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Abstract
We present a post-processing technique that selectively

reduces the salience of distracting regions in an image.
Computational models of attention predict that texture vari-
ation influences bottom-up attention mechanisms. Our
method reduces the spatial variation of texture using power
maps, high-order features describing local frequency con-
tent in an image. Modification of power maps results in ef-
fective regional de-emphasis. We validate our results quan-
titatively via a human subject search experiment and quali-
tatively with eye tracking data.

1. Introduction
Much of the art of photography involves directing view-

ers’ attention to or away from regions of an image. Photog-
raphers have developed a variety of post-processing tech-
niques, both in the darkroom and on the computer, to re-
duce the salience of distracting elements by altering low-
level features to which the human visual system is partic-
ularly attuned: sharpness, brightness, chromaticity, or sat-
uration. Surprisingly, one low-level feature that cannot be
directly manipulated with existing image-editing software
is texture variation. Variations and outliers in texture are
salient to the human visual system [13, 5], and the human
and computer vision literature show that discontinuities in
texture can elicit an edge perception similar to that triggered
by color discontinuities [1, 11, 19, 10].

We introduce a technique for selectively altering texture
variation to reduce the salience of an image region. Our
method is based on perceptual models of attention that hy-
pothesize that contrast in texture contributes to salience. We
review the filter-based model of texture discrimination and
the computational models of visual attention based on it
(Sec. 2) before presenting the following contributions:

Image manipulation with power maps. Higher-order
image features have been heavily used in image analy-
sis. For example, power maps encode the local average
of the response to oriented filters. We show how power
maps provide a flexible, effective representation for ma-
nipulating frequency content in an image. We introduce
a perceptually-motivated technique for selective manipula-
tion of texture variation (see Fig. 1).

Figure 1. High frequencies have been made more uniform
in this texture equalized image. False-color power maps
show the change in high-frequency distribution.

Psychophysical study of texture and attention. We con-
duct two user studies as experimental validation of our
technique’s effectiveness: A search experiment to measure
quantitatively the effectiveness of our technique at direct-
ing attention in an image and an eye tracking experiment to
record qualitative changes in fixations and scan paths.
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Figure 2. Texture discrimination and manipulation in 1D. Please see the detailed description in Sec. 2.1.

2. Background
2.1. Texture segmentation and discrimination

Texture discrimination and texture edge detection have
received much attention in computational and human vision
[1, 11, 10, 9]. These approaches compute local variations in
frequency content to detect texture edges. Most roughly fol-
low Malik and Perona’s biologically-inspired model [11],
illustrated with a 1D example in Fig. 2. The first stage of
most texture discrimination models is linear filtering with
multi-scale oriented Gabor-like functions (Fig. 2(b)). Be-
cause it is band-limited, the response to such a filter aver-
aged over a small neighborhood is usually zero; the positive
and negative lobes of the response cancel each other. The
signal must be rectified to obtain a meaningful measure of
the filter response in a neighborhood. Possible solutions
include full-wave rectification (absolute value) and energy
computation (square response); the absolute value is shown
in Fig. 2(c). Low-pass filtering (pooling) of this response
produces the local average of the filter response strength;
we call this the power map (Fig. 2(d)).

In addition to its applications in edge detection and
image segmentation, this approach to texture discrimina-
tion has inspired texture synthesis methods that match his-
tograms of filter responses [6]. We show how power maps
can be applied to a different problem: image manipulation.

2.2. Computational models of visual attention
Visual attention is driven by top-down and bottom-up

processes. Top-down mechanisms, which describe how at-
tention is influenced by scene semantics or the task, are im-
portant to understanding attention. However, in this paper,
we focus on image processing independent of content.

Bottom-up processes describe the effect of low-level
properties of visual stimuli on attention. A number of in-
fluential computational models of attention have explicitly
identified salient objects as statistical outliers in low-level
feature distributions [16, 14, 15]. Other well-known models
implicitly capture the same behavior [7].

Most models focus on the response to filter banks that
extract contrast and orientation in the image. Various non-
linearities can then be used to extract and combine maxima
of the response to each feature. These first-order salience
models capture low-level features such as contrast, color,
and orientation. Increasing or decreasing the presence of
outliers or large variations in the feature distribution for a

region of the image results in a respective increase or de-
crease in the salience of the region, as exploited by tradi-
tional image editing techniques [18, 12, 21].

In psychophysical experiments, Einhäuser and König
[3] observed salience effects due to texture variation that
could not be explained by first-order models. The second-
order model recently introduced by Parkhurst and Niebur
[13] captures these effects by performing the computation
of first-order models on the responses to a first-order filter
bank (what we call power maps) rather than on image in-
tensity. This strategy motivates our method of manipulating
power maps to alter contrast in texture.

3. Texture equalization
We introduce a post-processing technique to de-

emphasize distracting regions of a photograph by reduc-
ing contrast in texture. Informally, our goal is to invert
the outlier-based computational model of saliency to per-
form texture equalization. Recall that this model defines
salient regions as outliers from the local feature distribu-
tion. Our technique modifies the power maps described in
the previous section to decrease spatial variation of texture
as captured by the response to multiscale oriented filters. A
plethora of such filters have been developed for texture dis-
crimination. We use steerable pyramids because they per-
mit straightforward analysis, processing, and near-perfect
reconstruction of images [4, 17].

3.1. Power maps to capture local energy
We compute power maps using the texture discrimina-

tion approach of Sec. 2.1. Local frequency content is com-
puted using steerable pyramids, and a power map is com-
puted for each subband s. Because s is band-limited and has
local average is zero, we perform a full-wave rectification,
taking the absolute values of the steerable coefficients. We
apply a low-pass filter with a Gaussian kernel gl to com-
pute the local average of the response magnitude; we call
the resulting image sl the power map.

sl = |s|⊗gl (1)

We choose a variance σl for the Gaussian kernel that
is large enough to blur the response oscillation but small
enough to selectively capture response variations. We have
found that a value of σl = 5 pixels works consistently well.
Note that because the low-pass filter has the same size for



each subband, for coarser scales the power map averages
responses over a larger region of the image.

3.2. Log power manipulation

Because the computation of power maps includes an
absolute-value rectifying non-linearity, propagating modi-
fications on the power map to the image is not straight-
forward. In particular, linear image processing results in
negative values that are invalid power map coefficients; the
power map is computed from absolute values. While these
invalid coefficients do not interfere with analysis, for im-
age editing they must me scaled rather than summed. We
perform all subsequent processing in the natural logarith-
mic domain of the power map. An additive change to the
log power map translates to a multiplicative change to the
original steerable pyramid coefficients.

3.3. Reducing global texture variation

The power maps capture local frequency content in the
image. High-pass filtering of the power maps reveals the
spatial variation sh of frequency content over the image. Re-
call that this variation is defined for each subband s.

sh = ln(sl)− (ln(sl)⊗gh) (2)

We have experimented with different values of σh for
the Gaussian kernel gh. In contrast to the low-pass gl , the
high-pass filter must scale with the size of the subband such
that if it is translated to image-space, it is the same at each
pyramid level. We have found that a value of σh = 60 pixels
for the finest subband works consistently well. We have
found that the technique is robust to this choice and that the
value of σh has a small effect on the final output.

To reduce texture variation in the image, we remove
some portion of the high frequencies of the power maps,
which is a trivial image processing operation. However, we
must define how a modification of the power map translates
into a modification of the pyramid coefficients. Recall that
we are working in the log domain to perform multiplicative
modification to the power map and steerable-pyramid coef-
ficients. A subtraction on the log power map corresponds to
a division of the linear coefficients:

s′ = se−ksh (3)

Values of k = 1,2,3 to work well. At the boundary be-
tween low and high values of the power map, the high-pass
of the log power map goes from negative to positive, re-
sulting in a scaling up the coefficients on the low side and
scaling down on the other side (Fig. 2 (g) and (h)).

Clamping. Uniform regions correspond to zero values of
the power map. When adjacent to highly-textured regions,
they result in extreme high values of the high-frequency of

Figure 3. Highlights in the leaves and other distractors
prevent clear foreground/background separation in the orig-
inal photograph. Texture equalization de-emphasizes these
distractors, increasing salience of the tiger.

the power map sh, resulting in a large applied scaling fac-
tor that can amplify the small amount of noise present in
uniform regions of the original subbands. To prevent such
artifacts, we use a simple non-linearity to clamp isolated
extreme values in the scaling (high-pass response) map to a
fraction of the maximum:

s′h =
csh

c+ sh
(4)

where c = kc max(sh). In practice, we have found that a
value of kc = 0.5 works well for most natural images.

3.4. Correcting first-order effects
Our technique smoothes the spatial variation of local fre-

quency content. However, we found that the non-linearities
involved in clamping and log manipulation can also result in
changes in first-order properties such as overall sharpness.
We correct for this first-order change by re-normalizing
each subband to the average of the original:

s′ = s′
mean(|s|)
mean(|s′|)

(5)



Figure 4. Example search stimulus and close-ups of de-emphasis techniques applied to a stimulus object.

This is similar in spirit to Heeger and Bergen’s multiscale
texture synthesis [6]. We also perform a histogram match on
the pixel values from the input to the reconstructed output.
This ensures that the average intensity of the image is not
altered by our technique.

4. Results

We have implemented our texture equalization method
in Matlab and have applied it to a variety of images. Fig. 1
shows a texture equalized photograph. The false-color vi-
sualization of the power maps shows how texture variation
has been reduced and boundaries between regions of high
and low texture variation softened.

For selective de-emphasis, we use an alpha mask and
blend processed and unprocessed images. In Fig. 3, we
reduce texture variation in the leaves surrounding the tiger,
improving foreground/background separation. Note that we
have applied our technique to only the luminance channel,
leaving the chrominance unchanged. This decision is mo-
tivated by the low sensitivity of human vision to high fre-
quencies in chrominance.

At first glance, one might guess that texture equaliza-
tion simply adds uniform noise. Our technique amplifies
existing high frequencies to make texture variation uniform.
This strategy preserves key features of the objects in the im-
age while adding white noise imposes an overall graininess.

Gaussian blur is an alternative de-emphasis technique
that can introduce depth-of-field effects. The reduced sharp-
ness can be undesirable, particularly if the distracting ele-
ment is at the same distance as the main subject. In addi-
tion, blur removes the high-frequency content of an image
region, which can emphasize the medium frequencies and
result in a more distracting object. (see Figs. 4 and 6.)
In contrast, equalization makes high-frequencies more uni-
form, creating a “camouflage” effect that masks medium-
frequency content. Gaussian blur and texture equalization
are complementary tools in an artist’s toolkit. Our technique
works well when the distracting region is already somewhat
textured. Blur works well when depth-of-field effects are
already present and medium frequencies are not distracting.

Please see the full-resolution, color images at http://
csail.mit.edu/˜sarasu/pub/texture05.

5. Psychophysical validation
We have conducted two psychophysical experiments to

evaluate the effectiveness of our de-emphasis technique: a
visual search task for quantitative validation and eye track-
ing for qualitative evaluation.

5.1. Visual search experiment
Saliency is commonly studied through visual search for

a target object in the presence of distractors. Subject re-
sponse time is a reliable indicator of target saliency [8]. We
recorded subject responses to unmodified images and those
in which texture had been equalized everywhere except for
the search target, finding that search time is reduced when
distractors are de-emphasized. We also used the search task
to compare Gaussian blur and texture equalization.

Experimental procedure. Data were collected from 12
volunteers. Each subject was shown a series of 45 stimulus
images at 1600× 1200 resolution. Each image depicted a
collection of objects arranged in a distinct layout on a uni-
form white noise background (Fig. 4). Grayscale images
were used to remove attentional bias for color. For each
layout, one of six conditions was randomly displayed:
Original. The unmodified image.
Texture-equalized. All parts of the image, except for the
search target, are texture equalized. To reduce texture vari-
ation, the following parameters were used: low-pass filter
σl = 5, high-pass filter maximum σh = 60, high-pass clamp-
ing factor = 0.5, and final scale factor ks = 2.
Gaussian-blurred. Blur of σ = {0.25, 0.50, 1.0, 1.25} pix-
els is applied to all parts of the images except the target.

Each subject was shown a search target before viewing
a layout and was instructed to locate the target and click
twice with the mouse: once immediately upon locating the
object and again on the object itself. Time to fixation was
approximated by the first-click response time. The second
click was used to verify that the target was found. A fixa-
tion screen was displayed between consecutive images, and



Condition Mean response time Std. Dev.
Unmodified 3.7594 s 0.8422
Texture-equalized 2.9160 s 0.6698
Blurred, σ = 0.25 4.0446 s 0.9519
Blurred, σ = 0.50 3.9288 s 1.0339
Blurred, σ = 1.00 3.4382 s 0.6171
Blurred, σ = 1.25 3.1234 s 0.6193

Table 1. Mean response times for search experiment. Tex-
ture equalization results in a speed-up of more than 20%.

subjects were required to click on the center of the screen to
proceed; this ensured that all mouse movements originated
at the center of the screen for consistent timing. Trials in
which the users second click did not match the search tar-
get were discarded from our timing analysis. To prevent a
learning effect, no subject was shown the same layout twice.

Analysis. The mean response time for the texture equal-
ized images was 2.916 seconds, compared to 3.7594 sec-
onds for unmodified images. This 22.43% speed-up sup-
ports our hypothesis that de-emphasizing distractors by re-
ducing texture variation increases salience of target objects.

Two-way ANOVA tested the statistical significance of
variables layout and condition. For layout, p ≤ 0.1985;
as expected, this does not achieve the level of significance.
For condition, p ≤ 0.0487, indicating that it is a statisti-
cally significant variable. A two-sample t-test comparing
the data collected in the unmodified and texture-equalized
conditions indicated that the null hypothesis can be rejected
at the 5% significance level; the difference in timings was
not due to chance.

The experiment shows that texture equalization of
strength ks = 2 produces a change in salience stronger than
Gaussian blurring with σ = 1.25. It may come as a surprise
that a Gaussian blur with σ < 0.5 increases response time.
We hypothesize that for highly-textured images, the elimi-
nation of high frequencies removes the “camouflage” effect
and enhances the influence of medium frequencies, object
structures (see Fig. 4).

5.2. Fixation experiment

Experimental procedure. Using an eye tracker, we stud-
ied how 4 subjects’ gaze paths and fixations changed as
they viewed a series of photographs before and after mod-
ification with our technique. Two versions each of 24 pho-
tographs were displayed in random order at a resolution of
1024×768 pixels. Subjects were asked to study each for 5
seconds while their eye movements were recorded with an
ISCAN ETL 400 table-mounted eye tracker.

Discussion. We analyzed the eye tracking data by visual
inspection of scan paths [20, 2] Fig. 5 shows how the

Figure 5. Change in scan paths after texture equalization.
Red circles mark fixation points; duration is indicated by
the circle radius. See webpage for full-resolution images.

salience of regions can be increased by equalizing the sur-
rounding texture. These emphasized regions attract and
hold subjects’ fixations. Although this study included fewer
subjects, the qualitative results are promising and support
our hypothesis that texture variation is a salient feature. An
extended study is future work.

6. Conclusions
Inspired by bottom-up models of visual attention, our

texture equalization technique reduces the salience of dis-
tracting image regions by reducing variation in texture. We
use steerable pyramids to define a set of power maps cap-
turing local frequency content and provide a perceptually-
meaningful tool for image manipulation that complements
other post-processing methods such as Gaussian blur. Our
technique is effective for textured image regions, while blur
works best when small depth-of-field effects are already
present and medium-frequency content is not distracting.

Future work includes the application of such image-
manipulation methods to the study of bottom-up visual at-
tention. Our search experiment provides a first data point,
but more are needed. We plan more extensive experiments
to study the variables that contribute to a technique’s ef-
fectiveness. The combination of first-order features (e.g.
sharpness and brightness) with our second-order features
raises the challenging task of appropriate calibration. Fi-
nally, image processing in the texture feature space has po-
tential applications in image in-painting and restoration.
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