3 = ab + d\overline{e} + abc + a\overline{b}c + d\overline{e}$$

$$V_4 = ba + bc + \overline{d}$$

$$Y = V_1 a\overline{e} + V_1 c\overline{e}$$

$$V_6 = ba + bc$$

$$V_5 = ab\overline{d}e + c + V6$$

Applicare in sequenza alla rete multilivello le trasformazioni sotto indicate e rispondere alle domande dove richiesto. Disegnare anche il modello della rete finale.

Nota Bene: per ogni trasformazione è obbligatorio riportare il risultato della trasformazione e mostrare chiaramente tutti i passaggi effettuati per ottenere il risultato stesso.

- a) COST(): Calcolo del numero di letterali. La funzione COST() calcola il costo in letterali indipendentemente dalla forma (SOP o Multilivello) delle espressioni algebriche dei nodi.
- b) FACTOR(V₄): Fattorizzazione del nodo V4.
- c) **SIMPLIFY(V₃):** Minimizzazione a due livelli di V3.
- d) FACTOR(Y): Fattorizzazione del nodo Y.
- e) [V₅] = EXTRACT(Y, V₄): Estrazione di un fattore comune a Y e V4. Il nodo V₅ derivato dall'estrazione può essere un nuovo nodo o un nodo qià presente nella rete.
- f) SIMPLIFY(Y): Minimizzazione a due livelli di Y.
- g) [V₆] = EXTRACT(V₃, D₁): Estrazione di un fattore comune a V₃ e D₁. Il nodo V₆ derivato dall'estrazione può essere un nuovo nodo o un nodo già presente nella rete.
- h) **ELIMINATE(V₃,0):** Eliminazione del nodo V₃: la trasformazione viene accettata solo se l'incremento di area, dovuto all'eliminazione è inferiore o uguale alla soglia data (0).
- i) COST(): Calcolo del numero di letterali.

Esercizio n. 3

Dati due numeri decimali **A= 0,525** e B= **+4,1265** fornire la codifica completa in virgola mobile in singola precisione di A e B.

Effettuare **la somma A+B**, mostrando tutti i passaggi relativi sia alla codifica che alla somma.

Esercizio n. 4

Date le seguenti funzioni:

F1 = ON(3,4,5,6,7,9,10,11,15) DC(8,14)

F2 = ON(3,5,7) DC(2,4,6,10,14)

Si esegua la sintesi ottima con il metodo di Quine McCluskey a più funzioni. In particolare si svolgano i seguenti passi:

- 4. calcolo degli implicanti primi
- definizione della tabella di copertura. Ad ogni implicante primo individuato al passo precedente deve essere associato un costo corrispondente al numero dei suoi letterali
- 6. determinazione della copertura minima utilizzando con criterio di costo la minimizzazione dei letterali
- 7. indicazione delle espressioni logiche di copertura e calcolo del costo della copertura

Esercizio n. 5

Dati due numeri decimali A=3.8125 B=8.375 Fornire la codifica completa in virgola mobile a singola precisione di A e B.

Effettuare la somma A+B indicando tutti i passaggi relativi sia alla codifica che alla somma.

Esercizio n. 6

PARTE A

Considerando ciascuna funzione indipendentemente dalle altre:

AB\CD	00	01	11	10
00	Χ	0	1	0
01	Χ	Χ	0	0
11	0	1	Χ	0
10	0	0	X	Χ
		F1		

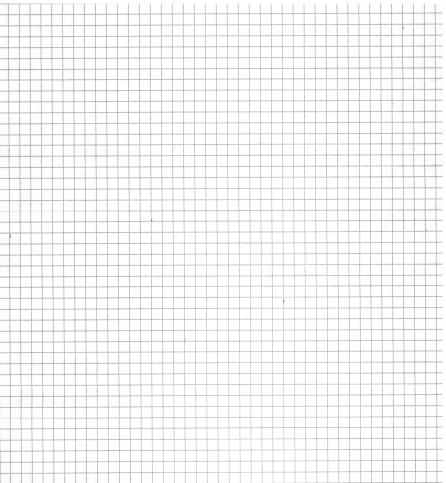
AB\CD	00	01	11	10
00	0	1	1	Χ
01	0	Χ	Χ	0
11	Χ	0	0	1
10	X	0	1	1
F2				

AB\CD	00	01	11	10
00	0	1	0	0
01	0	0	X	0
11	1	1	Χ	1
10	Χ	1	0	1
F3				

- I) Per la funzione F1, individuare gli implicanti primi riportandone la forma algebrica e separando gli implicanti *primi* da quelli *primi ed essenziali*.
- II) Per la funzione F3, ricavare tutte le forme minime scegliendo una opportuna copertura della funzione sulla mappa, che minimizzi il numero di implicanti utilizzati ed il numero di letterali.
- III) Ricavare il costo in letterali della copertura di F1, F2 e F3 considerate indipendenti, utilizzando i risultati del punto II per F3 mentre per F1 e F2: F1 = ABD + !BCD

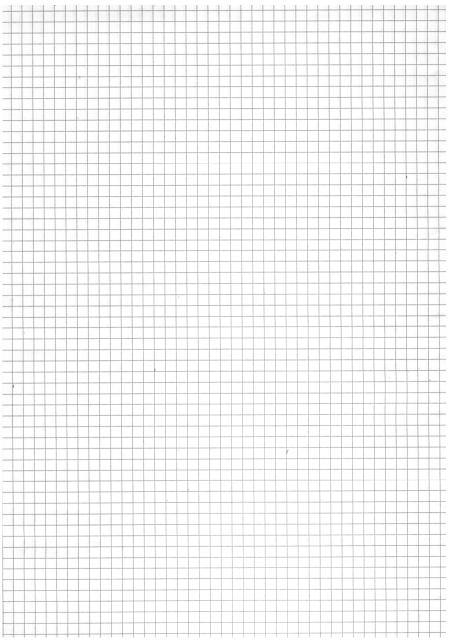
F2 = !AD + !BC + A!D

Soluzione:


PARTE B

Ricavare gli implicanti primi con il metodo di Quine McCluskey per la funzione multiuscita specificata tramite le mappe di Karnaugh delle funzioni precedenti (qui riportate).

AB\CD	00	01	11	10
00	Χ	0	1	0
01	Χ	Χ	0	0
11	0	1	Χ	0
10	0	0	Χ	Χ


.e).				
.e). AB∖CD	00	01	11	10
00	0	1	1	X
01	0	X	Х	0
11	Χ	0	0	1
10	Χ	0	1	1
		F2		
10	X		1	1

		F1		
AB\CD 00	00	01	11	10
	0	1	0	0
01	0	0	Χ	0
11	1	1	Χ	1
10	Χ	1	0	1
		F3		

PARTE C

Si ricavi la tabella di copertura relativa alla PARTE B e si determini una copertura minima utilizzando il metodo di Quine McCluskey considerando come criterio di ottimizzazione quello a cardinalità minima.

PARTE D Confrontare la soluzione ottenuta con la sintesi indipendente delle funzioni F1, F2 e F3 (passo A) con quella ottenuta con la sintesi multiuscita (passo C) in termini di costi traendo delle conclusioni sull'efficacia dei metodi utilizzati.