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ABSTRACT

KEYWORDS: Reinforcement Learning; Deep Learning; Representation Learning;

Variational Autoencoders; Projection Networks; Q-networks; Video

Prediction; Jacobian Exploration Bonus

In multi-task reinforcement learning problems, model-based approaches are often ignored

over model-free approaches like Deep Q-Networks (Mnih et. al). However, in most cases,

having the ability to build a robust model of environment can be very useful. We analyze

this problem on two different levels: 2D Map-like environments (Fully-observable) and

3D Minecraft-like environments (Partially-observable). For the fully-observable scenario,

we present a novel method to facilitate exploration in multi-task reinforcement learning

using deep generative models. We supplement our method with a low dimensional

energy model to learn the underlying MDP distribution and provide a resilient and

adaptive exploration signal to the agent. To extend this concept to the more useful,

partially-observable case, we present a new architecture that replaces convolutional

networks as a more effective way to implicitly model 2D projections of 3D environments.

We discuss the mechanisms that allow it to implicitly model both the 3D environment

and it’s dynamics. We evaluate our method on a new set of environments and provide an

intuitive interpretation of our results.
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CHAPTER 1

INTRODUCTION

For a long time, reinforcement learning didn’t leave the domain of environments with

small state spaces. In fact, for a long time, stateless machines, aka. multi-armed bandits,

were the main topic of research.

Even with large state spaces, the function approximation algorithms before the age of

neural networks were rather limited in flexibility. The state space had to be carefully

observed and the parameters tuned with that context in mind. For good reason, tackling

incredibly complex high dimensional state spaces like a racing game or the game of Go,

was seemingly impossible at the time.

With the advent of the latest revision of neural networks, there came a wave of new

algorithms incorporating neural networks for complex function approximation.

Neural networks could, with little or no tuning, fit incredibly complex functions like those

involving dynamics simulations (3). Given that the most important part of model-free

reinforcement learning is typically the Q-function (which is also complex and usually

lacks global structure), the earliest applications used a neural network to approximate

the Q-function in Fitted Q-iteration (17).

Then, with the next big wave in the machine learning industry, deep learning, ap-

plying it to Fitted Q-iteration seemed to be the obvious move. However, the fickleness

of deep neural networks meant that, most of the time, the network diverged from the

non-stationary target function.

Soon, a ground-breaking research paper by DeepMind Labs, titled "Playing atari

games with Deep Reinforcement Learning" used a convolutional deep neural network to

understand and play 8-bit Atari games by observing the screen pixels.

A barrage of modifications to the Deep Q-Network architecture followed, one of the

most prominent of which is the paper titled "Action Conditional Video Prediction" which



is what the second part of this thesis is based on.

While Q-networks solved the problem of function approximation, the new problem was

now about finding efficient ways of searching the extremely large state-spaces. Some of

the best methods in this regard, were exploration bonuses (3) and a prioritized replay

memory (16). This is where our thesis attempts to apply model-based methods to rein-

forcement learning. By attempting to fit a model to the dynamics of the environment, we

demonstrate that in some domains, it is possible to significantly improve performance.

Since the architectures proposed here overwhelmingly deal with fitting a model to spatial

environments, both fully-visible (the agent knows it’s location, like a 2D Map-based

game similar to Pac-man) and partially-visible (the agent is unaware of it’s actual

location, like a 3D Minecraft game), the model-based approach is referred to as spatial

reasoning.

In this thesis, we try to evolve spatial reasoning approaches to multi-task reinforcement

learning. So far, there has been extensive work on the problem of multi-task reinforce-

ment learning, which is generally used to describe the simultaneous learning of multiple

distinct environments/tasks. There are generally three types of reinforcement learning

that involves multiple tasks:

1. Cases that require the simultaneous learning of multiple tasks where each task is
clearly identified as a different task.
For example, A neural network with multiple heads being trained to play SeaQuest,
Breakout and Montezuma at the same time.

2. Cases that require the simultaneous learning of multiple tasks where the agent is
unaware of which task it is solving currently.
For example, there are two sets of possible rewards and transition probabilities.
One of them is picked at random and the agent needs to solve it with no information
about which one was picked.

3. Cases that require the simultaneous learning of one or more tasks and then require
the same agent to solve another completely different task
For example, an agent that has to learn to play Pong and SeaQuest, and then
extend this knowledge to learn Space Invaders from scratch.

In the first part of this thesis, we focus on model-based methods to promote explo-

ration in the anonymous multi-task domain (case 2). In particular, the domain used for

comparison is the Map-like environment domain (definition below).

We attempt to extend the ideas presented in (2) by applying it to a larger state space:

a set of grid-worlds, one of which is randomly chosen as the underlying environment.

1



Then, we extend this work by replacing the simplistic RBM model with a variational

auto-encoder that can learn and generalize much more complex worlds.

Work done so far also does not focus on problem identification, i.e. the agent needs to

explore not only states that maximize reward but also those that maximize information

gain (about the rest of the state space). In certain worlds, there are certain indicator

states that have low reward but, like a signboard, provide invaluable information that

can lead the agent to following a faster path to the goal state.

We propose a method to find these special states and assign a bonus reward in order to

make the agent visit these states more often.

The second part of this thesis explores spatial reasoning models for the partially-

observed scenario.

For example, in a Minecraft game, if we define the state space as the position/orientation

of the agent, the problem setting is essentially a POMDP, with the observation being a

2D projection of the 3D world. The internal state is invisible to the agent.

So far, there have been no significant model-based attempts to approach POMDPs

where the observation is a projection of a higher dimensional space Most current ap-

proaches depend on the 2D features present in each scene. Each set of frames are treated

as a set of independent pixels rather than as different views of the same 3D scene. In

order to apply spatial reasoning to improve benchmarks on the worlds such as the

I-world, we consider the original process of how the observations were generated:

In Computer Graphics, a method known as "ray tracing" is one of the most popular

methods used to project a 3D scene onto a 2D plane. In keeping with this idea, the

network proposed in this thesis uses a memory unit (a set of parameters that represent the

color and shape of the objects in the scene) to model the scene and a neural network to

model the interaction (intersection unit) between the agent’s current position/orientation

and the memory unit. The Motivation section explains the ideas behind the formulation

of the ACPNN (Action-Conditional Projection Neural Network). We also present various

modifications to the standard ACPNN framework and the effects on it’s performance.

2



CHAPTER 2

RELATED WORK

Our Spatial Reasoning-based algorithm for 2D Fully-observable Map-like environments

(Multi-task, 3.1.1) improves upon existing methods like (2) by proposing an exploration

bonus to allow the agent to learn more optimal paths. There is extensive research in

the field of exploration strategies for reducing uncertainty in the MDP. Rmax, E3 are

examples of widely used exploration strategies. Bayesian Exploration Bonus assigns a

pseudo reward to states calculated using frequency of state visitation. Thomson sampling

samples an MDP from the posterior distribution computed using evidence(rewards and

transition probabilities) that it obtains from trajectories. We follow a similar approach

to sample MDPs. However, these algorithms assume there exists a single stationary

MDP for each episode (which is the case in Single-Task RL or STRL). Our algorithm

addresses the Multi-task RL (or MTRL) problem where each episode uses an MDP

sampled from an arbitrary distribution on MDPs. Contrary to the STRL exploration

strategies, our exploration bonus is designed to recognize states that have low rewards

but are potentially useful for the agent to improve its certainty about the current MDP.

Recent advances in MTRL and Transfer Learning algorithms, like Value Iteration

Networks(9) and Actor-Mimic Networks(21), attempt to identify common structure

among tasks and generalize learning to new tasks with similar structure. In the context of

MTRL and Transfer Learning on environments that give image-like observations, Value

Iteration Networks (9) employ Recurrent Neural Networks for value iteration and learn

kernel functions fR(x) and fP (x) to estimate the reward and transition probabilities for

a state from its immediate surroundings. This has the effect of easily generalizing to

new tasks which share the same MDP structure(R and P for a state can be determined

using locality assumptions). Our work, unlike transfer learning algorithms, does not

attempt to learn common structure across MDPs. Instead, we attempt to efficiently

use a model-based algorithm to learn a distribution over the possible structure of the

environment, and then use this model to boost the agent’s performance.



Another class of MTRL algorithms focuses on deducing the current MDP using Bayesian

Reasoning. Multi-class models proposed by (12) and (2), attempt to assign class labels to

the current MDP given a sequence of observations made from it. (2) use a Hierarchical

Bayesian Model(HBM) to learn a conditional distribution over class labels given the

observations. The agent samples an MDP from the posterior distribution in a manner

similar to Thomson sampling, and then chooses the action. We follow the same proce-

dure for action selection, but incorporate exploration bonuses into it as well.

(6) proposes a novel method using Deep Recurrent Memory Networks to learn policies on

Minecraft multi-task environments. They used a fixed memory of past observations. This

model successfully learns policies on I-shaped environments where the color of a marker

cell determines the goal location. However, the agent was limited to 90o turns and moved

in 1 block steps, which implies that the approach is to treat the frames as a sequence

of unrelated images. Our approach, in contrast, attempts to tie all the frames together

by considering them as different views of a latent higher dimensional collection ofobjects.

Our Spatial Reasoning model for 3D Video Prediction attempts to address this issue

by proposing a structure that models both the scene elements and it’s dynamics.

There have been previous (somewhat successful) attempts to visually represent 3D

systems. These include the EM approach followed by (13) that assumes a linearly

transformable internal representation that can model the the shift in the viewing angle.

Another significant method is that of Transforming Auto-encoders(20) which uses a

fully convolutional auto-encoder that also learns a probabilistic affine transformation

of the intermediate representation. While the latter method also focuses on 3D image

reconstruction, it’s performance is limited by the use of a de-convolutional network

to construct the image. In addition to this, Transforming Auto-encoders do not deal

with learning a state-action embedding or with occlusion (the tests only had a single

unobstructed object).

Another recent method that has promising results, in representing projections of higher

dimensional objects, is Deep Symmetry Networks(19). Deep Symmetry Networks work

with a generalized form of the convolutional neural network to apply kernels to learn

filters in any Symmetry Group. However, while the network can learn a host of transfor-

mations that normal convolutional networks can’t (like rotation and scaling), it is still

limited to treating linear motion under 3D perspective as an affine transformation of the

4



objects in image space. Contrary this method, our approach attempts to learn a set of

hidden parameters that represent the latent 3D scene itself.

5



CHAPTER 3

MOTIVATION

This thesis covers multiple approaches that were created to implement spatial reasoning.

From the simplest to the most complex, these are:

1. RBM-based reasoning for Map-like environments.

2. Deep Generative Models for Map-like environments.

3. Projection Networks for 3D video prediction.

3.1 RBM-based reasoning for Map-like environments

Definition 3.1.1 Map-like environments

In the context of this thesis, Map-like environments are a class of environments where,

after an action, an agent receives information not only about the rewards (rst,st+1)

and transition probabilities P (s
′
, st+1) of the target state st+1 but also the rewards and

transition probabilities of the states adjacent to the target state S
′
= {s|s ∈ adj(st), st ∈

S}

Note that this definition also requires a symmetric relation among the states which

represents state adjacency adj(s, s′). For example, in a grid-like world, cells that are

next to each other are defined as adjacent.

Intuitively, this model can be applied to environments where some information about

the surrounding states can be gathered (like a robot with GPS and a camera moving

around a map). In the environment this thesis considers, the L-world, at every time step

the agent is given the rewards and transition probabilities of adjacent states.



Since a small subset of information about the system’s dynamics (P (.) and R(.)) are

available, the logical next step is to reason about the rest of the parameters that make up

P (.) and R(.).

The RBM (4) is especially good at this task since it develops an unsupervised probability

model over all the outputs and assumes a hidden internal state to represent each possibil-

ity.

Hence, the RBM is used to predict the unseen parameters from the seen parameters (the

challenge mitigated here is that the set of seen parameters need not be the same in every

step and episode).

Once the unseen parameters are predicted, then methods like Dynamic Programming,

Value Function Iteration etc, may be applied to converge to the final value function.

3.2 Deep Generative Models for Map-like environments

The deep generative model was first proposed as a solution to the many shortcomings of

the above method.

3.2.1 Complexity

The standard RBM lacks the ability to handle complex patterns/environments which

look less like rigid binary grids and more like real world images. To handle this, we use

deep Variational Auto-encoders which, like RBMs, produce a representation Z from an

image/input X .

The issue here is that the image is partially observed and the original VAE (10) is

designed for images where every pixel has a definite value. In order to get around this,

we propose a simple modification made to the VAE objective function that allows it to

treat missing pixels in a neutral manner (no information is derived from blocked/masked

pixels).

7



3.2.2 Handling Indicator States

Definition 3.2.1 Indicator States

Indicator States are defined as states that have no reward/relatively small reward but

which when observed provides non-trivial information about the other parts of the Map-

like environment. Intuitively, the indicator states are like a signboard that the agent can

use to improve it’s current belief of the other states.

In cases where indicator states are present close to the agent’s trajectory and provide

information that the agent can use to shorten it’s journey (no need to visit every possible

goal location), the optimal path for the agent is through the indicator state.

The current formulation simply uses the seen states to derive information about the

unseen states. It does not actively seek states which provide useful information about the

other states.

In order to mitigate this, a reward bonus is developed that is provided to a particular

location/state in a Map-like environment, based on the utility of the state in determining

the other states.

3.3 Projection Networks for 3D video prediction

3.3.1 Video Prediction

Video Prediction is an up and coming field where deep convolutional networks try to

predict an entire frame of a game from it’s past frames. Reconstruction of the image

from the representation is typically done using a de-convolutional network

Barring some exceptions, a deep network typically has to learn the rules of a game to

predict successive frames accurately. The ability to predict frames in the future opens

up a lot of possibilities for RL agents as they can simulate possibilities from every state

before having to actually select an action at that point.

The latest in this field is the paper on Action-Conditional Video Prediction which uses

8



Figure 3.1: Action Conditional Video Prediction for ATARI games - This architecture
was built to predict frames of the ATARI series of games/

a complex Convolutional-Deconvolutional network with an action-dependent linear

transform on the intermediate representation vector.

The shortcomings of this method include the limitations of the convolutional network.

This architecture works well for 2D games like SeaQuest and Freeway where the succes-

sive positions of 2D sprites move linearly between frames, rarely changing structure or

form (the 2D cars look exactly the same in every frame and move a well-defined constant

amount each frame).

However, when we take the problem of video prediction in the 3D object case, there

are problems that are immediately evident from the variable nature of the motion in 3D

environments. The perspective projection (which is the most common) of a 3D system

has very complex motion in pixel coordinates even though the motion is fairly simple in

3D space.

Since convolutional systems were originally built to identify patterns in a position-

invariant manner, it makes no efforts to understand objects that change form-factors

on the screen when they move, but implicitly are simply projections of constant (fixed

shape) objects.

The convolutional network only looks at the 2D projected shape and develops filters for

it.
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Figure 3.2: 2D Motion A comparison of images that illustrates the simple translational
motion present in the ATARI game: SeaQuest

Figure 3.3: 3D Motion A comparison of images that illustrates the complex motion
present in Minecraft

When the camera moves and the object changes form factor, the filters used by the

system to recognize the same object will change. In this manner, the neural network has

to learn all possible forms of the object and each one’s transformation.

3.3.2 Ray Tracing-inspired Network

Computer Graphics prescribes a standardized method to convert from 3D objects to a

2D projected image. Ray Tracing is a general method that can be applied to any form of

projection depending on how the rays are constructed.

Intuitively, a neural network which explicitly models the 3D to 2D projection by

mimicking the process of ray tracing will be able to model motion better.

This principle is similar to when convolutional networks were first introduced: weight

sharing across filters would logically help learn translation-invariant patterns by general-

10



ising weights in one spot to the entire image.

This logic is the motivation for proposing such an architecture. Note that in this

thesis, we only propose an architecture for the deconvolutional part (convert from the

intermediate representation Z to image) while the convolutional network that converts

frames to the intermediate representation remains largely the same (except that the

intermediate representation now has two parts: State S and Context T .

To come up with the structure, some simplifying assumptions are made:

1. The world has simple solid colors (like Minecraft). A more complex architecture
could possibly work with other worlds too, but given that this is the first-of-it’s-kind
architecture, we start out with simpler networks.

2. The motion is close to continuous: If the agent turns in 90 degree increments, the
system will be unable to find correlations. In our experiments, the agent turns in
30 degree increments.

3. For our ACPNN architecture, the start position is always the same. The agent
essentially does not use input at this stage, but rather attempts to fit it’s model to
predict the outputs. In Input-ACPNN, we use a convolutional network to process
the input and predict both the state of the unit and the network.

A key feature here is the assignment of uniformly varying coordinates to each pixel

in the image. This enforces the linearity of ray creation (during ray tracing) and helps

immediately generalize the learning at one pixel to all others.

As shown in the figure, the structure is such that we imitate the process of ray tracing.

The current state (position and orientation) and the pixel coordinate is fed to a linear

model to create the ray.

Although we expect something like a ’ray’ to be created here, the network may converge

onto some other form of useful linear element (we call this the ray element R).

The network maintain a set of static memory cells (which are called scene elements),

each of which contains one 4-element color C and a vector representation V (the vector
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representation intuitively represents it’s shape/location).

The ray element R along with the memory cell representation V is then passed

through the network to produce an attention A. This attention represents the significance

of this scene element at this pixel given that the agent is in this state (in our ray tracing

model, this is the intersection part).

A sum of all the scene element colors weighted C by their attention A gives the final

color for the pixel.

While the initial state is assumed to be all 0s for the ACPNN model, the assumption

is that it always starts out at the same spot. However, if we are to create a vector rep-

resentation for a given scene, we need to include a component that uses the previous

frames to predict the current state of the agent (initial state S0) and the nature of the

environment (scene context T ).

This is implemented in the Input-ACPNN model, which contains a convolutional

network that produces S0 and T . The motivation here is that, if the network is trained

end-to-end, the input network will learn the filters required on the first T − 1 frames to

extract information that will allow the output projection network to successfully simulate

the scene from time T onwards. Since the only link (similar to an auto-encoder) between

the input and output networks is the state S0 and context T vectors and only T (not S0)

does not participate in the intersection unit, the context T will be a vector representation

of the scene.

This architecture is simply an auto-encoder, but modified to work with entire 3D envi-

ronments rather than just the scene.
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CHAPTER 4

BACKGROUND

This thesis assumes the reader has some background in Neural Networks. The following

sections give some background on Reinforcement Learning and advanced Machine

Learning concepts.

4.1 Reinforcement Learning

Reinforcement Learning is a branch of Machine Learning distinct from the Supervised

and Unsupervised paradigms, that deals with the control of an agent that has a well-

defined state, can take actions to change this state, and receives a reward signal that it

seeks to maximise.

Reinforcement learning differs from standard supervised learning in that correct in-

put/output pairs are never presented, nor sub-optimal actions explicitly corrected. Fur-

ther, there is a focus on on-line performance, which involves finding a balance between

exploration (of uncharted territory) and exploitation (of current knowledge). A Markov

decision process is a 5-tuple (S,A, P·(·, ·), R·(·, ·), γ) , where

• S is a finite set of states,

• A is a finite set of actions (alternatively, As is the finite set of actions available
from state s s)

• Pa(s, s′) = Pr(st+1 = s′ | st = s, at = a) is the probability that action a in state
s at time t will lead to state s′ at time t+ 1,

• Ra(s, s
′) is the immediate reward (or expected immediate reward) received after

transitioning from state s to state s′, due to action a

• γ ∈ [0, 1] is the discount factor, which represents the difference in importance
between future rewards and present rewards.

(Note: The theory of Markov decision processes does not state that S S or A are

finite, but the basic algorithms below assume that they are finite.)



A standard environment is one where the agent receives a reward after taking an

action at at time t.

Further in this thesis, we define a Map-like environment, an appropriate simplification,

which provides the agent information about adjacent states, i.e their rewards and transi-

tion probabilities.

4.2 Q-learning

Q-learning is one of the most basic algorithms used in RL. It’s off-policy nature (the

agent can learn from experience that was generated while following a different policy)

gives it a distinct advantage that has allowed Q-learning to be applied to a wide variety

of applications.

In this thesis, Q-learning serves as the base algorithm for Deep Q-networks, which are

used as a part of the ACPNN framework to incentivise exploration.

Definition 4.2.1 Q-value The Q-value for a state, action pair (for an episodic task) is

defined as the expected discounted return if an agent takes that action from that state

and follows the same policy for the rest of the episode.

Q(s, a) = E(
∞∑
i

γi(R(si, π(ai))))

In Q-learning, the Q-values are calculated from a set of transitions (st, at, rt, st+1) using

the following equations:

Q(st, at) = rt + γ ·maxa(Q(st, a))
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4.3 Value Iteration

Value Iteration is a technique that utilizes the properties of the Bellman equations that

recursively define the value function v(s).

By applying the Bellman equation repeatedly, the vaule function vt(s) eventually con-

verges to the correct values. The exact number of iterations depend on the structure of the

state space. However, there are plenty of heuristic bounds that are useful in determining

the terminal point.

Algorithm 1 Pseudo-code that demonstrates the process of projecting a 3D scene onto a
2D representation

1: procedure VALUEITERATION(px, py)
2: v(s)← 0∀s
3: while dovt(s)− vt+1(s) < threshold
4: vt+1(sn) =

∑
a

∑
sm

[rt(sm, a) + γ.vt(sm).p(sm, a, sn)]

4.4 (Neural) Fitted Q-Iteration

Fitted Q iteration, typically used with a neural network (but can be used with other

models too), is a simple method developed to stabilise the neural network used for

approximating the Q-value. Instead of tabular Q-learning’s on-line approach that updates

each Q-value individually, Fitted Q-iteration gathers all the samples of (st, at, rt+1, st+1)

and then applies supervised learning to train the network on the targets. The target for

iteration t is defined as (17):

Qt(st, at) = Qt−1(st, at) + γ.maxaQt(st+1, a)
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4.5 Gaussian-Binary Restricted Boltzmann Machines

RBMs have been used widely to learn energy models over an input distribution p(X).

RBM is an undirected, complete bipartite, probabilistic graphical model with Nh hidden

units, H , and Nv visible units, V . In Gaussian-Binary RBMs, hidden units are binary

units(Bernoulli distribution) capable of representing a total of 2Nh combinations, while

the visible units use the Gaussian distribution. The network is parametrized by edge

weights matrix W between each node of V and H , and bias vectors a and b for V and

H respectively. Given a visible state v,

the hidden state, h, is obtained by sampling the posterior given by

p(h|v) =
1

1 + exp( WTv + b)

Given a hidden state h, visible state v is obtained by sampling the posterior given by

p(v|h) = N (WTh + a,Σ)

Since RBMs model conditional distributions, conditional distributions(p(v|h) and

p(h|v)) have a closed form while marginal and joint distributions(p(v), p(h) and p(h,v))

are impossible to compute without explicit summation over all combinations.

Parameters are learnt using contrastive divergence (4). Learning Σ, however, proved

to be unstable (4) and hence, we treat σ as a hyperparameter and use Σ = σ ∗ INv .

4.6 Variational Auto-encoders

Variational Auto Encoders(VAE)(10) attempt to learn the distribution that generated the

data X, p(X). VAEs, like standard autoencoders have an encoder, z = fe(x), and a

decoder y = fd(z) component. Generative models that attempt to estimate p(X) use a

likelihood objective function, pθ(X) or log pθ(X). More formally, the objective function
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can be written as

p(x) =

∫
Z

p(x|z; θ)p(z) ≈
∑
z∼Z

p(x|z; θ)p(z)

p̂(x) ≈
∑
z∈D

p(x|z; θ)p(z) whereD = {z1, z2 . . . , zm} and zk ∼ Z ∀k

where p(x|z; θ) is defined to be N (f(z; θ), σ2I).

Gradient-motivated learning requires approximation of the integral with samples. In

high-dimensional z-space, this could lead to large estimation errors as p(x|z) is likely

to be concentrated around a few select zs and it would take an infeasible number of

samples to get proper estimate. VAEs circumvent this problem by introducing a new

distribution Z ∼ N (µφ(z), σφ(z)) to sample D from. To reduce parameters, we use

σφ(z) = c · I. These two functions are approximated with a deep network and form

the encoder component of the VAE. pθ(X) is represented using the sampling function

f(z; θ) where z ∼ N (0, 1) and f(z) forms the decoder component of the VAE. After

some mathematical sleight of hand to account for Z in the learning equations provides

an intuitive understanding of these equations), we obtain the following formulation of

the loss function

E = DKL(N (µ(X), σ(X)),N (0, 1)) +
N∑
k=1

‖(yi − xi)

σ

2

‖

where the KL-divergence term exists to adjust for importance sampling z from Z instead

of N (0, 1).

4.7 3D Scene Generation

Classical Computer Graphics typically deals with two broad areas: Projection and Pixel-

Shading.

The former, "projection", deals with transforming the visible 3D scene into the viewport

of the camera (aka, a 2D representation). In an abstract sense, projection simply reduces

the dimensionality by performing an irreversible transformation to a simpler space (13).

The latter, pixel-shading, deals with calculating the color of each pixel in the final scene.

For the purposes of this thesis, we ignore this part (all surfaces in our world have a
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distinct, solid color) as it’s irrelevant to our objective.

Projection, in practice, is mostly done in two different modes

1. Orthographic Projection: Orthographic projection (or parallel projection) involves

Figure 4.1: Orthographic Projection

directly projecting every vertex along the perpendicular onto the target plane.
This projection maintains the relative distances between points, but for practical
purposes produces an extremely unnatural image of the scene. the fact that
perspective distance to the plane does not affect the projection of a vertex makes it
impossible to pick up depth cues through parallax.
These reasons, combined with the fact that both video games and real-life cameras
are represented by the perspective projection, justify why this thesis focuses mostly
on the perspective projection.
However, the demonstrated architecture can just as easily be used for any projection
with certain properties (which will be stated soon).

2. Perspective Projection:

A simple form of the perspective projection simply transforms the 3D point
into the tangent of the angle made by the point to the plane along X and Y axes.
The following diagram presents a simple definition of Weak Perspective Projection:

The following equations outline the transformation from camera-space 3D coordi-
nates (Xc, Yc, Zc) to pixel space (with the vanishing point as the origin):

Px =
Xa

Za
+ 1

2
.W

Py =
− Ya
Za

+ 1

2
.H

If the origin (0, 0, 0) and the Z-axis are not the camera position and direction
respectively, an additional linear transformation is required to get the world-space
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Figure 4.2: (Weak) Perspective Projection

coordinates into camera-space (commonly referred to as the view matrix)

(Xc, Yc, Zc) = Mv.(Xw, Yw, Zw)

A third, more important projection is the (Strong) Perspective projection. Although

we find the strong perspective projection widely used in games, for simplicity, this thesis

limits itself to the weak perspective projection.

The Strong Perspective projection maps a finite frustum onto screen coordinates.

Unlike Weak Perspective, Strong Perspective makes the additional assumption that points

beyond a certain distance from the screen plane and points within a certain distance do

not appear on the screen. The method accomplishes this by ensuring that the transformed

screen space z coordinates of the point in the range [0, 1] are valid, while others are

clipped (omitted) from the screen.

While Strong Perspective is a more efficient and realistic model used by most 3D games,

it is also unnecessarily complicated for the purposes of this thesis. To prove that this

technique offers promising results, only the Weak Perspective transform is enough.
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Figure 4.3: Illustration of Perspective Projection FOV = 90o

For a fixed vanishing point, E, the weak perspective projection of points
H and I is simply the intersection of the line HE and IE with the plane
MN perpendicular to the camera direction and at a distance of unity from
the camera (B and F ). Note M and N (at x = −1 and x = +1 respectively)
represent the far ends of the projected image and that B and F represent the
location of H and I on the projected image with respect to M and N

4.8 Ray Tracing

Ray tracing (or more simply, ray casting) is a technique where a ray corresponding

to each of the pixels of the final image is traced through a 3D scene and is tested for

intersection with an object.

Every pixel in an image corresponds to a ray in 3D space which depends on the projection

mechanism used for this particular system.

The algorithm to form the ray uses the inverse of the perspective projection algorithm.

The general one-step ray tracing algorithm works as follows:
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Algorithm 2 Pseudo-code that demonstrates the process of projecting a 3D scene onto a
2D representation

1: procedure RENDERPIXEL(px, py)
2: ray← GetRay(pixel_x, pixel_y)
3: curr_depth←∞
4: curr_intersection← null
5: for doobj in objects
6: intersection← RayObjectIntersect(ray, object)
7: if intersection.depth < curr_depth then
8: curr_depth = intersection.depth
9: curr_intersecion = intersection

10: if currintersection 6= null then
11: return curr_intersection.color

Algorithm 3 Pseudocode that demonstrates the process of producing rays in the context
of perspective projection

1: procedure GETRAY(px, py)
2: hx ← 2. px

W
− 1

3: hy ← −2.py
H

+ 1
4: return (hx, hy)
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CHAPTER 5

FULLY-OBSERVABLE SPATIAL REASONING

5.1 RBM Model

5.1.1 Problem Statement

The first iteration of the concept of spatial reasoning involved a simple problem statement.

The initial test problem used the special L-world which was a set of 2 binary 2x2 fields

where the non-black cells were obstacles.

Figure 5.1: L-world - Red cells denote open space while Green cells denote obstacles. In
both cases, the source is the top-left while the destination is the bottom-right.
The agent can only see a 3x3 square area around it

The agent in the L-world can only see a small 3x3 field around itself at any point of

time and it progressively explored the world as it moves through it.

For each episode, the actual world that the agent played was randomly chosen from the

set of 2 possibilities in the L-world. Since the policy followed for each of the two worlds

are completely different, standard methods like Q-learning, which work without context,

fail in this context.



5.1.2 Approach

In order to ensure the available data is used completely, a probability based approach is

used to reason about the unseen parts of the world using information about the parts that

have been observed.

The framework used by this approach (and also by the Deep Generative Model) is

explained in Figure 5.2

Figure 5.2: Spatial Reasoning Framework for Map-like environments

In this abstract architecture, the model used here is a binary RBM (more powerful

models can be used for more complex environments). The binary RBM spans the entire

grid and each cell in the grid is treated as a separate unit in the output of the RBM.

At each stage, the RBM is sampled using the currently visible portion of the environment.

(For the invisible parts, the state is decided by sampling using only the bias of each cell).

5.1.3 Results

The RBM model tested against a Q-learning agent with no model as a baseline, to test

for the gains by having a model.
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Figure 5.3: RBM vs. No-Model

5.2 Deep Generative Model

5.2.1 Encoding

Let us consider the nature of our inputs. We have assumed that the agents observed

surroundings are embedded on a map as an image X . A mask M is a binary image, of

the same dimensions, with mi = 1 if its corresponding state has been observed by the

agent. We denote the ith pixel and mask be denoted by xi and mi respectively.

In most episodes, the agent will not visit the entire grid-world, hence mi = 0 for

some xi ∈ X . Since there can be several views of the same ground-truth MDP, we need

to be able to reconstruct the ground-truth MDP from multiple observations of the MDP

over several episodes. For Single-Task RL, this can be done in a tabular fashion. In

MTRL, however, we have potentially infinite possible MDPs and it becomes hard to

build association between different views of the same MDP.

Our method uses deep convolutional VAEs to infer the association between different

views of the same MDP and use it with a low dimensional energy model to sample

MDPs given the observations. The fact that the world has continuous local features

(like continuous walls/obstacles) implies that the use of a convolutional network greatly

boosts performance (by improving the ability to generalise). Figure 5.4 shows our setup

to learn the associations and to infer ground truth MDP given observations. We use one
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setup to train the model and another to allow back sampling of MDPs. We call these the

train and query models.

Our method can be scaled to large state spaces because of the use of a deep auto-encoder.

Given this setup, for the learning phase, we modify the VAE loss function to account

for unobserved states, xi ∈ X with mi = 0. The new loss function is given by

E = DKL(N (µ(X), σ(X)),N (0, 1)) +
N∑
k=1

mi ·
(yi − xi)

σ

2

Inclusion of mi in the loss function is quite intuitive and works well on the sets that we

tested on, since it removes any penalty for unseen xi and allows the VAE to project its

knowledge onto the unseen states.

5.2.2 Sampling

Given a partial observation, X , we sample for the posterior to obtain K MDP samples.

If X doesn’t have enough evidence to skew the posterior in favour of one single MDP,

then the encoding produced by VAE, z, is far from encodings of ground-truth MDPs,

zin in z-space. We obtain an MDP that is a mixture of MDPs if we sample from this

posterior. Solving this MDP could result in the agent following a policy unsuitable for

any of the component MDPs in isolation.

One way to circumvent this problem is to train a probability distribution over the MDP

embeddings, zin. For our 2-MDP environments, we use a Gaussian-Boltzmann RBM to

cluster inputs with fixed-variance gaussians. We then use Algorithm 4 to sample from

these gaussians.

Algorithm 4 Sample MDPs given x

K MDPs sampled from model posterior Compute z = fe(x)
Sample K hidden RBM states h(i) ∈ H , i ∈ {1 . . . K} from the posterior p(h|z)
Calculate MAP estimate z(i) = arg maxz p(z|h(i))
Decode map estimates z(i) to get MDP samples y(i)
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5.2.3 Value function

Given K samples from model posterior, p(y|x), we perform action selection using an

aggregate value function over the K samples. We define, for each state s, an aggregate

value function V̄ (s) as

V̄ (s) = Em∼p(y|x)
[
Vm(s)

]
≈
∑K

k=0 Vmk
(s)

K

where m is an MDP and Vm(s) denotes the value function for state s under MDP

m. Vm(s) can be obtained using any standard planning algorithms and we use value

iteration(with γ=0.95, 40 iterations). Action selection is done using ε-greedy mechanism

with ε = 0.1. Since recomputing value functions at each step is computationally

infeasible, each selected action persists for τ = 3 steps.

We note that value functions used need not be exact, but can be approximate as they are

only used for τ steps. A quicker estimate can be obtained using Monte-Carlo methods

when the state-space is large.

5.3 Exploration Bonuses

5.3.1 Jacobian Exploration Bonus

To incentivize the agent to visit decisive pixels/locations, we introduce a bonus based

on the change in the embedding Z. Intuitively, the embedding Z has the highest

change when the VAE detects changes that are relevant to the distribution p(X) that it is

modelling. The bonus can be summarised as follows:

Bα(s) = α · tanh
(
ε+

∂z

∂xs

)

where xs denotes the list of observations made at state s. We use a tanh(·) transfer

function to bound activations produced by the Jacobian, thus mainitaining numerical

stability. This bonus can be used in two ways - as a pseudo reward,

Rs = Rs(x) +Bα(s)
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or to replace the actual reward.

Rs = max(Rs(x), Bα(s))

where Rs(x) is the actual reward deduced by the agent. While both methods showed im-

provement, the latter worked better since total reward for states which already gave a high

reward was not further increased. Since Bα changes drastically with new observations,

Bα is recomputed every time the V̂t(s) is to be recomputed. Bα is also memory-less i.e.

it doesn’t carry over any information from one episode to the next.

5.3.2 Other Exploration Bonuses

Utility

This bonus incentivizes the agent to visit pixels/locations that are positively correlated

winning behaviour.

Formally, the update rule using a grid-world trajectory, T = {x1,x2, . . .xT}, is

given by

β0(xt) = c

βn+1(xt) =

(1− δ) · βn(xt) + δ · γT−tRn if not updatedn(xt)

βn+1(xt) otherwise

where Rn is the reward for completing the nth episode and updatedn(xt) is true

if β(xt) has already received an update for episode n. The updates are performed in

the order {xT ,xT−1, . . .x1}. Single update to β(xt) was found to be numerically more

stable compared to update in every step when the same location was seen at different

time steps.

The agent starts out with uniform exploration bonus for every location in the grid-world.

Episodes that result in a failure (Rk = −1) reduces the exploration bonus for the

locations on the path taken. Episodes that result in a success (Rk = +1) increment the

exploration bonus as this path is positively correlated with successes.

Updates to this bonus are made only at the end of each episode and they carry over to
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the next episode.

Jacobian-Utility Hybrid

One issue with plain Bα is that it incentivizes the agent to visit decisive locations

regardless of how useful they actually are( for instance, if all the worlds have the same

reward structure but different observations ).

Bβ incentivizes the agent to visit locations based on how useful they are regardless of

how decisive they could be. Intuitively, combining the two bonuses to give a Bβα bonus

will incentivize the agent to only visit those locations that are decisive and positively

correlated with winning behaviour.

Formally, we define this hybrid bonus Bβα as

Bβα(x) = β(x)(ε+ (1− ε)tanh∂z

∂x

tanh acts as an activation function maxing out at 1 for those states that are decisive

according to the Jacobian of the VAE.

Since ∂z
∂x

changes for every step, this bonus is step-wise adaptive. Also, since β(x)

is only updated at the end of an episode, this changes from episode to episode, reflecting

the exploration done by the agent.

5.4 Testbed

We have implemented the following algorithms.

• Value Iteration, referred to as STRL

• Multi-task RL with VAE, RBM without exploration bonus, referred to as MTRL-0

• Multi-task RL with VAE, RBM, and Jacobian Bonus, referred to as MTRL-α

We have tested the above algorithms on 2 environments.

• Back World (Easy) [BW-E] - Goal location alternates depending on marker loca-
tion color, marker location is fixed and is in most paths from start to goal. This
domain demonstrates the advantage gained using a probabilistic model over the
MDPs.
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• Back World (Hard) [BW-H] - Same setting as BW-H, but marker location is not on
most paths from start to goal. This domain demonstrates the advantage provided
by the Jacobian exploration bonus and our generative model.

For STRL, using only visible portions of the environment was very unstable and

hence, we had to add a pseudo reward. For each unseen location, we provide a pseudo

reward, εn for nth step (with ε0 = 0.3), that is annealed by a factor of κ = 0.9. Each

episode was terminated at 200 steps if the agent hadn’t reached the goal. Using this

pseudo reward, the agent was forcefully terminated fewer times. These worlds become

challenging due to partial visibility. We use a 5x5 kernel with clipped corners and the

agent is always assumed to be at the center. At each step, the environment tracks the

locations that the agent has seen and presents it to the agent before an action is taken.

For our experiments, we consider the average number of steps to goal as a measure of

loss and average reward as a measure of performance.

5.5 Results

Table 5.1 gives average reward for each agent. Table 5.2 gives average episode length.

We also impose forceful termination at 200 steps if episode has not yet completed. From

the results, we infer the following.

• STRL using value iteration does poorly as it as no way of deducing MDPs.

• MTRL-0 solves both BW-E and BW-H environments and does almost as good as
MTRL-α. This improvement can be attributed to the use of our deep generative
model.

• MTRL-α shows better results on BW-H. This was expected as MTRL-0 makes no
attempt to visit marker locations. MTRL-α is motivated by the Jacobian Bonus to
visit marker locations, thereby deducing the MDP.

• MTRL-0 performs as good as MTRL-α in BW-E as marker locations lie on most
paths to the goal. However, since it fails to understand the significance of the
marker locations and markers in BW-H are not on most paths to the goal, it results
in longer episodes and lower reward.
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Table 5.1: Average Reward

World STRL MTRL-0 MTRL-α

BW-E 0.21 0.99 0.99
BW-H 0.23 0.92 0.99

Table 5.2: Average Episode Length

World STRL MTRL-0 MTRL-α

BW-E 184.19 46.20 46.29
BW-H 183.64 54.0 45.8

(a) Train Model

(b) Query Model

Figure 5.4: Deep Generative Model - Train model requires mask inputs to account for
missing observations. Query model involves value iteration to determine
best action over sampled MDPs.
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Figure 5.5: Final Jacobian Bonus for BW-E and BW-H - Locations in yellow-green
are identified by the agent as being most helpful in deducing the MDP being
solved.

(a) BW-E A (b) BW-E B (c) BW-H A (d) BW-H B

(e) Suboptimal
path[BW-H] (f) Optimal path[BW-H] (g) Visibility Kernel

Figure 5.6: 28x28 worlds used in our experiments - White indicates start position of
agent. Green and Yellow are marker locations. Red locations are failures.
Blue locations are all successes. Gray areas in kernel are visible to the agent.
White cell in kernel is the agents position. Shown optimal path considers
MDP deduction as a sub-problem.
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CHAPTER 6

PARTIALLY-OBSERVABLE SPATIAL REASONING

6.1 Action Conditional Projection Neural Network Ar-

chitecture

Figure 6.1: Action Conditional Projection Neural Network Architecture illustration

As explained in the Motivation section, the final output architecture of the ACPNN

is shown in Figure 6.1.

The equations for the ACPNN structure can be laid out as follows:

s0 = 0



st+1 = st ·W T
t · at

rt = st ·WB
n · px,y

ht = {relu(Wl1.[rt,mi])|∀mi ∈M}

ot = Wl2.ht

at = softmax(ht)

Some of the design choices are presented below, with appropriate justification

6.1.1 State Transform Unit

The State Transform Unit (STU) is primarily this assignment:

st+1 = st ·W T
t · at

This structure also follows our assumption that the internal state transforms either lin-

early (Full free motion). If the motion is piecewise linear a different formulation is used

(Covered in the section on ACPNN-ReLU).

A very similar transformation unit has been used in the Action-Conditional Video Pre-

diction paper (1), where a linear transformation of the state vector S is used to introduce

the effects of taking an action on the output.

Like the case of Action Conditional Video Prediction network, the ACPNN also has

to learn the implicit notion of a state from scratch although this is harder in the latter

scenario since the motion is very complicated.

6.1.2 Ray Unit

The Ray Unit (RU) is in-charge of combining the agent’s current state st and the pixel

coordinates px,y to create an intermediate representation rt,x,y(which we refer to as the

ray element, because it’s equivalent to a ray in ray tracing).

In order to maximize the potential for generalizing, the unit (like the STU) uses a simple
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linear transform.

rt,x,y = st.W
T
n .px,y

This is an intuitive decision, since the pixel coordinates px,y vary uniformly from −1to1,

using a linear unit ensures the ray elements are also linear in the pixel number.

6.1.3 Memory Unit

The Memory Unit (MU) is used to store the colors and (potentially) patterns that occur

in the scene. Note the stress on the word scene. The memory unit is independent of the

agent’s current state or pixel coordinate.

In our simple implementation, the Memory Unit stores a set of solid colors C along with

a representation vector k for each color. The vector intuitively represents the location of

that color in the scene (this is like the attention-based key used in most memory networks).

Currently, all our implementations learn a static set of colorsC and representation vectors

k for each environment (they are treated as regular parameters).

6.1.4 Intersection Unit

The IU is represented by the following transformation:

ht = {relu(Wl1.[rt,mi])|∀mi ∈M}

ot = Wl2.ht

The Intersection Unit (IU) is the most important part of the ACPNN, since it’s target is

generally not linear (unlike the other units). Under the assumption that the Ray Unit is

linear, no matter what representation is used to represent the object (for simplicity, as-

sume a straight line segment), the function to test for intersection is necessarily quadratic.
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6.1.5 Competitive Attention

Instead of a standard sigmoid layer at the end of the intersection unit (IU), a softmax

with variable temperature (competitiveness) was used. This notion, at first, seems out

of place in the narrative of ray tracing, because intersection of one scene element is

independent of the others.

ot = Wl2.ht

at = softmax(ht)

Figure 6.2: Illustration of the concept of occlusion

However, the consideration of occlusion makes things more complex, as the inter-

section equation for the occluded scene element SEo should remain the same, but the

element in front SEf should have a much higher attention.

The softmax function theoretically allows this to happen, by making sure the final

layer output is inversely proportional to the depth of the intersection.

The main problem here is that, as the softmax values get sharper, the learning gets

slower and if the error manifold is incredibly complicated (in this case, it is), unlearning
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a wrong set of weights is much harder.

The assumption that the values of ot(.) are such that the softmax distribution is sharp

automatically means that it has to deal with this treacherous situation.

In order to avoid this, the softmax function can be modified slightly to allow the output

layer to stay within reasonable values.

This works by splitting the values into two steps: When calculating the gradient:

at = softmax(ht)

When calculating the error function:

at =
ht −max(ht)

ht −max(ht)
+ 1

which is the sharp maximum value.

This prevents saturation of the softmax values by nullifying the gradients as soon as the

correct order of attention values has been learnt.

6.1.6 Controlling Overflow

The softmax function used above has numerical stability issues: Since ot is unbounded,

the values can get unnecessarily large, often causing a floating point overflow (and

sometimes NaNs).

To get around this, the ACPNN uses a modified softmax function that does not affect the

final outcome but ensures that values are small enough to prevent floating point overflow.

Instead of this,

at =
eh

i
t

Σieh
i
t

the model uses this,

at =
eh

i
t−maxi(hit)

Σieh
i
t−maxi(hit)

Note that the numbers are now either in the normal range, or too small (their exponent

vanishes), which restores numerical stability without compromising on accuracy.

36



6.2 StateFul Projection Neural Network

The StateFul Projection Neural Network (SFPNN) is a spin-off of the ACPNN, but

without the state transform unit (STU).

The network, in this case, is used to gauge the performance boost given by the STU and

the extent to which learning the dynamics of the environment slows down the overall

learning.

Figure 6.3: StateFul Projection Network illustration (Only the STU has been changed)

As shown in the figure above, the network does not have an STU. The state s is

provided as an input. The state used is the vectorised form of the location and orientation

i.e., the orientation is represented as the components of the normalised vector in that

direction (for instance, along Y axis is 0, 1). This is important, as orientation is a special

type of parameter that is circular, and using a non-continuous form like degrees/radians

will likely lead to bad generalisation as it’s not obvious that 360o is the same as 0o.
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6.3 ACPNN(ReLU)

To provide a solid basis for using ReLU DNNs for the State Transform Unit (STU),

we look at the results provided by R. Arora (7). ReLU DNNs are capable of exactly

fitting piecewise linear functions. In most games, the state transformation is inherently

piece-wise iinear. ReLU DNNs are therefore likely to learn such a system faster than

conventional DNNs.

As stated in (7), the following section provides the definition for Piece-wise linear

functions (PWL) and Piece-wise linear motion.

6.3.1 Piece-wise Linear Motion

Definition 6.3.1 Piece-wise Linear Functions We say a function f : Rn 7→ R is con-

tinuous piece-wise linear (PWL) if there exists a finite set of closed sets whose union is

Rn, and f is affine linear over each set (note that the definition automatically implies

continuity of the function). The number of pieces of f is the number of maximal connected

subsets of Rn over which f is affine linear.

Definition 6.3.2 Piece-wise Linear Motion Any motion simulator needs to transform

an input state in Rn to an output state in the same Rn. by extending the definition for

PWL to the case where the function is a multi-dimensional mapping f : Rn 7→ Rn, we

get piecewise linear motion. Note that, in this case, the function f is PWL in each of the

n output dimensions.

The problem of an agent constrained in a box follows the piece-wise linear motion.

6.3.2 Architecture

The main problem with the linear STU used in the original ACPNN form was that it

couldn’t efficiently model complex dynamics like hitting walls. Upon trying to move

through wall, the internal state shouldn’t change, but the linear operator cannot model

this behaviour without also affecting the case where the agent hasn’t hit a wall.

Thus, like the dynamics simulator used in (3), the STU unit was changed to use a simple
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Figure 6.4: ACPNN with a ReLU-based STU and IU

neural network with ReLUs. Since ReLU-based deep neural networks are essentially

piecewise linear (7) in nature, modelling a piece-wise linear transformation is a naturally

easy task for a ReLU network.

6.4 ACPNN(ReLU)-DQN

6.4.1 Random Paths

To train the ACPNN, the strategy so far was to observe several randomly sampled paths

(limited by a maximum number of steps). This strategy has obvious shortcomings, in that

certain corner cases may be erroneously modelled, but these cases may not be observed

often enough.

Since the current problem statement doesn’t have a environmental reward signal

because the goal here is to predict the frames, we need to devise an internal reward

notion to allow the model to explore the environment better.
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6.4.2 Prediction Error

The ACPNN-DQN model takes inspiration from the paper on Incentivising Exploration.

The prediction error in this case is the sigmoid of the difference between the expected

output frame and the actual frame observed from the environment.

R(st) = sigmoid((o(st)− yt)2)

The sigmoid is necessary to bound the error terms and to prevent instability in the

DQN, which, in it’s original form, is known to poorly handle rewards with a large range.

6.4.3 Architecture

Figure 6.5: Spatial Reasoning Framework

The ACPNN-DQN is a version that uses a Q-network to model the prediction error
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in the ACPNN’s predictions.

The Q-network takes the internal state st as the input, and the target is the prediction

error R(st) (as detailed in the above section).

The training procedure that we followed to stabilise the training is as follows:

Algorithm 5 Pseudo-code that illustrates the algorithm used by ACPNN-DQN
1:
2: procedure TRAINACPNN-DQN
3: Initialize weights randomly for DQN D()
4: Initialize weights randomly for ACPNN P ()
5: for doi from 1 to k:
6: Sample a set of trajectories T following D()
7: Train A on T for 500 epochs (just enough for some reasonable state embed-

ding)
8: Train D for 10,000 epochs with internal state embedding S as the input and

the prediction error R(S) as the target (if necessary, fully unlearn the previous Q
network weights)

The following approximate embedding shows the Q-values at various locations. The

Q-values were summed over all orientations of the agent, for each location.

6.4.4 Instability Issues

Dealing with instability was a major concern while building the ACPNN-DQN.

The first concern is the sampling mechanism. Two alternatives are available:

1. ε-greedy: Sampling using the ε-greedy strategy is one way to ensure the network
didn’t get eternally trapped in one particular action (because of instability). Unfor-
tunately, the greedy action is sometimes very close (in Q-value) to plenty of other
actions which got overruled too often to be of considerable use.

2. Boltzmann sampling: Boltzmann sampling simply uses the softmax function as
the probability distribution. The main problem with this is that when the network
becomes unstable and diverges, every action is the exact same, since that action
has a value so large, it over-rules every other action.

Ultimately, Boltzmann sampling makes more sense, since the source of instability

isn’t the sampling, but rather the quality of the state embedding.

The better the quality of the state embedding (more training epochs for the ACPNN), the

more stable the Q-network is.

The reason for running the DQN part for a very large number of epochs is because a
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Figure 6.6: Sample Q-value field (white values are states that are never visited). The
blue line represents the red-line object in the Redline world.

regular Q-network faces only a non-stationary target, while the network in ACPNN-

DQN also faces a non-stationary input (ever-changing state embeddings). Thus, in case

the state embeddings change drastically, the Q-network has to catastrophically unlearn

everything.

6.5 Input-ACPNN for Representation Learning

6.5.1 Representation Learning

The challenge in representing an entire scene (and it’s dynamics) with a single vector is

that the entire scene is not visible at any one point and that the dynamics of the system

have to be explicitly observed and modelled.

Therefore, to enforce representation learning, we use a convolutional network to process

the first K frames of the agent and generate two vectors (initial state s0 and scene context
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t) out of which the latter, scene context t is the vector representation of the scene. The

former value, initial state s0 is used by the STU as the initial position of the agent. Note

that the convolutional network has to identify the scene and identify the location of the

agent within the the scene. Unlike an autoencoder, the architecture is not a simple one.

The architecture presented below makes the most of both worlds by introducing fusing

the first half (input part) of a convolutional auto-encoder and the ACPNN.

6.5.2 Architecture

The architecture shown below achieves all the requirements stated above. Since this is

the first iteration that includes the input too, the problem statement has to be slightly

changed. The agent now takes n steps from a random initial state s0 to generate K

frames as the input. The task for the Input-ACPNN is to predict the next n′ frames.

Figure 6.7: Input ACPNN

The Input-ACPNN can not only be used to create complete model of a scene (and

it’s dynamics), but it can also be used in multi-task (MTRL) scenarios, where there are

multiple environments and it’s the agent’s job to figure it out from the first n frames, and

predict the next n′.
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This can be applied to scenarios such as the I-world (6) where the agent can figure out

the identity of the environment from the color of the tiles and the apparent distance from

the end of the corridor.

The corridor problem in the I-world is interesting as it tests the generalisation ability of

the agent. The use of a vector intermediate representation means that the Input-ACPNN

can achieve this level of generalisation.

6.6 Testbed

For the testbed, currently the world used is a 2D one (with a 1D projection).

This is because when moving from 2D to 3D worlds, the ACPNN, SFPNN, ACPNN(ReLU)

and ACPNN(ReLU)-DQN architectures all do not change their structure at all (except

for an increase in the size of pixel coordinates P ), unlike convolutional networks, where

the structure of the filters changes a lot.

The use of pixel coordinates instead of convolutional filters means that extending

ACPNN to 3D worlds simply takes longer to train rather than any increase/decrease in

performance.

In practice, the 2D worlds tend to be harder to learn because of much less data per

trajectory.

To demonstrate usefulness, one of the test cases used is a simple 3D world.
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6.6.1 Red Circle World

Figure 6.8: Red Circle World
The agent’s position is represented by the little black dot and the agent’s
view direction is represented by the black line on the dot.
The set of boxes denote the 100x1 image observed by the agent (Black
represents no object in that direction)
The red circle is the 2D object whose 1D projection the agent witnesses

This world contains a single red circle at the center, with the agent having full, unre-

stricted motion.

Intuitively, all the intersection unit (IU) has to do is test for whether the ray was at a

given distance from the center point and test it against a threshold value to determine the

attention for that pixel.

Unfortunately, if we follow the linearity principle of keeping the intersection tests piece-

wise linear (to offer the neural network an easy, generalizable target), the red circle test

does not qualify (the distance of a line from a point is not linear in the ray element R).

The network thus has a harder time generalizing to it.
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6.6.2 Red Line World

Figure 6.9: Red Line World
For details, refer to description for Figure 6.8

As described above, the Red Line World contains a single red line at the center, with the

agent always starting at the same point (full freedom of movement).
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6.6.3 Double Line World

Figure 6.10: Double Line World
For details, refer to description for Figure 6.8

The double line world was developed to test the agent’s ability to learn occlusion and use

the softmax layer to ensure depth sensitivity. It consists of one red line and one green

line.
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6.6.4 Box World

Figure 6.11: Box World
For details, refer to description for Figure 6.8

The box world was developed to test the effectiveness of the ACPNN(ReLU)’s State

Transform Unit when applied to a 4-wall box world where the agent cannot move through

walls. The agent’s motion is constrained to within the 4 walls in this case.
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6.6.5 Complex Box World

Figure 6.12: Complex Box World
For details, refer to description for Figure 6.8

This world is a combination of the Box World and the Double Line world in that it tests

for both occlusion and the ability to handle constrained motion.
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6.6.6 3D world

Figure 6.13: 3D World: Various views of the 3D world

(a) 3D World Perspective Projection 40x40 (b) 3D World Perspective Projection 40x40

(c) 3D World Perspective Projection (High
Resolution) 200x200 - The high resolution
image is for clarity only. For performance
reasons, the 40x40 down-scaled images are
the images used for training

In order to show good performance in more realistic scenarios, we use a simple 3D world

with 90o FOV persepctive projection. Constrained motion still applies, with the agent

unable to cross the walls. Currently, the 3D world is a simple closed box and the agent

cannot look vertically up or down nor can it move in the vertical direction.
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6.7 Results

For each test, the learning is performed through Stochastic Gradient Descent, by ran-

domly sampling 200 data points for each gradient update. The optimizer used for

computing adaptive gradients is "Adam" (22).

Figure 6.14: ACPNN performance comparison: % Adjusted Error versus number of
epochs - Tests were performed with constant set of hyper-parameters over
various environments

Fig. ?? shows the loss function of the DQN part of the ACPNN-DQN architecture.

Note the sudden crest at the beginning followed by gradual stabilization. We noticed that

this behaviour is quite common with most of the environments that were used for training.

The comparison between the performance of ACPNN (vanilla variant) on various

environments is shown in Fig. 6.14.
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Figure 6.15: SPNN performance: % q value versus number of epochs - Note the inher-
ent instability of the Q network. This is because both the targets and the
inputs are non-stationary

In order to test the relative difficulty of learning the State Transformation Unit and

the rest of the architecture, we compare the performance of the Stateless Projection

Neural Network (SPNN) with the regular ACPNN.

The results in Fig. 6.15 show a definite improvement in the performance of the network

when the internal state of the agent is available.

Figure 6.16: InputACPNN performance: A comparison between vanilla ACPNN ver-
sus the Input ACPNN architecture on the same 3D Box World. Note that,
in the latter case, the agent starts off in a completely random orientation
and the first frame is presented to the agent before the first action is taken

We tested the performance of Input-ACPNN versus the regular ACPNN to test the
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effect of having to infer the starting location from the initial frame. Fig. 6.16 shows

this effect and the extent of the additional complexity the Input-ACPNN faces when

compared to the vanilla ACPNN.

6.7.1 Visualizations

(a) View reconstruction of the 3D Box World after 1 step The
reconstruction is on the right while the actual observation (refer-
ence) is on the left

(b) View reconstruction of the 3D Box World after 5 steps The
reconstruction is on the right while the actual observation (refer-
ence) is on the left

(c) View reconstruction of the 3D Box World after 11 steps The
reconstruction is on the right while the actual observation (refer-
ence) is on the left

On the most complex world, Fig. 6.17a, Fig. 6.17b and Fig. 6.17c shows the reconstruc-

tions made by the ACPNN architecture.
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CHAPTER 7

CONCLUSION

In this thesis, we have presented a set of novel approaches to modern Reinforcement

Learning. We have first proposed a deep generative model to understand and differentiate

a set of tasks in the fully observable multi-task reinforcement learning scenario and a set

of exploration bonuses that all the agent to take advantage of the model. At this time,

when reinforcement learning agents attempt to tackle 3D partially observable worlds,

we have proposed another novel method, inspired by computer graphics, to interpret the

sequence of images generated by projecting the scenes onto a plane.

While our deep generative model showed excellent potential to work well on Map-like

environments, it’s application is still limited to agents in fully observable environments.

This is the main reason for the shift in focus to the ACPNN architecture.

As far as we are aware, there is no other architecture that uses a model specifically

built to generalize spatial projections. Although the model, in its current state, is slower

than existing methods, this thesis shows potential for the method to generalize to a

greater extent compared to convolutional networks. One of the model’s drawbacks was

the difficulty in stabilizing learning. Instead of a smooth, consistent curve, the model

often had long idle periods followed by a sudden moment of learning.

In the future, it is likely that deep convolutional networks are not the be-all-end-all

of machine learning, and specialized architectures will be developed for every domain.

This thesis makes the case that a ray-tracing inspired neural network, with some more

refinement, will be the state-of-the art in interpreting 2D images of spatial 3D scenes.
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