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1 PIXEL BOUNDARY SAMPLING
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Fig. 1. On the left, existing methods [Bangaru et al. 2020; Loubet et al. 2019]
use an unbounded Gaussian filter to avoid the need to handle the boundary
of the pixel filter U𝑏 , but this comes at the cost of increased variance in
the interior due to the derivative of the Gaussian weights. On the right, our
method uses a box filter and explicitly removes the discrepancy in the warp
field V through a boundary integral over U𝑏 .

In Eqn. 3 of the main text, we use a box which implies the pixel

domainU is bounded. An implication of this is that we must also

consider the boundaries of the pixel filter support (denoted byU𝑏 ⊂
R2
) as discontinuities in U

sil
. Previously, to avoid this additional

complexity, Bangaru et al. [2020] used a Gaussian filter that has

infinite support. We have found that this introduces extra variance

due to the variation in the pixel filters in the divergence.

We instead keep the box filter as well as exclude the pixel bound-

ary from the area integral U
sil
. This means that Eqn. 3 of the main

text is no longer valid since the product (𝐿V) does not vanish
smoothly at the pixel filter boundary U

b
. We must instead rewrite

the integral domain as an unbounded space U∞. We can further

split the unbounded integral into two parts, one inside the pixel filter

domainU and one outside (we omit parentheses here for brevity)

𝐼
sil

=

∫
U\Usil

∇ · (𝐿V) +
∫
(U∞\U)\Ub

∇ · (𝐿V) . (1)

We can then use the divergence theorem on the second area integral

to turn it into a boundary integral overU
b

𝐼
sil

=

∫
U\Usil

∇ · (𝐿V) −
∮
Ub

𝐿 (V · n𝑏 ) , (2)

where n𝑏 is the outward pointing normal of the pixel filter bound-

ary, and the negative sign comes from the fact that we consider

regions outside of the pixel filter instead of inside. Unlike silhouette

boundaries in U
sil
, U𝑏 is easy to sample since it only contains axis-

aligned line segments of equal length. Fig. 1 illustrates the difference

between using a smooth unbounded filter and using a box filter with

pixel boundary sampling.
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Fig. 2. Ablation Study. We find that 𝛾 = 3 is ideal with both low and and
high 𝛾 values affecting the reconstruction significantly, with 𝛾 ≥ 6 often
not converging. For a sphere tracer step count of 22, we find that for subset
size 𝑘 < 7, the quality drops quickly but for 𝑘 ≥ 14, we see diminishing
returns.

2 ABLATION STUDY OF 𝑘 AND 𝛾

Our pipeline has multiple parameters such as the subset size 𝑘 and

the weight exponent 𝛾 . These parameters can affect the variance of

the warp field and, as a result, affect the reconstruction quality or

time to converge. In Fig. ??, we look at 16 different combinations of𝛾

and 𝑘 , and their corresponding reconstructions (this is an extension

of Sec. 4.3 in the main text).

Note that there are other parameters such as step count for the

sphere tracer 𝑁 and the adjustment 𝜖 (used to avoid infinite weights)

that can affect the gradient quality. We leave it to future work to

further explore these parameters to identify the optimal combina-

tion.

3 CORRECTNESS SKETCH OF Vq

To show thatV𝑞
is valid we need to show that it is (i) Continuous

and (ii) Boundary consistent. Here, we show that our weights are

correct for an ideal𝐶1 continuous SDF and for an ideal sphere tracer

T (𝑢). Here, T (𝑢) denotes the infinite series of points generated by

the sphere tracer. Note that, in general, none of these points will

actually satisfy 𝑓 (x) = 0 since an ideal sphere tracer never reaches

the surface of an ideal SDF. Instead we will deal in limits. That is,

lim𝑛→∞ 𝑓 (x𝑛) = 0, x𝑛 ∈ T (u)
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Fig. 3. Circle SDF Bound

Assumption 1. (General Position Assumption). For a given

𝑢, there exist no two points x𝑖 , x𝑗 ∈ T (𝑢), 𝑖 ≠ 𝑗 such that both

𝑓 (x𝑖 ) = 𝑓 (x𝑗 ) and 𝜕x 𝑓 (x𝑖 ) = 𝜕x 𝑓 (x𝑗 ).

Lemma 3.1. (Spherical Lower Bound). There is an 𝜖-neighbourhood

around every 3D silhouette point x
sil
, such that the SDF 𝑓 (x) can be

lower bounded by the SDF of a sphere with some fixed radius 𝑟𝑙

Since we can choose both 𝜖 and 𝑟𝑙 , we can reduce the former and

increase the latter until this lemma is satisfied. The only way this

scheme fails is if the curvature of the surface is 0 at x
sil
. That cannot

be the case, because then the surface would be a plane parallel to

the ray direction, which means all points along the ray contradict

Assumption 1

Lemma 3.2. (Weight Lower Bound). For a quadrature point along

the silhouette ray that is distance 𝛿 away from the silhouette point,

the weights can be lower bounded.

lim

u→Usil

𝑤q (x(u, 𝑡
sil
−𝛿)) ≥ (

√︃
𝑟2

𝑙
+ 𝛿2−𝑟𝑙+

𝛿√︃
𝑟2

𝑙
+ 𝛿2

)−𝛾 ·(
√︃
𝑟2

𝑙
+ 𝛿2−𝑟𝑙 )

(3)

Fig. 3 illustrates the slice of the sphere SDF that contains the

center of the sphere and the ray direction. For a point 𝛿 away from

the silhouette point, the sphere SDF at 𝑓 (x) is
√︃
𝑟2

𝑙
+ 𝛿2 − 𝑟𝑙 . Using

the property of similar triangles, the dot product of the normal with

the direction is 𝛿/
√︃
𝑟2

𝑙
+ 𝛿2

.

Lemma 3.3. (Unboundedness of the Lower Bound). For 𝛾 > 2,

the lower bound in Lemma 3.2 is unbounded in the limit 𝛿 → 0

lim

𝛿→0

(
√︃
𝑟2

𝑙
+ 𝛿2 − 𝑟𝑙 + 𝜆𝑑 · 𝛿√︃

𝑟2

𝑙
+ 𝛿2

)−𝛾 · (
√︃
𝑟2

𝑙
+ 𝛿2 − 𝑟𝑙 ) = ∞ (4)

To see this, notice that the limit above can be written as

lim

𝛿→0

√︃
𝑟2

𝑙
+ 𝛿2 − 𝑟𝑙(√︃

𝑟2

𝑙
+ 𝛿2 − 𝑟𝑙 + 𝜆𝑑 · 𝛿√︃

𝑟 2

𝑙
+𝛿2

)𝛾 . (5)

Taking the Taylor expansion at 𝛿 = 0, for the numerator we have:√︃
𝑟2

𝑙
+ 𝛿2 − 𝑟𝑙 =

𝛿2

2𝑟𝑙
+𝑂 (𝛿4) . (6)

For the denominator we have:©­­«
√︃
𝑟2

𝑙
+ 𝛿2 − 𝑟𝑙 + 𝜆𝑑 · 𝛿√︃

𝑟2

𝑙
+ 𝛿2

ª®®¬
𝛾

=
𝛿𝛾

𝑟𝑙
+𝑂 (𝛿𝛾+1) (7)

Substituting, we have that the ratio is asymptotically equivalent to:

𝛿2

2𝑟𝑙
+𝑂 (𝛿4)

𝛿𝛾

𝑟𝑙
+𝑂 (𝛿𝛾+1)

=

𝛿2−𝛾
2𝑟𝑙

+𝑂 (𝛿4−𝛾 )
1

𝑟𝑙
+𝑂 (𝛿)

, (8)

which diverges as long as 𝛾 > 2 .

Lemma 3.4. (Kronecker Delta Behaviour). For a ray exactly at

the silhouette, the limiting point of the sphere tracer is assigned all the

weight, given 𝛾 > 2 and 𝜆𝑑 > 0

lim

u→Usil

lim

n→∞
𝑤 (q) (x𝑛 (u; 𝑡))∑

x𝑖 ∈T (𝑢) 𝑤 (q) (x(u; 𝑡 ′)) · d𝑡 ′
= 1 (9)

We can show this through contradiction. Since the number of

sphere tracer points are countably infinite, let’s consider some point

x𝑖 ∈ T (𝑢) that is not the limiting point. From 3.4 and 3.3, since T (𝑢)
is an infinite series, we can necessarily find a point x𝑗 , 𝑗 > 𝑖 such

that
𝑤(q) (x𝑖 )
𝑤(q) (x𝑗 )

< 𝑝 for any 𝑝 > 0 Therefore, in the limit of 𝑛 → ∞,

the normalized weight of x𝑖 is 0.
This is true for every point 𝑥𝑖 ∈ T (𝑢) that is not the limiting

point itself. Thus, our weights become a discrete version of delta

(i.e. the Kronecker delta) on the limiting point.

Since the limiting point of𝑇 (𝑢
sil
) is x

sil
, it follows from the form of

our quadratureweights that, limu→Usil

Vq (u) = 𝐺 (x(𝑢, 𝑡
sil
);𝜃 )𝑇 𝜕x𝑢.

That is, V𝑞
is boundary consistent.

4 CORRECTNESS SKETCH OF TOP-K WEIGHTS 𝑤̄𝑘

Since 𝑇𝑘 (𝑢) always contains the 𝑘 points with the largest weights,

boundary consistency follows from the correctness ofV(q)
. How-

ever, continuity is non-trivial since the discrete set of points in T𝑘 (𝑢)
can change as 𝑢 changes. We also only need to consider continu-

ity at non-silhouette points since the resulting warp field is never

evaluated exactly at silhouette points.

Lemma 4.1. Top-K Weight Continuity The weights of the set

T𝑘 (𝑢) are continuous for all 𝑢 ∉ U
sil

We analyze the weights of the points in the set T𝑘 (𝑢) under two
separate cases
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(1) Case 1: The indices of points in T𝑘 (𝑢) change in the infini-

tesimal neighbourhood around 𝑢.

First, note that because of Assumption 1, no two points in

T (𝑢) (and T𝑘 (𝑢) by extension) can have the same weight.

Thus, in an infinitesimally-small neighbourhood, we can

assume that there is only one x𝑖 ∈ T𝑘 (𝑢) that is replaced
with a new point x𝑗 ∈ T (𝑢), x𝑗 ∉ T𝑘 (𝑢), as we perturb 𝑢. In
this neighbourhood, we can assert that:

𝑤q (x𝑖 ) = 𝑤q (x𝑗 )
We can also note that

𝑤q (x𝑖 ) = min

xm∈T𝑘 (𝑢)
𝑤q (x𝑚)

because by definition of the top-k subset, only the smallest

weight is swapped out of the set. However, remember that,

from our definition of top-k weights, because we shift every

weight by the smallest weight, the smallest weight in the

subset is zero, i.e.:

𝑤k (x𝑖 ) = 𝑤k (x𝑗 ) = 0

Therefore, because both the swapped points x𝑖 and x𝑗 have
a weight of 0, the weights of T𝑘 (𝑢) are continuous in the

neighbourhood of 𝑢.

(2) Case 2: The order of points in T𝑘 (𝑢) remain constant in the

infinitesimal neighbourhood around 𝑢.

Since the points are at the same position in the original series

T (𝑢) and their weights are continuous, it follows that the

weights of points in the subseries T𝑘 (𝑢) are also continuous.
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