
Systematically Differentiating Parametric Discontinuities

SAI PRAVEEN BANGARU
∗
,MIT CSAIL

JESSE MICHEL
∗
,MIT CSAIL

KEVIN MU,MIT CSAIL

GILBERT BERNSTEIN, UC Berkeley and MIT CSAIL

TZU-MAO LI,MIT CSAIL

JONATHAN RAGAN-KELLEY,MIT CSAIL

Programmer (Human) Automated Applications

Integral with
Parametric

Discontinuities
foreach x:
 if x < t:
 out += 1

Code

1. Discretize

1. Di�erentiate

Our Language (Teg)

integrate(
 x=0 to 1,
 (x < t) ? 1 : 0
)

2. Discretize

2. Di�erentiate X
Consistent
Derivative

Incorrect
Derivative

Stylization Shader
optimization

Trajectory
optimization

Stress-strain
optimization

foreach x:
 if x < t:
 d_out += 0

Code

Code

Our Method

Traditional

if 0 < t < 1:
 d_out += 1

foreach x:
 if x < t:
 d_out += 0

Fig. 1. We propose a language for the automatic differentiation of integrals with discontinuities. Existing auto-diff frameworks require integrals to be

discretized into summations prior to differentiation, and therefore lose the derivative contribution from discontinuities. Our method produces a statistically

consistent derivative program by introducing integration as a language primitive, which allows us to differentiate discontinuities in continuous space, before

discretizing them into summations over discrete samples.

Emerging research in computer graphics, inverse problems, and machine
learning requires us to differentiate and optimize parametric discontinuities.
These discontinuities appear in object boundaries, occlusion, contact, and
sudden change over time. In many domains, such as rendering and physics
simulation, we differentiate the parameters of models that are expressed as
integrals over discontinuous functions. Ignoring the discontinuities during
differentiation often has a significant impact on the optimization process.
Previous approaches either apply specialized hand-derived solutions, smooth
out the discontinuities, or rely on incorrect automatic differentiation.

We propose a systematic approach to differentiating integrals with dis-
continuous integrands, by developing a new differentiable programming

∗Both authors contributed equally to this research.

Authors’ addresses: Sai Praveen Bangaru, MIT CSAIL, Cambridge, MA, sbangaru@mit.
edu; Jesse Michel, MIT CSAIL, Cambridge, MA, jmmichel@mit.edu; Kevin Mu, MIT
CSAIL, Cambridge, MA, kmu@csail.mit.edu; Gilbert Bernstein, UC Berkeley, Berkeley,
CA, MIT CSAIL, Cambridge, MA, gilbo@berkeley.edu; Tzu-Mao Li, MIT CSAIL, Cam-
bridge, MA, tzumao@mit.edu; Jonathan Ragan-Kelley, MIT CSAIL, Cambridge, MA,
jrk@csail.mit.edu.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2021 Copyright held by the owner/author(s).
0730-0301/2021/8-ART107
https://doi.org/10.1145/3450626.3459775

language. We introduce integration as a language primitive and account for
the Dirac delta contribution from differentiating parametric discontinuities
in the integrand. We formally define the language semantics and prove the
correctness and closure under the differentiation, allowing the generation
of gradients and higher-order derivatives. We also build a system, Teg, im-
plementing these semantics. Our approach is widely applicable to a variety
of tasks, including image stylization, fitting shader parameters, trajectory
optimization, and optimizing physical designs.

CCS Concepts: • Theory of computation → Denotational semantics; •
Mathematics of computing → Differential calculus; Stochastic control
and optimization; Probabilistic inference problems; • Computing method-
ologies→ Computer graphics; Visibility; Animation; Computer vision;
Modeling and simulation.

Additional Key Words and Phrases: Automatic differentiation, differentiable
programming, differentiable graphics, differentiable rendering, differentiable
physics, domain-specific language.

ACM Reference Format:
Sai Praveen Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li,
and Jonathan Ragan-Kelley. 2021. Systematically Differentiating Parametric
Discontinuities. ACM Trans. Graph. 40, 4, Article 107 (August 2021), 17 pages.
https://doi.org/10.1145/3450626.3459775

ACM Trans. Graph., Vol. 40, No. 4, Article 107. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459775
https://doi.org/10.1145/3450626.3459775

107:2 • Sai Praveen Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li, and Jonathan Ragan-Kelley

1 INTRODUCTION

Automatic differentiation, now indispensable for optimization and
machine learning, usually treats discontinuities (e.g., if-else branches)
by ignoring them. Doing so is usually correct almost everywhere
(in the technical sense). However, the situation is different when
computing the derivative of an integral, when discontinuities of the
integrand cannot be ignored. We propose a differentiable program-
ming language that can soundly compute derivatives of integrals
with discontinuities, producing correct results almost everywhere.

Parametric discontinuities in graphics. Emerging research
that combines techniques in computer graphics, inverse problems,
and machine learning often requires optimizing discontinuities. We
often want to compute the derivatives of integrals of discontinuous
functions:

∇
∫

𝑓

where 𝑓 is a program that can have parametric discontinuities. Para-
metric discontinuities are branching expressions containing free pa-
rameters (e.g., 𝑡 in foreach x: ((x < t) ? 1 : 0)). The derivative
contribution of a parametric discontinuity is a Dirac delta function
and usually integrates to a non-zero value. In graphics, these para-
metric discontinuities arise in rigid-body simulations that exhibit
collision and contact phenomena; rendered shapes form silhouettes
and shadows; geometry has corners and creases. Both integration
and differentiation play critical roles in simulating, rendering, and
optimizing these models.

For instance, the variational principle of least action defines physi-
cal trajectories asminima of an action integral; whichmay be applied
to synthesizing animations and optimizing robot controllers [Sten-
gel 1994; Witkin and Kass 1988]; rendering is defined as a multi-
dimensional integral, and hence inverse rendering involves differ-
entiating that integral [Li et al. 2018a]; and shape optimization uses
derivatives of integrated geometric quantities [Hafner et al. 2019].
Combining deep learning models with these problems is only possi-
ble if we can compute derivatives through the discontinuities.

Prior work has recognized that ignoring the discontinuities during
differentiation can have a significant impact on the optimization.
Oftentimes, domain-specific solutions are employed to manually
derive the correct derivatives (e.g., [Dyer and McReynolds 1968; Li
et al. 2018a]). When adapting to new problems, new derivations
are required. Our goal is to instead systematize the domain-specific
methods, and develop the foundation of a programming language.

Using our approach and language, we study applications spanning
several fields in graphics. We write a 2D differentiable renderer for
triangulating images, fit a procedural shader’s parameters to a target
image, solve frictional contact problems without smoothing, and
optimize physical designs with discontinuous properties.
Minimal example. Ignoring discontinuities during differentia-

tion is problematic. Consider the example from Fig. 1: d
d𝑡

∫ 1
𝑥=0 [𝑥 <

𝑡], where [𝑥 < 𝑡] = 1 if 𝑥 < 𝑡 and 0 otherwise. This integral might
represent the expected frequency of a 𝑡-biased coin flip coming up
heads; or the fraction of a pixel covered by a triangle with position
𝑡 ; or the fraction of a time-interval during which a motor is engaged,
when it is turned off at time 𝑡 . If we wish to optimize this 𝑡 parameter,
then we need to take some such derivative.

It is common-place to first discretize integrals and only after that
to differentiate them using automatic differentiation. However, ex-
isting auto-diff systems define 𝑑

𝑑𝑡
[𝑥 < 𝑡] = 0. This is unfortunately

incorrect in the presence of integration. The expected frequency of
a 𝑡-biased coin coming up heads does change with the bias 𝑡 . This is
because the derivative of the step function [𝑥 < 𝑡] is a Dirac delta
𝛿 (𝑡 − 𝑥), which integrates to a non-zero value when both sides of
the branch are visited in the integration domain. In general, the
discretization of the differential of an integral is different than the
differential of the discretization of an integral (Fig. 1). Ignoring the
Dirac delta often leads to suboptimal results – in this example, the
optimization will never move from the initial guess.
A systematic solution. We explore a systematic method for

optimizing parametric discontinuities, by specifying the semantics
of a new differentiable programming language that is provably
correct and can generate higher-order derivatives. Our key idea is to
differentiate then discretize in our language. By making integration
a language primitive and accounting for the Dirac deltas introduced
by differentiating parametric discontinuities, our language computes
the correct solution:

d
d𝑡

∫ 1

𝑥=0
[𝑥 < 𝑡] →

∫ 1

𝑥=0
𝛿 (𝑡 − 𝑥) → [0 < 𝑡 < 1] .

Analytically eliminating Dirac deltas via an enclosing integral –
the second step above – is difficult to systematically guarantee for
arbitrary expressions inside Dirac deltas. We guarantee the correct
treatment of Dirac deltas under suitable conditions. We require that
the expression constituting each of the parametric discontinuities
be represented only using differentiable, invertible functions (i.e.,
diffeomorphisms). We allow such functions to be explicitly defined
by the programmer, or automatically inferred for certain common
expression classes such as affine expressions.

In this paper, we prioritize the development of a clean core calcu-
lus that captures the interactions among derivatives, integrals, and
discontinuities. Our language only supports static loop variables
(it is not Turing complete). The symbolic transformation used to
eliminate the Dirac deltas are global and may lead to an asymptotic
increase in expression size, scaling with the number of disconti-
nuities. We provide a proof of correctness for the language and
show that it is closed under the derivative operation, allowing for
immediate application of the technique to higher-order derivatives.
Finally, we build a system, Teg, that implements the semantics.1

In summary, our contributions are:
• We propose a systematic approach to differentiate integrals
with discontinuous integrands, by including integration as
a language primitive. We define the formal semantics, and
prove its correctness and closure under differentiation.

• We implement these semantics in a differentiable program-
ming language,Teg, which supports both forward and reverse-
mode automatic differentiation.

• We show novel applications spanning fields in computer
graphics. They include a method for fitting parametric dis-
continuities in inverse shader design, and a frictional contact
solver that does not rely on smoothing energy.

1The source code of the compiler and application is available at https://github.com/
ChezJrk/Teg and https://github.com/ChezJrk/teg_applications.

ACM Trans. Graph., Vol. 40, No. 4, Article 107. Publication date: August 2021.

https://github.com/ChezJrk/Teg
https://github.com/ChezJrk/Teg
https://github.com/ChezJrk/teg_applications

Systematically Differentiating Parametric Discontinuities • 107:3

DIFFERENTIATEDISCRETIZE

(a) traditional automatic differentiation (Discretize-then-Differentiate)

DISCRETIZEDIFFERENTIATE

(b) our automatic differentiation (Differentiate-then-Discretize)

Fig. 2. 1D Example. Our language, Teg, can automatically differentiate programs with integrals and discontinuities, represented as indicator functions

[[[]]]. (a) Traditional automatic differentiation approaches first discretize then differentiate because they do not have an integral primitive. This leads to

incorrect results because it ignores the contribution of the Dirac deltas introduced by differentiating the discontinuities. (b) In contrast, we include integral

primitive in our language and account for the contribution of the Dirac deltas. Teg first differentiates then discretizes. In this case, we apply the identity∫ 1

x=0
𝛿 (𝛿 (𝛿 (𝜃 − x))) =

∫ 𝜃

y=𝜃−1𝛿 (𝛿 (𝛿 (y))) = [[[𝜃 − 1 < 0]]] [[[𝜃 > 0]]].

To motivate our approach, we describe a few problems and how
others have solved them in the past. We only introduce necessary
background in the next section and detail additional related work
in the section that follows (Sec. 3).

2 MOTIVATION AND BACKGROUND

Wemotivate the value of optimizing parametric discontinuities with
examples. We describe them in our language, Teg, and show how
the compiler produces correct code. Formal semantics and the proof
of correctness are detailed in Sec. 4.

Notation and frontend. Teg is designed to mirror mathematical
equations as closely as possible. Throughout the paper, when we
show the code in our language, we use syntax highlighting and a
different font to distinguish from the mathematical formulae. For
example, a mathematical formula of an integral

∫ 1
𝑥=0 [𝑥 < 5]𝑥2,

where [𝑥 < 5] = 1 if 𝑥 < 5 else 02, is expressed as
∫ 1
x=0

[[[x < 5]]]x2
in our language. We write this code in Teg’s Python frontend library
as Teg(0, 1, IfElse(x < 5, 1, 0) ∗ x ∗ x, x).

2.1 1D Example

We now more deeply explore the 1D integral parameterized by 𝑡

from the introduction and Fig. 1:

𝐼 (𝑡) =
∫ 1

𝑥=0
[𝑥 < 𝑡], (1)

Many graphics problems are more complex manifestations of this
form, such as anti-aliasing [Mitchell and Netravali 1988], global
illumination [Kajiya 1986], integration of certain ordinary differen-
tial equations, or simulating physics using the variational princi-
ple [Hamilton 1834]. The indicator function appears at, for example,
object boundaries, occlusion, or sudden change of force over time.

Our goal is to automatically compute the derivative d𝐼
d𝑡 . We want

to use the derivative for optimization, machine learning, or describ-
ing physical quantities. Later we show more realistic applications,
including differentiable rendering and physics simulation. In this
1D case, we have a closed-form solution: d𝐼d𝑡 = [0 < 𝑡 < 1].

2This “Iversion bracket” syntax comes from APL [Iverson 1962] and was advocated by
Donald Knuth [1992].

Discretize-then-Differentiate produces incorrect derivatives. Solu-
tions to real-world problems often lack closed-form solutions. Com-
puting derivatives by hand takes up significant time. Therefore, we
want to rely on automatic differentiation [Griewank and Walther
2008]. A typical compiler does not have integrals as a primitive.
Therefore, to use automatic differentiation, we must first manu-
ally discretize the integral into a program. For example, 𝐼 (𝑡) ≈∑𝑁
𝑖=0 [𝑖/𝑁 < 𝑡] = 𝐼𝑑 (𝑡). However, differentiating the program 𝐼𝑑

with respect to t gives the incorrect derivative of 0, contradicting
our closed-form solution [0 < 𝑡 < 1]. This is because the only
dependency of the program to 𝑡 is through the indicator [𝑖/𝑁 < 𝑡].
The derivative of the indicator gives rise to a Dirac delta 𝛿 , which
describes an infinitesimal size spike at 𝑥/𝑁 = 𝑡 , but has value zero
everywhere else. A delta can only be realized into a number through
integration. Since there are no integral primitives in existing auto-
matic differentiation tools, all of them ignore the delta. Fig. 2 shows
a visual explanation.

The issue above is not first observed by us, and other researchers
proposed alternative solutions. In particular, our approach is closely
related to the recent advancement of differentiable rendering [Li
et al. 2018a; Ramamoorthi et al. 2007]. Dyer and McReynolds [1968]
also derived the derivatives in the optimal control context. These
works recognized that we could explicitly account for the Dirac
deltas by evaluating the integrals over them. We systematize these
approaches and incorporate them into a programming language.

Our approach: Differentiate-then-Discretize. The key idea is to first
differentiate then discretize, all inside the language. Similar to pre-
vious differentiable rendering works [Li et al. 2018a; Ramamoorthi
et al. 2007], we base our compiler passes on the following properties
of indicator functions, Dirac deltas 𝛿 , and integrals:

𝜕

𝜕𝑡
[𝑐 (𝑥, 𝑡) > 0] = 𝛿 (𝑐 (𝑥, 𝑡)) ∗ 𝜕

𝜕𝑡
𝑐 (𝑥, 𝑡)∫ 𝑏

𝑥=𝑎

𝑓 (𝑅(𝑥)) 𝜕𝑅(𝑥)
𝜕𝑥

=

∫ 𝑅 (𝑏)

𝑢=𝑅 (𝑎)
𝑓 (𝑢)∫ 𝑏

𝑥=𝑎

𝛿 (𝑥) = [𝑎 < 0 < 𝑏],

(2)

where 𝑢 = 𝑅(𝑥) is a variable substitution, or reparametrization.
Given an indicator [𝑐 (𝑥, 𝑡) > 0] under differentiation, we first turn

ACM Trans. Graph., Vol. 40, No. 4, Article 107. Publication date: August 2021.

107:4 • Sai Praveen Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li, and Jonathan Ragan-Kelley

Parameters
Rasterization

���������������������

Target Image

��������������

Candidate Image

(Update parameters)

Objec�ve

(a) 2D differentiable rendering

Parameters
Lagrangian evaluation

Lagrangian along trajectories

(Update parameters)

0- +

contact

(b) trajectory optimization

Fig. 3. Case studies. Our language can be used for computing many applications where one needs to differentiate integrals with discontinuous integrands. In

differentiable rendering (a), each pixel is a 2D anti-aliasing integral. The geometry boundaries introduce discontinuities. The figure shows an example where

we fit a triangle mesh with constant color within triangles to a target image using the gradient of loss with respect to the triangle parameters. In physics

simulation (b), the variational least action principle predicts motion by minimizing an action integral of the Lagrangian energy over time. The Lagrangian

energy can contain discontinuities due to contact, sudden change of force over time, or other physical properties. We can formulate a trajectory optimization

problem by finding the path parameters of a bouncing ball by minimizing the action integral. Unlike standard approaches that integrate over ordinary

differential equations, we do not need to choose a step size, and the contact point between the ball and the floor can be anywhere. Sec. 6 shows more examples.

it into a delta 𝛿 (𝑐 (𝑥, 𝑡)). We then apply reparametrizations to trans-
form the delta into the form 𝛿 (𝑥). Finally, we eliminate the delta
using the last rule above.
Therefore, for a Teg program 𝐼 =

∫ x=1
x=0

[[[x < t]]], the compiler
differentiates 𝐼 by applying the following transformation:

d

dt

∫ 1

x=0
[[[x < t]]] → d

dt

∫ 1

x=0
[[[t − x > 0]]] →

∫ 1

x=0

d

dt
[[[t − x > 0]]]∫ 1

x=0
𝛿 (𝛿 (𝛿 (t − x))) →

∫ t

u=t−1
𝛿 (𝛿 (𝛿 (u))) → [[[t − 1 < 0]]][[[t > 0]]] .

The first step normalizes the condition into the form 𝑎 > 0. The
second step moves the derivative operator inside the integral. We
then transform the derivative of indicator functions into a Dirac
delta. Next, we apply the reparametrization 𝑢 = 𝑡 − 𝑥 . Finally, we
eliminate the delta, leading us to the same expression to our closed-
form solution [0 < 𝑡 < 1]. Sometimes the final expression can be
another integral. Teg evaluates delta-free integral expressions by
discretizing them.

Not all deltas𝛿 (𝛿 (𝛿 (c(x, t)))) can be easily eliminated, since they must
first be reparametrized to the form 𝛿 (𝛿 (𝛿 (x))) so that they may then
annihilate with an integral. To reparametrize (second rule in Eq. (2)),
we need to find the inverse x = c−1 (u, t) in order to substitute the
variables outside the delta. Automatically deriving such inversion is
hard. Our compiler automatically handles an important case when
c is affine. In 1D, it takes the form t0x + t1, where t0 and t1 can
depend on other parameters that are not x. For other conditions, we
provide a library of diffeomorphisms for users to apply, e.g., a polar-
to-Cartesian transformation. Crucially, we allow users to define
custom diffeomorphisms (bijectivity can be checked with numerical
tests). Custom mappings make our language flexible, while also
providing a correctness guarantee by decoupling the derivative
transformation from the reparametrization.
In Sec. 4, we formally describe our language, compiler trans-

formation passes, and correctness theorem, dealing with multiple

conditions, integrals. We also make sure that our language is closed
under differentiation, that is, the differentiated code is still a pro-
gram expressible in our language. The closure property is crucial for
higher-order derivatives. Before that, let us introduce two graphics
applications that involve the differentiation of integrals.

2.2 Case Study I: 2D Differentiable Rendering

Rendering computes an image from a given set of geometric shapes
and their shading color. Differentiable rendering [Li et al. 2018a;
Loper and Black 2014], on the other hand, computes the gradient of
pixel color with respect to scene parameters for inverse rendering
or machine learning. Previous approaches either apply approxima-
tion [Loper and Black 2014], manually derive the gradient [Li et al.
2018a], or use finite differences [Lawonn and Günther 2019]. Here
we show how Teg automatically differentiates a 2D rasterization
program, outlined in Figure 3a.

Here we study a simplified rendering model, where the geometry
is represented as 2D triangles, and the color inside the triangle is
constant. We want to fit the geometry and the color to a target image
to produce a stylized image [Lawonn and Günther 2019]. For a pixel
at (𝑥𝑖 , 𝑦𝑖) and for a triangle with color 𝐶 and vertices 𝑣1, 𝑣2, 𝑣3, the
equation representing the color at that pixel is:

𝐼𝑟 =

∫ 1

t=0

∫ 1

s=0
𝐶 ∗ inside(𝑥𝑖 + 𝑠,𝑦𝑖 + 𝑡, 𝑣1, 𝑣2, 𝑣3), (3)

where, for convenience, we define the function inside as the multi-
plication of three edge equations:
inside(𝑥,𝑦, 𝑣1, 𝑣2, 𝑣3)

=[[[(v1 .y − v2 .y) ∗ x + (v2 .x − v1 .x) ∗ y > v1 .x ∗ v2 .y − v2 .x ∗ v1 .y]]]
∗[[[(v2 .y − v3 .y) ∗ x + (v3 .x − v2 .x) ∗ y > v2 .x ∗ v3 .y − v3 .x ∗ v2 .y]]]
∗[[[(v3 .y − v1 .y) ∗ x + (v1 .x − v3 .x) ∗ y > v3 .x ∗ v1 .y − v1 .x ∗ v3 .y]]]
The value at each pixel is a sum of the contribution of all of the
overlapping triangles.

ACM Trans. Graph., Vol. 40, No. 4, Article 107. Publication date: August 2021.

Systematically Differentiating Parametric Discontinuities • 107:5

We want to compute the derivative of the pixel color integral
(Program (3)) with respect to the vertices 𝑣 . Therefore, Teg needs to
handle the deltas that arise from differentiating the inside function.
Using the same techniques as in the previous subsection, Teg auto-
matically generates the derivative, which are three 1D integrals over
the three edges of the parameterized triangle. The main difference
is that we now transform multiple integrals. Consider the following
double integral with an affine condition:

I2 =

∫ 1

y=0

∫ 1

x=0
[[[a ∗ x + b ∗ y + c > 0]]], (4)

and we want to compute the derivative 𝜕I2
𝜕c . After transforming the

indicator into a Dirac delta during differentiation, our compiler auto-
matically detects the affine condition pattern a ∗ x + b ∗ y + c and ap-
plies a bijective and rotational reparametrization x′ = a ∗ x + b ∗ y,
y′ = b ∗ x − a ∗ y. The compiler generates similar reparametriza-
tions for higher-dimensional spaces. The resulting derivative inte-
gral is

𝜕I2
𝜕c

=

∫ Buy

y′=Bly

∫ Bux

x′=Blx

𝛿 (𝛿 (𝛿 (x′ + c)))
a2 + b2

, (5)

where Blx, Bux, Bly, and Buy are new integral bounds derived from the
reparametrization, and a2 + b2 is the Jacobian determinant of the
transformation. From here, the compiler reparametrizes 𝛿 (𝛿 (𝛿 (x′ + c)))
into 𝛿 (𝛿 (𝛿 (x′′))) by applying 𝑥 ′′ = 𝑥 ′ + 𝑐 , and eliminates the delta and
corresponding integral over 𝑥 ′′, leaving a 1D integral. In the triangle
case, the same pattern applies with 𝑎, 𝑏, 𝑐 being parameters coming
from the triangle vertices.

The derivative 𝜕𝐼𝑟
𝜕𝑣 generated by Teg can then be composed with

derivatives generated by other automatic differentiation systems
such as PyTorch [Paszke et al. 2019] or TensorFlow [Abadi et al.
2015]. Given a loss function 𝐿(𝐼𝑟), we can use the chain rule 𝜕𝐿

𝜕𝑣 =

𝜕𝐿
𝜕𝐼𝑟

𝜕𝐼𝑟
𝜕𝑣 . Teg computes 𝜕𝐼𝑟

𝜕𝑣 , while other automatic differentiation
systems can be used to compute 𝜕𝐿

𝜕𝐼𝑟
.

Existing differentiable rendering methods. Recent work has de-
veloped different techniques to differentiate the rendering compu-
tation. The derivation above is similar to Li et al. [2018a], and is
closely related to the Reynolds transport theorem [Li 2019; Li et al.
2020b; Zhang et al. 2020, 2019]. An alternative approach is to ap-
ply reparametrizations to remove the discontinuities [Loubet et al.
2019], which turns out to be equivalent to applying divergence the-
orem on the derivative line integrals [Bangaru et al. 2020]. Other
methods approximate the Dirac deltas by using image filters [Loper
and Black 2014], or smoothing over discontinuities [Liu et al. 2019].

Tegmechanizes the Dirac delta computation as part of automatic
differentiation, which allows us to generalize the approach. For
example, in Sec. 6 we show results on optimizing a color model
with linear or quadratic interpolation, or even optimizing a texture
generated by Perlin noise [Perlin 1985]. We can also apply it to
problems outside of differentiable rendering, as we will show next.
However, our compiler currently does not support other strategies
for dealing with discontinuities, such as smoothing or transforming
boundary integrals into area integrals using divergence theorem,
nor does it currently scale to millions of objects (Sec. 7).

2.3 Case Study II: Physics-based Animation and Control

Composing derivatives and integrals to form an optimization prob-
lem is a common pattern in physics. For didactic purposes, we
discuss one of the simplest possible problems: finding the trajec-
tory of a bouncing ball (Fig. 3). We use a piecewise linear model
of the trajectory, with parameters 𝜃𝑏 . The variational least action
principle [Hamilton 1834] predicts motion by finding the stationary
points the following action integral over time:

S(𝜃b) =
∫ t1

t=t0
L(q, qt, t), (6)

where q is the 2D position of the ball (parameterized by 𝜃b), qt is
its time derivative, and t is time. L is the Lagrangian of the physics
system. In this case, it is composed of the potential energy−V (whose
spatial derivative − 𝜕V

𝜕q is the force) and the kinetic energy 1
2mq

2
t.

Intuitively, we find the path parameter 𝜃𝑏 that minimizes a cost
function 𝑆 resulting in a stationary action.
In the case of the bouncing ball, the energy of the system is the

gravitation potential when 𝑞.𝑦 > 0, and the contact force 𝑓𝑐 pushes
the ball back when 𝑞.𝑦 ≤ 0:

L(q, qt, t) =
1

2
m ∗ q2t − ([[[q.y > 0]]] ∗ m ∗ g ∗ q.y −

[[[q.y ≤ 0]]] ∗ m ∗ fc ∗ q.y).

For our piecewise linear model of the trajectory 𝑞, we consider a
sequence of control points, at varying points in time rather than at
regular temporal intervals. Doing so allows our trajectory model to
represent a sudden change in velocity at some arbitrary point and
time, which is necessary to exactly capture our idealized inelastic col-
lision. This direct collocation trajectory optimization approach [Har-
graves and Paris 1987] is different from standard approaches that
differentiate forward simulators, usually called the shooting method.
The standard shooting method requires pre-determining time step
sizes for integration, leading to issues when the contact point can be
anywhere. Trajectory optimization is used for designing animation
or in robotics for planning [Betts 2009; Popović et al. 2000; Witkin
and Kass 1988]. In computer graphics, trajectory optimization with
contact is usually handled by using a smooth contact model in
the first place [Hunt and Crossley 1975], or incorporate inequality
constraints and then solve it by smoothing the discontinuities [Mor-
datch et al. 2012; Todorov 2011], or using sophisticated nonlinear
programming solvers [Posa et al. 2014].
In Teg, we can define and differentiate physics problems with

discontinuous energy, enabling optimization using gradients or
higher-order derivatives. Notice that the derivatives appear both
inside the integral (qt) and outside (though this can be problematic
theoretically, see Sec. 7.2). This physics formulation extends beyond
contact modeling. We can model forces that change suddenly over
time, and we can model an elastic potential energy kq2t, where the
coefficient 𝑘 depends on the length of the spring. In Sec. 6, we
present additional applications in more detail.

3 RELATED WORK

We now provide more detailed references for related applications,
systems, and languages.

ACM Trans. Graph., Vol. 40, No. 4, Article 107. Publication date: August 2021.

107:6 • Sai Praveen Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li, and Jonathan Ragan-Kelley

Rendering and differentiable rendering. Rendering, physics-based
or not, involves solving anti-aliasing integrals [Mitchell and Ne-
travali 1988]. Physics-based rendering further formulates the light
transport as an integral equation [Kajiya 1986; Veach 1998]. Analyt-
ical derivatives have been derived for diffuse interreflection [Arvo
1994], shadow [Ramamoorthi et al. 2007], and spherical harmonics
lighting [Wu et al. 2020]. Recently, there are strong interests in
graphics, vision, and machine learning communities to build fully
differentiable renderers. Some methods ignore geometry deriva-
tives [Gkioulekas et al. 2013; Nimier-David et al. 2019], some ap-
proximate the Dirac delta contributions [de La Gorce et al. 2011;
Kato et al. 2018; Loper and Black 2014], some smooth out the discon-
tinuities [Liu et al. 2019], and some apply smooth postprocessing
using the geometry buffer [Laine et al. 2020]. Meanwhile, other
methods derive the correct derivatives using Dirac deltas [Li et al.
2018a], reparametrization [Loubet et al. 2019], or Reynolds transport
theorem [Bangaru et al. 2020; Li 2019; Li et al. 2020b; Roger et al.
2005; Zhang et al. 2020, 2019]. Differentiable renderers have also
been used for inverse shader designs [Guo et al. 2020; Shi et al. 2020].
Our language lays the foundation for a programmable differentiable
rendering system. We have not yet included rendering-specific ab-
stractions and data structures, which are necessary for applying
Teg to large-scale rendering problems.

Variational physics, control, and shape modelling. Calculus of vari-
ations – the minimization of integrals over cost functionals – can
often predict motion. A prominent example is Hamilton’s least ac-
tion principle [Hamilton 1834]. In graphics, robotics, and optimal
control, this formulation has often been used for interpolating ani-
mation or planning [Barr et al. 1992; Betts 1998, 2009; Cohen 1992;
Popović and Witkin 1999; Witkin and Kass 1988]. The same prin-
ciple can be used in 2D or higher-dimensional space to find the
surface or volume with least cost [Moreton and Séquin 1992; Welch
and Witkin 1992], or finding contours in images [Kass et al. 1988].
In trajectory optimization, fitting the trajectory generated by ordi-
nary differential equations is often called the (multiple) shooting
method [Geilinger et al. 2020; McNamara et al. 2004; Popović et al.
2000; Twigg and James 2008]. On the other hand, methods that fit
trajectory as splines are called the direct collocation method [Har-
graves and Paris 1987]. A recent line of work aims to combine neural
network controllers with simulators [de Avila Belbute-Peres et al.
2018; Holl et al. 2020; Hu et al. 2020; Um et al. 2020], or directly
model system dynamics using neural networks [Chen et al. 2018].

A common strategy to handle object contact is to introduce con-
straints and solve nonlinear programming problems [Betts 2009; Li
et al. 2020a; Mordatch et al. 2012, 2013; Posa et al. 2014]. It is also
possible to approximate contact using impulse-based physics [Hu
et al. 2020; Mirtich 1996]. We explore an alternative formulation to
this problem, by allowing certain discontinuous cost functions to
be used in optimization. The mathematics of such formulations has
been studied [Dyer and McReynolds 1968]. We further show the
connection to differentiable rendering.

Domain-specific languages for computer graphics. Several graph-
ics systems handle integration and differentiation: CONDOR [Kass
1992] proposed an interactive programming interface for solving
constrained dynamics with automatic differentiation and interval

arithmetic. Aether [Anderson et al. 2017] models Monte Carlo in-
tegration, and automatically computes the Jacobian of integral
reparametrization. Recent graphics systems often include differ-
entiation operations [Devito et al. 2017; Hu et al. 2020; Jakob 2019;
Li et al. 2018b; Nimier-David et al. 2019]. In contrast, we study the
interaction between integration, differentiation, and discontinuities.

Automatic differentiation and probabilistic programming. It is pos-
sible to automate derivative calculation by applying the chain rule to
program expressions [Griewank and Walther 2008; Wengert 1964].
Reverse-mode automatic differentiation [Linnainmaa 1970] derives
gradients that can be evaluated at the same time complexity as the
original program – much faster than finite differences. There is a
revitalized interest in revisiting efficient auto-diff systems in deep
learning [Abadi et al. 2015; Bradbury et al. 2018; Paszke et al. 2019;
Yu et al. 2014] and probabilistic programming [Bingham et al. 2019;
Stan Development Team 2015]. Auto-diff has also gained significant
attention in programming languages, where researchers specify
system semantics and prove the correctness of their systems [El-
liott 2018; Lee et al. 2020; Mazza and Pagani 2021; Pearlmutter and
Siskind 2008; Sherman et al. 2021]. We study the particular interac-
tion among the derivative, integral, and discontinuities.3
Inala et al. [2018] relax boolean expressions into real numbers

through smoothing, and solve numerical problems by combining
gradient descent and satisfiability solvers. We instead exploit the
structure of integration.
Integration and differentiation are indispensable to Bayesian in-

ference and probabilistic programming [Gehr et al. 2020; Kucukel-
bir et al. 2015; Lew et al. 2019]. Many probabilistic programming
languages handle integrals, but most do not explicitly handle the
differentiation of discontinuities. LFPPL [Zhou et al. 2019] studies
discontinuities in the context of Hamiltonian Monte Carlo methods.
Closest to our work is Lee et al.’s stochastic variational inference
work [2018]. They observed when applying the reparametrization
trick to non-differentiable models, existing approaches ignore the
deltas. They design a language for stochastic variational inference.
The language focused on infinite domain integrals with affine dis-
continuities. We show a more general language with correctness
proof, closure, and bounded domain, and generalize the class of dis-
continuities through diffeomorphisms. Importantly, we show wide
applicability of this class of approaches to many graphics problems.

4 SEMANTICS AND CORRECTNESS PROOF OF OUR

LANGUAGE

We have motivated and discussed our system Teg. In this section,
we formally define a simplified core language L, and prove the
correctness of the compiler passes and closure under differentiation.

Our formal semantics focus on forward-mode automatic differen-
tiation. The derivation of reverse-mode is similar to forward-mode,
but it requires adding let bindings (intermediate variables) to the
core language. We found this to be distracting for the minimal lan-
guage for our proof. Our practical implementation supports both
forward-mode and reverse-mode. We focus on the scalar case in this
work. Arrays and tensors are unrolled into scalars in our language.
3Sherman et al. [2021] includes an integration primitive and produces a correct, but
vacuous result in the presence of discontinuities.

ACM Trans. Graph., Vol. 40, No. 4, Article 107. Publication date: August 2021.

Systematically Differentiating Parametric Discontinuities • 107:7

4.1 Preliminaries

A context 𝜎 is a partial function from variable names to values, other
variable names, or expressions. The empty context [] is undefined
for all names ([] (x) = ⊥). A context may be extended 𝜎 [x ↦→ v],
s.t. 𝜎 [x ↦→ v] (x) = v and 𝜎 [x ↦→ v] (y) = 𝜎 (y) when x ≠ y. The
singleton context [x ↦→ v] is shorthand for an extension of the
empty context. x ∈ 𝜎 is true when 𝜎 (x) ≠ ⊥ and x ∉ 𝜎 when
𝜎 (x) = ⊥.

We will use contexts passed into mathematical functions as a way
of specifying argument bindings without positions (e.g., the value of
x is 3, of y is 42, etc.). We will also use contexts by directly applying
them to expressions in order to perform variable substitution (e.g.
[x ↦→ y] (2 ∗ x + z) = 2 ∗ y + z).
We will use the notation ®x as shorthand for a finite list of variables

x1, x2, The expression y ∈ ®x means that y is a symbol occuring
in that shorthand list.

4.2 Syntax and Denotational Semantics of L
We first present a minimal language L that demonstrates many of
the key features of Teg. We discuss later how to extend the minimal
language into our full language Teg. Below is the syntax written in
Backus–Naur form:

e F c | x | e1 + e2 | e1 ∗ e2 |
∫ b

x=a
e |

[[[
𝜙 (®x) > 0

]]]
| f(((e)))

(i.e., an expression is a constant c, or a variable x, etc.) The deno-
tational semantics describes the behavior of these syntactic forms
in terms of mathematical functions. That is, 𝐸 [[e]] is a function
mapping from contexts (holding variable values) to a real number.

𝐸 [[c]] = 𝑐

𝐸 [[x]] = 𝑥

𝐸 [[e1 + e2]] = 𝐸 [[e1]] + 𝐸 [[e2]]
𝐸 [[e1 ∗ e2]] = 𝐸 [[e1]] ∗ 𝐸 [[e2]]

𝐸 [[
∫ b

x=a
e]] =

∫ 𝐸 [[b]]

𝑥=𝐸 [[a]]
𝐸 [[e]]

𝐸 [[
[[[
𝜙 (®x) > 0

]]]
]] = [𝜙1 (®x) > 0]

𝐸 [[f(((e)))]] = 𝑓 (𝐸 [[e]])

In the indicator function
[[[
𝜙 (®x) > 0

]]]
, the vector ®x are the free vari-

ables, and 𝜙 are invertible functions drawn from a class of functions
that we will discuss later (§4.5). For now, simply note that 𝜙1 is the
component of 𝜙 that is branched on. We will generally suppress the
specification of free variables ®x. The bounds expressions a and b are
expressions in L that do not include integrals or indicator functions,
and must be independent of variables of integration. In contrast,
arguments to invertible functions ®x inside of indicator functions
may depend on variables of integration.

The term f corresponds to a built-in function, and 𝑓 is the math-
ematical function denoted. We require that 𝑓 is smooth and that
the derivatives are syntactically defined. For example, cosine may
be defined as the denotation 𝐸 [[cos(((e)))]] = cos(𝐸 [[𝑒]]), and the
derivatives are corecursively defined using sin.

4.3 Syntactic Sugar

We briefly address convenient extensions to the minimal language
L. Via the built-in mechanism f(((·))), we add support for division,
and other common mathematical functions. More general compar-
isons

[[[
𝜙 (®x) > 𝜓 (®x)

]]]
can be reduced to the canonical formulation[[[

𝜙 (®x) −𝜓 (®x) > 0
]]]
. Conjunctions of conditions can be encoded as

products of indicator functions, and disjunctions can be represented
using the inclusion-exclusion principle.
As presented, L does not have a way of binding intermediate

variables. Our prototype includes let-bindings, although certain
parts of derivation (Sec. 4.4) may require inlining these bindings—
which can lead to poor compile time in some cases.

4.4 Derivative Application

We define the source-to-source derivative application in terms of
the derivative transformation𝐷 [[e]]𝜎 , where the context 𝜎 specifies
a mapping from variables to be differentiated to their corresponding
differential variable names (e.g., [x ↦→ dx]).

Taking the derivative of indicator functions produces Dirac deltas,
a construct not accounted for in our language L. Therefore, we
extend the language to L′ as follows:

e′ F e | e′ + e′ | e′ ∗ e |
∫ b

x=a
e′ | 𝛿

(
𝛿

(
𝛿

(
𝜙 (®x)

)))
Note that besides including the Dirac delta 𝛿

(
𝛿

(
𝛿

(
𝜙 (®x)

)))
, this extension

L′ ensures that the resulting expressions are linear in the delta
terms, and will also be linear in any differential terms.

Derivative application 𝐷 [[e]]𝜎 follows two steps:

• A lifting derivative, which takes in a program in L and out-
puts a program in L′ that may include Dirac deltas.

• Delta elimination takes in a program in L′ and outputs a
program in L that is delta-free. It achieves this by having
Dirac deltas either annihilate with the appropriate integrals
or be set to zero if their contribution is of measure zero.

We now detail these steps in the derivative application.

4.4.1 Lifting: Forward Derivative. The lifting derivative 𝐹 [[·]]𝜎 :
L → L′ maps from an expression in the (external) language L to
the derivative expression represented in the internal language L′.

𝐹 [[x]]𝜎 = dx, if x ∈ 𝜎

𝐹 [[x]]𝜎 = 0, if x ∉ 𝜎

𝐹 [[c]]𝜎 = 0

𝐹 [[e1 + e2]]𝜎 = 𝐹 [[e1]]𝜎 + 𝐹 [[e2]]𝜎
𝐹 [[e1 ∗ e2]]𝜎 = 𝐹 [[e1]]𝜎 ∗ e2 + e1 ∗ 𝐹 [[e2]]𝜎

𝐹 [[
∫ b

x=a
e]]𝜎 =

∫ b

x=a
𝐹 [[e]]𝜎

+ 𝐹 [[𝑏]]𝜎 ∗ [x ↦→ b]𝑒 − 𝐹 [[𝑎]]𝜎 ∗ [x ↦→ a]𝑒
𝐹 [[

[[[
𝜙 (®x) > 0

]]]
]]𝜎 = 0 if ∀y ∈ ®x, y ∉ 𝜎

𝐹 [[
[[[
𝜙 (®x) > 0

]]]
]]𝜎 = 𝛿

(
𝛿

(
𝛿

(
𝜙 (®x)

)))
∗ 𝐹 [[𝜙 (®x)]]𝜎 if ∃y ∈ ®x, s.t. 𝑦 ∈ 𝜎

𝐹 [[f(((e)))]]𝜎 = df(((e))) ∗ 𝐹 [[e]]𝜎

ACM Trans. Graph., Vol. 40, No. 4, Article 107. Publication date: August 2021.

107:8 • Sai Praveen Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li, and Jonathan Ragan-Kelley

Conservative
bounds transfer

Source space (Euclidean) Map-1 (Polar) Map-2 (Translate)

Fig. 4. Delta reparametrization. This flow diagram explains a crucial step in our compiler pass for handling a Dirac delta 𝛿
(

𝛿
(

𝛿
(
𝜙 (®x)

)))
. Our key idea is to reduce

this expression to a normal form (e.g., 𝛿 (𝛿 (𝛿 (y1)))) through a series of reparameterizations by composing diffeomorphisms. This can be thought of as expressing

the expression in a new coordinate system where the expression is exactly coincident with an axis of integration. Here we show an example of reparametrizing

a condition representing the area of a circle 𝛿
(

𝛿
(

𝛿
(
x2 + y2 − t

)))
. We can transform the coordinates from Cartesian to polar, making it an integral over the angle

and radius. Finally we can translate 𝛿

(
𝛿

(
𝛿

(
r −

√
t
)))
to obtain the simplified 𝛿 (𝛿 (𝛿 (r′))) , which can be automatically eliminated by Teg.

4.4.2 Lowering: Delta Elimination. To achieve closure back to our
original languageL, we need to eliminate Dirac deltas using a series
of rewrites.

Pass 1: Normalization. To reason about and manipulate programs
in L′, we normalize the expressions. Normalization proceeds by
exhaustively applying the rewrite rules:

e0 ∗ (e1 + 𝛿 (𝛿 (𝛿 (𝜙))) ∗ e2) −→ e0 ∗ e1 + 𝛿 (𝛿 (𝛿 (𝜙))) ∗ (e0 ∗ e2)∫ b

x=a
(e1 + e2) −→

∫ b

x=a
e1 +

∫ b

x=a
e2,

These rewrites distribute multiplication and integration to move
Dirac deltas up through the expression until they sit directly inside
of integrals—at which point they can be fruitfully manipulated by
the subsequent passes. An implementation can be more judicious
in the use of the second rule above to reduce code-duplication.
Applying these rewrites results in a normal form:

e +
m∑︁

i=1

(𝛿 (𝛿 (𝛿 (𝜙i))) ∗ ei) +
M∑︁

i=1

∫ b1

x1=a1
· · ·

∫ bni

xni=ani

(𝛿 (𝛿 (𝛿 (𝜙i))) ∗ ei), (7)

where
∑k
i=1ei is syntactic sugar for the expression e1 + . . . + ek

and m and M are constants because each term [[[𝜙 > 0]]] contributes
at most one discontinuity and there are finitely many such terms in
an expression in L. Since the derivative is a linear operator, there is
at most one delta in each product.

Pass 2: Delta Reparameterization. To eliminate the deltas, we need
to first simplify them by jointly reparameterizing the enclosing
integrals (Fig. 4). Without loss of generality, let ®x be all of the vari-
ables of integration x1, . . . , xn and ®z are the other variables that

parameterize 𝜙 . The delta reparameterization rewrite is:

∫ b1

x1=a1
· · ·

∫ bn

xn=an
𝛿

(
𝛿

(
𝛿

(
𝜙 (®z, ®x)

)))
∗ e

−→
∫ b′1

y1=a′1

· · ·
∫ b′n

yn=a′n
𝛿 (𝛿 (𝛿 (y1))) ∗ M𝜙 ∗ 𝜎−1e ∗ |J𝜙 | (®z, ®y)

where the new terms on the right (the substitution 𝜎−1 within e,
the Jacobian term |J𝜙 |, the new bounds of integration (®a′, ®b′), and
the mask M𝜙) are defined as follows.
As we discuss later (Sec. 4.5), 𝜙 specifies a map 𝜙 (®z) : ®x → ®y

whose first output component y1 is the value being passed to
the Dirac delta. As a diffeomorphism, 𝜙 includes the inverse
𝜙−1 (®z) : ®y → ®x. From this inverse map we can define 𝜎−1 as map-
ping [xi ↦→ 𝜙−1i (®z, ®y)] (for each i), where these latter 𝜙−1 compo-
nents are reducible to expressions in our base language L.

|J𝜙 | (®z, ®y) is the determinant of the Jacobian of 𝜙−1 (®z) evaluated
at the base point ®y. This Jacobian determinant is reducible to ex-
pressions in our base language, just as 𝜙−1 is.
Finally, the bounds (®a′, ®b′) are derived to enclose the

image of the original domain of integration. The mask
M𝜙 = [[[𝜓1 > 0]]] · · · [[[𝜓k > 0]]] is derived simultaneously to en-
sure that only points mapped from within the original domain
of integration contribute to the new reparameterized integral.
Automatic means of deriving these bounds are discussed later
(Sec. 4.5).

ACM Trans. Graph., Vol. 40, No. 4, Article 107. Publication date: August 2021.

Systematically Differentiating Parametric Discontinuities • 107:9

Pass 3: Delta Annihilation. We now focus on simplifying a single
expression in Eq. 7: ∫ b1

y1=a1
. . .

∫ bn

yn=an
𝛿 (𝛿 (𝛿 (y1))) ∗ e

Our aim is to match the variable of integration with the variable in
the delta or to move the delta outside of the integral. The following
rewrite rules realize this aim:∫ b

y=a
𝛿 (𝛿 (𝛿 (y))) ∗ e −→ [[[a < y < b]]] ∗ [y ↦→ 0]e∫ b

y=a
𝛿 (𝛿 (𝛿 (x))) ∗ e −→ 𝛿 (𝛿 (𝛿 (x))) ∗

∫ b

y=a
e

The first rule annihilates the delta with the integral and adds the
delta contribution if the discontinuity is inside the integration do-
main. The second commutes a delta and an integral if the delta
expession is independent of the variable of integration. Each delta
either annihilates with an integral or is removed in the following
pass.

Pass 4: Measure zero destruction. All remaining deltas follow the
structure of the second term in Eq. 7:

m∑︁
i=1

𝛿
(

𝛿
(

𝛿
(
𝜙i (®x)

)))
∗ e

We set all of the remaining deltas to zero because they do not de-
pend on an integration variable, and thus are only non-zero over a
measure zero support.

𝛿
(

𝛿
(

𝛿
(
𝜙 (®x)

)))
−→ 0

4.5 Reparameterization

We relied on certain properties of the functions 𝜙 (®x) that occur
inside of step functions and Dirac deltas. These functions control
the shape of discontinuities via diffeomorphisms (i.e., change-of-
coordinates) on the domain of integration.

We rely on the following conventions while defining a diffeomor-
phism 𝜙 (®z, ®x). We assume that 𝜙 depends on variables of integration
®x, as well as other ®z; we write [®a, ®b] to define a multi-dimensional
interval (axis-aligned box) with the given expressions as lower and
upper bounds; and we write [[[®· · · > 0]]] to indicate a product of mul-
tiple component step functions.

The following five components are required for such a diffeomor-
phism to be well defined.

(1) Mapping: a smooth function𝜙 (®z) : ®x → ®y specified as a collec-
tion of expressions ei in L not using integration or indicator
functions. In particular, 𝜙 (®z, ®x) = 𝜙1 (®z, ®x) controls where a
step function steps or a Dirac delta has a spike.

(2) Inverse: a smooth function 𝜙−1 (®z) : ®y → ®x that is the inverse
of 𝜙 , specified as expressions in L, similarly to 𝜙 .

(3) Jacobian: a smooth function |J𝜙 | (®z, ®y) representing the deter-
minant of the Jacobian of 𝜙−1, specified as expressions in L,
similarly to 𝜙 .

(4) Bounds transfer: a function B𝜙 (®z) : (®a, ®b) → (®a′, ®b′) that spec-
ifies safe bounds for the reparameterized integral, i.e. ∀®x ∈
[®a, ®b] : 𝜙 (®z, ®x) ∈ [®a′, ®b′]. B𝜙 is specified as expressions in L,
similarly to 𝜙 .

(5) Bounds mask: a function M𝜙 (®a, ®b, ®z) : (®y) → Bool, that spec-
ifies whether the pre-image of a point ®y lies in the original
domain of integration, i.e. ∀®y ∈ B𝜙 (®a, ®b), M𝜙 (®a, ®b, ®z, ®y) ⇐⇒
𝜙−1 (®z, ®y) ⊆ [®a, ®b]. M𝜙 is specified as an expression in L, of
the form M𝜙 = [[[𝜓1 > 0]]] · · · [[[𝜓k > 0]]].

While programmers may exploit the ability to specify all five of
these components of a diffeomorphism, given (1) and (2) the sys-
tem can automatically construct (3) the Jacobian by applying au-
tomatic differentiation, (4) the bounds-transfer by applying in-
terval arithmetic to 𝜙 , and (5) the bounds-mask by M𝜙 (®a, ®b) =[[[
𝜙−1 − ®a > 0

]]] [[[®b − 𝜙−1 > 0
]]]
.

The automatic derivation of M𝜙 is well-defined. First, 𝜙−1 is a dif-
feomorphism since 𝜙 is a diffeomorphism. Second, because bounds
expressions ®a and ®b do not depend on the variables of integration
(®y), offsetting by them is equivalent to offsetting by a constant value
(with respect to variation of ®y). Thus, the expression𝜓 = 𝜙−1 − ®a is
a diffeomorphism with𝜓 (®y) = 𝜙−1 (®y) − ®a and𝜓−1 (®x) = 𝜙 (®x + ®a).
In general, the problem of computing the inverse of functions

is uncomputable, and the extension of a function 𝜙 : R𝑛 → R to
𝜙 : R𝑛 → R𝑛 is underspecified. However, in some cases, we can
automate even this part of the work. For instance, the case of affine
expressions can be treated symbolically and robustly. Appendix A
specifies the affine diffeomophism.

4.6 Degeneracies

It is well known [Schwartz 1954] that the products of Dirac deltas,
indicator functions, and similar such distributions are not always
well defined or well-behaved. It is possible to create such ill-defined
expressions in our language. Here we characterize this set of ill-
defined expressions.

One such problematic expression is the derivative of the integral
of the product square of a parameterized indicator function:

D[[
∫ 1

x=0
[[[x > t]]] ∗ [[[x > t]]]]] [t ↦→ dt]

On the one hand, if we think of [[[x > t]]] ∗[[[x > t]]] as equivalent to
[[[x > t ∧ x > t]]] = [[[x > t]]], then the result of the derivative (after
delta-simplification) should be 1, as in the first example of this paper.

However, the derivative (pass 1) gives∫ 1

x=0
𝛿 (x − t) ∗ [[[x > t]]] ∗ dt +

∫ 1

x=0
𝛿 (x − t) ∗ [[[x > t]]] ∗ dt

which following delta annihilation (and some added simplification)
becomes:

2 ∗ ([[[t > t]]] ∗ dt ∗ [[[0 < t < 1]]])
which is 0 assuming t > t is false, or 2 if t > t is taken to be true.

In general, it is not possible for a compiler to determine whether
or not such degeneracies exist, since function equivalence is un-
decidable. This situation is not that different than the presence of

ACM Trans. Graph., Vol. 40, No. 4, Article 107. Publication date: August 2021.

107:10 • Sai Praveen Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li, and Jonathan Ragan-Kelley

singularities when using a conventional automatic differentiation
system – the automatic derivative of numerically stable code is not
necessarily numerically stable. However, we can make certain guar-
antees about the correctness of our automatic differentiation when
we can assume that discontinuities occur in general position with
respect to each other.
A set of smooth (𝑛 − 1)-manifolds in R𝑛 lie in general position

when the intersection of any𝑘 of thosemanifolds is an𝑛−𝑘 manifold.
Let {𝜙𝑖 } be a set of diffeomorphisms on R𝑛 . We say that these {𝜙𝑖 }
are in general position at point 𝑥 ∈ R𝑛 if the following is true:
let {𝜙 𝑗 } ⊆ {𝜙𝑖 } be the set of maps s.t. 𝜙 𝑗 1 (𝑥) = 0; then the vectors
{∇𝑥𝜙 𝑗 1} are linearly independent. We say that a set of maps {𝜙𝑖 }
are in general position if they are in general position at every point
𝑥 ∈ R𝑛 . Finally, we say that a program e inL is in general position
if the set of diffeomorphisms occuring in any integrand of e are
in general position for almost-all values (in the sense of Lebesgue
measure) of the free variables ®z of e.

4.7 Guarantee

Theorem 1. The derivative of the evaluation and the evaluation of
the derivative agree

(𝐷𝛾𝐸 [[𝑒]])𝜎 = 𝐸 [[𝐷 [[𝑒]]𝛾]]𝜎
almost everywhere assuming that 𝐹 [[𝑒]]𝛾 is in general position.

A proof sketch is included in Appendix B.

5 IMPLEMENTATION

In this section, we briefly describe the implementation and relevant
additions to the core semantics presented in Sec. 4.

Language features. For clarity of exposition, our semantics are
limited to a minimal set of key primitives. On the other hand, our
implementation supports a wider range of common features.

We support let bindings to allow for function abstraction and to
avoid unnecessary code replication. Our implementation also allows
for the creation and projection of tuples, which can be used for static,
fixed-size arrays. Since we do not currently implement integer types,
these arrays cannot be dynamically indexed. Returned results are
outputted as Python lists allowing for manipulating outputs.
Additionally, we implement reverse-mode differentiation using

a standard source-to-source approach. All compiler passes such as
those that manipulate Dirac deltas are shared with the forward
derivatives as described in detail in the semantics (Sec. 4.4).

Although the implementation lacks looping facilities, it is easy to
meta-program Teg in Python to, for example, compute the integral
for all of the pixels in an image.

Execution targets. We embed Teg in Python. The Python code
can then be lowered to an intermediate representation (IR), where
integrals (Teg) are discretized to for loops with quadrature. The IR is
further converted to a C header file that can be inserted into larger
projects, or imported as a Python module. Teg expressions can be
evaluated in either NumPy or compiled to CUDA device code.

Numerical validation. We implement a test suite of 95 integral
expressions to test both execution targets against finite differences.
See the supplementary code for the test cases.

(a) constant color (b) linear color (c) quadratic color

Fig. 5. Color interpolation scheme. We explore three different color inter-

polation methods for triangulating images: (a) assigning a constant color to

a triangle. (b) Linearly interpolating the color from vertices. (c)Quadratically

interpolating the color from vertices and edges. In all three settings, each

triangle is defined with its own colors, and different triangles do not share

color – this creates sharp edges.

co
ns
ta
nt

lin
ea
r

qu
ad
ra
tic

target ours ignore delta

Fig. 6. Image triangulation. Given a target image (first column), we opti-

mize the position and color of triangles to fit a stylized version of the image

(second column) with different color interpolation schemes (Fig. 5). We ini-

tialize the triangles as a grid mesh and set all color to black. We compare to

an optimization that ignores the Dirac delta terms of the derivatives (third

column) – this is equivalent to using a traditional automatic differentiation

system to produce the derivatives. In the constant color case, ignoring the

delta term makes the position derivative always zero, so no triangles are

moved. Even in the smooth case, ignoring the delta terms lead to artifacts,

such as oversmoothing in the linear case and deviation from sharp corners

in the quadratic case.

6 APPLICATIONS

We apply Teg to applications spanning several domains in computer
graphics and showcase the benefits of automatically accounting for
parametric discontinuities during optimization.

ACM Trans. Graph., Vol. 40, No. 4, Article 107. Publication date: August 2021.

Systematically Differentiating Parametric Discontinuities • 107:11

������������
�����

����������

����

(a) linear

������������
����

����������

����

(b) quadratic

Fig. 7. We compare the loss convergence in the image triangulation task in

Fig. 6 between our approach (orange) and an approach that ignore the Dirac

delta terms in the derivatives (blue). (a) shows the linear color interpolation

case in the second row of Fig. 6, while (b) shows the quadratic color inter-

polation case in the third row of Fig. 6. Since ignoring the delta derivative

leads to a biased estimator, it converges to a worse solution.

6.1 Image triangulation

Given an image, we want to generate a stylized version composed
of a triangulated pattern [Lawonn and Günther 2019; Yun 2013]. We
can formulate the problem similarly to the 2D differentiable render-
ing example in Sec. 2.2. Eq. 3 from Sec. 2.2 lays out the rendering
model for the constant color image triangulation problem. Here,
we further extend the example to have more elaborated shading
models. Fig. 5 demonstrates the three different shading methods
with increasing parameter complexity:

(1) Constant. A triangle is assigned a single color independent of
the position (𝑥,𝑦) (Eq. 3).

(2) Linear. We define three colors Ci, one for each vertex on the
triangle. We then use barycentric interpolation to compute
the value at a given continuous (𝑥,𝑦) point. In Teg, this can
be expressed as

lin_color = (w1C1 + w2C2 + w3C3) .

where the interpolation weights w are

w1 = ((x − v2 .x) ∗ (y − v3 .y) − (x − v3 .x) ∗ (y − v2 .y)) / norm
norm = (v1 .x − v2 .x) ∗ (v1 .y − v2 .y) − (v1 .x − v3 .x) ∗ (v1 .y − v2 .y).

w2 and w3 are defined similarly.
(3) Quadratic. We can further use six colors per triangle, one for

each vertex (𝐶1,𝐶2,𝐶3) and edge (𝐶1,2,𝐶2,3,𝐶3,1):

quad_color =𝑤 ′
1 ∗𝐶1 +𝑤 ′

2𝐶2 +𝑤 ′
3𝐶3 +𝑤 ′

1,2𝐶1,2 +𝑤 ′
2,3𝐶2,3 +𝑤 ′

3,1𝐶3,1,

where the interpolation weights 𝑤 ′ are defined using the
linear interpolation weights𝑤 :

𝑤 ′
1 = 𝑤1 ∗ (2 ∗𝑤1 − 1),𝑤 ′

2 = 𝑤2 ∗ (2 ∗𝑤2 − 1),𝑤 ′
3 = 𝑤3 ∗ (2 ∗𝑤3 − 1)

𝑤 ′
1,2 = 4 ∗𝑤1 ∗𝑤2,𝑤

′
2,3 = 4 ∗𝑤2 ∗𝑤3,𝑤

′
3,1 = 4 ∗𝑤3 ∗𝑤1 .

The colors 𝐶 are defined per-triangle and are not shared. This is
crucial for representing sharp edges. Unlike the constant color case,
the weights in linear and quadratic interpolation depend on the
positions of the triangle’s vertices. This leads to non-zero gradients
even if we ignore the contribution from the Dirac deltas. However,
ignoring the deltas generally produces worse results.

(a)

Perlin noise

(b)

bilinear

interpolation

(c)

thresholded

(d)

scaled and

translated

(e)

hyperbolic

coordinates

Fig. 8. Differentiating thresholded Perlin noise textures. Instead of

reparameterizing the higher-order polynomials formed by the Perlin noise,

we solve a different problem by evaluating the Perlin noise at a discrete

grid (a) and reconstruct it using bilinear interpolation (b). We then apply

thresholding on the bilinear interpolation (c). The bilinear interpolation

still leads to deltas with non-affine arguments. To eliminate the deltas, we

apply a diffeomorphism between Cartesian coordinates and hyperbolic

coordinates (d). This transforms the deltas into simpler affine conditions (e).

initialization guide image ours ignore delta
(a) colorized Perlin shader

initialization guide image ours ignore delta
(b) two-tone Perlin shader

Fig. 9. Guided Perlin textures. We optimize for the parameters of two

shaders based on Perlin noise. The shader in (a) uses the Perlin noise value

to decide between using a flat gray color and a low-resolution color map.

We keep the decision threshold value fixed and optimize for the color map

as well as the noise vectors of the Perlin grid. Ignoring the delta contribution

leads to an unchanged noise pattern, while our approach produces a noise

pattern that adhere to the logo structure. The shader in (b) uses two colors

instead of a color map. We optimize for the grid vectors, the two colors,

and the decision threshold value. Without the delta contribution, only the

threshold value and colors have non-zero derivatives, which is insufficient

to create a structural pattern.

Results. Fig. 6 shows some optimization results with a 𝐿2 loss
using Adam [Kingma and Ba 2015], using derivatives automati-
cally generated by Teg. We compare against the gradients obtained
when ignoring discontinuities, i.e., the incorrect discretize-then-
differentiate approach from Sec. 2.1. We run 150 iterations for both
approaches over all images. Fig. 7 shows the convergence plots for
both approaches. We compiled to CUDA kernels and run on an
RTX 2080 Ti. For the constant fragment case, each full iteration
took 0.11s to complete. The more complex linear and quadratic frag-
ment programs took 1.01s and 2.05s per iteration respectively. All
reported timings are for a 1200×800 image with approximately 2000

ACM Trans. Graph., Vol. 40, No. 4, Article 107. Publication date: August 2021.

107:12 • Sai Praveen Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li, and Jonathan Ragan-Kelley

triangles. The constant and quadratic fragment programs had peak
memory usage statistics of 177 and 180.8 megabytes respectively.

6.2 Guided Perlin textures

We fit the parameters of a discontinuous procedural shader to a tar-
get image. A common pattern in procedural shaders is to threshold
Perlin noise [1985] – the noise function is compared to a threshold
to decide which color to use for producing textures with segmented
regions. The thresholding produces complex discontinuities that
require special treatment.
The noise function produced from Perlin noise is at least a 4th-

degree polynomial in two variables. Eliminating the resulting delta
expression thus requires finding a diffeomorphism from this space
to space where the delta expression is affine. Solving the polynomial
system in a numerically robust way is challenging. Fortunately,
there is an easier formulation that avoids this problem (Fig. 8).
We evaluate the Perlin noise function at discrete positions on a

grid. We compute the value at continuous points through bilinear
interpolation of the four closest grid points:

noise =
(
N0,0 ∗ (1 − x) + N1,0 ∗ (x)

)
∗ (1 − y)+(

N0,1 ∗ (1 − x) + N1,1 ∗ (x)
)
∗ (y),

where Ni,j are values computed by the noise function. Importantly,
the continuous noise function is piecewise bilinear, which is neither
linear nor affine.

To use thresholded noise to produce a two-color shader, we arrive
at the following expression that selects color C+ if the noise is above
the threshold 𝑇 , and C− otherwise:

shader = C− + [[[noise > T]]] ∗ (C+ − C−).

The condition [[[noise > T]]] is in the general form 𝑘 (𝑥𝑦)𝑥𝑦 +
𝑘 (𝑥)𝑥 + 𝑘 (𝑦)𝑦 + 𝑘 (1) that traces an off-axis rectangular hyperbola in
𝑥 and 𝑦. This is not the common affine pattern, so we reparametrize
the delta expression through two diffeomorphisms:
(i) scale and translate to move the rectangular hyperbola to the
center, (𝑥,𝑦) ↦→ (𝑥 ′, 𝑦′) (Fig. 8(d)):

x′ →
√︁
k(xy)x + k(y)

√
k(xy)

, y′ →
√︁
k(xy)y + k(x)

√
k(xy)

x →
(
x′ − k(y)

√
k(xy)

)
/
√︁
k(xy) , y →

(
y′ − k(x)

√
k(xy)

)
/
√︁
k(xy) ,

(ii) convert from Cartesian to hyperbolic coordinates (𝑥 ′, 𝑦′) ↦→
(𝑢, 𝑣) (Fig. 8(e)):

u → ±
√︁
x′y′, v →

√︂
x′

y′

x′ → uv, y′ → u

v
.

Note that there are two possible values for u. This is because the
delta expression in this new space takes the form 𝛿

(
𝛿

(
𝛿

(
u2 − c

)))
, which

is equivalent to 1
2c

−1
(
𝛿

(
𝛿

(
𝛿

(
u −

√
c
)))
+ 𝛿

(
𝛿

(
𝛿

(
u +

√
c
))))
. Therefore, there

are two hyperbolic spaces, which correspond to each of the two
delta expressions in the new space, as shown by Fig. 8(c).

Fig. 10. Minigolf. We use our language to search for hole-in-one trajectories

in a minigolf game. Given an initial guess of the trajectory (the orange path),

we optimize for path parameters that minimize the action integral over a

Lagrangian with friction and contact forces. The walls and the windmill

blades are potential contact points where the velocity of the ball is discon-

tinuous. We solve the path using a second-order trust-region based Newton

method. The two paths are found using slightly varying setups: one with

k = 0.4 hitting no walls and one with k = 0.2 hitting the bottom-left wall.

(a) ours (b) without delta

Fig. 11. Double minigolf. We solve a similar problem to Fig. 10 with two

golf balls on a flat surface that can collide with each other. We compare to

a solution that ignores the discontinuity derivatives. Our solution obeys the

law of reflection. Ignoring the delta contribution from the discontinuities

lead to non-physical behaviors that violate Newton’s first law.

Results. Fig. 9 shows the optimization results with an 𝐿2 loss using
Adam [Kingma and Ba 2015], using the shader discussed here with
a modified version of a spatially varying color map C+ (x, y) instead
of the uniform color C+. We compare against the gradients obtained
when ignoring the derivative contribution of discontinuities. The
noise structure cannot be optimized when the deltas contributions
are ignored. We run the optimization for 300 iterations for both
approaches. On an RTX 2080 Ti, each iteration took 0.033s and used
135 megabytes of memory for 400 × 400 noise and guide images,
and a 40 × 40 Perlin vector grid.

6.3 Trajectory optimization with contact

Consider a minigolf task (Fig. 10 and 11), where we want to hit a
hole-in-one from a starting position, while hitting a pre-specified
sequence of walls along the way. We want to find a path q(t) for
the ball satisfying its equations of motion and additional boundary
conditions, including: q(t0) is at its start location and q(t1) is at
the hole, for start and end times t0 and t1. However, this problem

ACM Trans. Graph., Vol. 40, No. 4, Article 107. Publication date: August 2021.

Systematically Differentiating Parametric Discontinuities • 107:13

is complicated because of discontinuities in the velocity trajectories
at points of contact, and contact times that are not known a priori.
Using the methodology introduced in Sec. 2.3, we can optimize

the trajectory in Teg, without resorting to complicated machinery
such as function smoothing or non-linear programming. We use a
Lagrangian energy with a frictional term [Bateman 1931]:

L =

(
1

2
mq2t − V(q)

)
exp(k

m
t),

where m is the mass of the ball, qt is the time derivative of the
position q, and k is the frictional coefficient. The position, q(t), is
parametrized as a linear spline. The potential energy, V, contains the
gravitational force m ∗ g ∗ q.y. Following Sec. 2.3, we can incorporate
elastic contact via a high potential within the barriers m ∗ C ∗ Hc (q),
where Hc is a function that is positive only inside the barrier, such
that the contact force is only applied when the object interpenetrates
a wall (𝐶 is set to a large number). We can also have walls that move
with time – the windmill in Fig. 10 is one such example, the blade of
the windmill is blocking the golf ball only at a certain timeframes.
Our solution paths thus correspond to finding stationary points of
the action S =

∫
L. We initialize the optimizer with a non-physical

path that contacts the input wall sequence, so that the system finds
a physical path with the desired contact behavior.

Due to the size of the scenes and to avoid numerical instability, we
parameterize q(t) via a set of generalized coordinates that implicitly
constrain the path to contact our given input walls. Note that this
choice of coordinates only simplifies the optimization; our problem
is still the same – we want to solve for where and when the contact
points are, wherein velocities are discontinuous.

We set up two scenes for experimentation: in one scene we have
a hill and a windmill, and in the other scene we make two golf
balls collide with each other but ask both of them to reach the goal.
For the windmill scene we set the friction coefficient to k = 0.2
and 0.4 for two different runs, and for the double minigolf scene
we set k = 0.2. Fig. 10 and 11 show the results. We use a second-
order trust-region based Newton method implemented in scipy for
optimization. We perform a coarse-to-fine optimization strategy by
startingwith a low-resolution trajectory, then gradually refining it to
higher resolutions. The final resolution is around 10 control vertices
between each collision. The method converges quickly with the
tolerance of 10−8 to 10−12. In our setting, the collision events need
to be known a priori, but the collision position can be anywhere.
We also compare to an optimization that ignore the derivatives
coming from the discontinuities in Fig. 11. It clearly converges to a
non-physical result, showing the importance of incorporating the
Dirac delta terms. The optimization uses a single thread, takes (on
average) 1.17s per iteration and uses 779.7 megabytes of memory
on an Intel Core i9-9900K.

6.4 Optimizing a discontinuous bungee

Now we discuss optimization of a physical design in the presence
of discontinuities. Suppose we want to design a spring system for
bungee jump (Fig. 12). The motion of a spring is traditionally mod-
eled using Hooke’s law𝑚 ¥𝑥 =𝑚𝑔−𝑘𝑥 , where𝑚 is mass, 𝑔 is gravity,
and 𝑘 is the spring constant, which models the stiffness of the spring.
The term 𝑘𝑥 assumes that the material does not deform or lock and

m

m
m

Fig. 12. Optimizing a discontinuous bungee.

�������
�����������
������������
����

�����

�����

(a) Stress-strain curves

�����������
������������
�����

����������

����

(b) Loss convergence

Fig. 13. Bungee results: We show the the stress-strain curves and loss for

optimizations using finite differences, ignoring discontinuities, and using

Teg. The discontinuous stress-strain curve leads to Dirac delta during dif-

ferentiation. This makes it difficult to tune finite difference step sizes and

ignoring the deltas lead to suboptimal results. Our final loss is 18 times

lower than ignoring deltas.

is not part of a composite. For example, metal may bend, fracture,
or exhibit structural transitions under extreme heat or cold [Hi-
bbeler 2000; Lin et al. 2017; Tabin et al. 2016]. Composite materials
such as rebar concrete (steel-reinforced concrete) exhibit non-linear
stress-strain curves corresponding to the transitions between ma-
terials [Hibbeler 2000]. Woven materials such as yarn may lock
producing discontinuities in strain. In these cases, the 𝑘𝑥 term is
replaced by a stress function 𝑠 (𝑥) that is discontinuous, making
the system analytically intractable. A natural way to estimate the
solution is by using numerical methods.
We study an idealized series of bungee cords that deform. After

deformation, a string prevents further extension of the spring. We
jointly minimize the time and acceleration of a person connected
to this bungee-string system. We optimize the spring constants
𝑘1, 𝑘2 and the lengths of the strings 𝑙1, 𝑙2 (Fig. 12). We add the hard
constraint that the person does not hit the ground to prevent death.

Derivation. With two bungees-string links, the stress function is:

𝑠 (𝑥) =

𝑘1𝑥1 + 𝑘2𝑥2 if 𝑥1 ≤ 𝑙1, 𝑥2 ≤ 𝑙2
𝛼𝑘1𝑙1 + 𝑘2 (𝑥 − 𝑙1) if 𝑥1 > 𝑙1, 𝑥2 < 𝑙2
𝛼𝑘2𝑙2 + 𝑘1 (𝑥 − 𝑙2) if 𝑥1 < 𝑙1, 𝑥2 > 𝑙2
𝑔 if 𝑥1 ≥ 𝑙1, 𝑥2 ≥ 𝑙2

ACM Trans. Graph., Vol. 40, No. 4, Article 107. Publication date: August 2021.

107:14 • Sai Praveen Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li, and Jonathan Ragan-Kelley

Table 1. Parameter and loss values for the initialization (Init), finite differ-

ences (Finite Diff), not accounting for the Dirac deltas (No Deltas), and

accounting for the Dirac deltas (With Deltas).

Init Finite Diff No Deltas With Deltas
𝑘1 1.00 1.15 2.72 2.58
𝑘2 10.0 10.01 7.53 8.92
𝑙1 2.00 2.05 3.91 3.88
𝑙2 10.00 10.01 9.99 10.02

Loss 417.49 402.72 101.53 5.50

where 𝛼 is the plastic deformation factor of the bungees, and 𝑥1
and 𝑥2 are the individual displacements of two springs that sum up
to the total displacement 𝑥 : 𝑥 = 𝑥1 + 𝑥2. Also 𝑘1𝑥1 = 𝑘2𝑥2, since
the springs are massless and the force at the bottom of the first
spring must balance the force at the top of the second spring. The
corresponding second-order autonomous differential equation:

𝑚 ¥𝑥 =𝑚𝑔 − 𝑠 (𝑥)
cannot be solved by analytical means due to the discontinuities. If
we let 𝑣 = d𝑥

d𝑡 then since ¥𝑥 = d𝑣
d𝑡 = 𝑣 d𝑣

d𝑥 , we have:

𝑚𝑣d𝑣 = (𝑚𝑔 − 𝑠 (𝑥))d𝑥
Dividing by𝑚, integrating both sides of the equation assuming the
system is initially at rest, and solving for 𝑣 gives:

v(x) =
(
2 ∗

∫ x

z=l
g − s(z)

m

)
−1/2,

where l is lowest acceptable height in the trajectory (right above
the ground). Assuming the system is initially at position 0, we solve
for time by substituting 𝑣 = d𝑥

d𝑡 and integrating after isolating d𝑡
to one side of the equation. Thus, we find the time it takes for the
person to fall is:

t =

∫ u

x=l

(
2 ∗

∫ x

z=0
g − s(z)

m

)
−1/2,

where u is the initial height above the ground. We bound the total
displacement by constraining the velocity to be 0 at 𝑙 which is just
above the ground. The final constrained optimization problem is:

min
𝑘1,𝑘2,𝑙1,𝑙2

t + a(l)2 such that v(l) = 0,

where a(x) is the acceleration at position x. In words, the goal is
to minimize the time to fall plus the squared acceleration given
that the final velocity just above the ground is 0. We use the trust
region constrained algorithm with BFGS approximated Hessian
implemented in scipy to optimize 𝑘1, 𝑘2, 𝑙1, and 𝑙2.

Experiment. We now detail the experimental results for optimiz-
ing the parameters of the bungee-string system. The system starts 5
meters above the ground and we initialize it with arbitrarily chosen
parameters. These parameters do not satisfy the constraint that
v(l) = 0. We set the deformation factor 𝛼 = 0.2 and let the bungee
bottom out just above the ground at 10−5.

We compare to derivatives computed by finite difference or auto-
matic differentiation that ignore the Dirac deltas. Fig. 13a depicts
the different stress curves for each of these parameter assignments.
Fig. 13b shows the loss during optimization. Before iteration 50,

the ignore delta solution is infeasible, whereas ours is feasible by
iteration 15. Table 1 includes the final parameter assignments and
their corresponding loss. The computation took 0.048s per iteration
and used 145 megabytes of memory on an i9-9900K.

7 LIMITATIONS AND FUTURE WORK

We have shown that our approach to handling parametric disconti-
nuities is applicable to problems in graphics and physical simulation.
We now detail the limitations on the expressivity and implementa-
tion of our approach and how they may be addressed in the future.

7.1 Non-Smooth Builtins and Changes of Coordinates

In practice, we use many functions that are not defined everywhere
(division, trigonometric functions) and violate our theoretical as-
sumptions of smoothness; such functions with singularities and
asymptotes may also be numerically unstable near such non-smooth
regions. This is often acceptable for applications, but often leads to
difficult kinds of numerical debugging. Such challenges are familiar
for graphics programmers, but the reparameterization machinery
we present here can make such problems even harder to debug. It
would be helpful to figure out better software engineering tools
for analyzing automatically differentiated code, especially in the
presence of additional code transformations.

7.2 First-Class Derivatives: Inside of Integrals

Our guarantee of correctness does not consider integrals of deriva-
tives. In particular, applying our differentiation to some expression
(without the context of integration) will eliminate Dirac deltas aris-
ing from discontinuities even if we later place the resulting differ-
entiated expression inside of an integral. However, keeping Dirac
deltas around instead would allow users to form expressions that
are non-linear in those delta functions (e.g., products of deltas).
Still, there are problems that our system does not support, yet

a particular treatment of the Dirac deltas in question leads to a
desirable result. For example, the action integral

∫
𝐿(𝑡, 𝑥, 𝑥𝑡) where

𝑥𝑡 is the time derivative of position, contains the kinetic energy
1
2𝑚𝑥2𝑡 . This is not a problem for any physical trajectory, since all
such trajectories are C0 continuous (otherwise objects would in-
stantaneously teleport). However, in the case of our examples, 𝑥𝑡 is
not C0 continuous, and so 𝑥2𝑡 is not properly in general position.

Nonetheless, our method appears to work suitably for the physics
problems we investigated. Further investigation into the underlying
mathematics of distributions, and the corresponding automatic dif-
ferentiation compilers, is warranted to help ensure reliably correct
behavior for products of distributions.

7.3 Tensors Manipulation

The proposed semantics and implementation lacks the facility for
tensor manipulations such as indexing, block computations, etc.
Instead, data is implicitly unrolled and processed as scalar values.
Implementation of these additional constructs is important for ap-
plying our language to problems in domains including deep learning.
Furthermore, there are important considerations with respect to the
interactions between tensor operations and other language interac-
tions, specifically, derivatives of integrals with discontinuities.

ACM Trans. Graph., Vol. 40, No. 4, Article 107. Publication date: August 2021.

Systematically Differentiating Parametric Discontinuities • 107:15

7.4 Performance

For an expression 𝑒 of size 𝑛 with𝑚-many deltas, our automatic
differentiation can end up duplicating most of 𝑒 as many as𝑚 times.
Furthermore, we can only perform the code transformations (e.g.,
normalization and reparameterization) that constitute our differ-
entiation as whole-program transformations. For instance, deep-
learning frameworks such as TensorFlow or PyTorch expose com-
posable layers using the chain rule as their modularity principle. It
is unclear if and how the derivatives of integrals we consider in this
paper can be made fully modular and composable in a similar way.
However, the methods considered in this paper can be used to write
differentiable layers so long as the integrals in question are wholly
contained within a single layer.

7.5 Approximations other than Integral Discretization

Many other approximate operations other than integral discretiza-
tion are not commutative with differentiation. For example, approx-
imating a function using a piecewise constant function makes the
derivative of the approximation ill-behaved. Extending our idea to
general function approximation is an interesting direction for future
work.

8 CONCLUSIONS

We explore a systematic way to solve graphics and physical simula-
tion problems that involve differentiation, integration, and paramet-
ric discontinuities. We formalize the semantics of a new program-
ming language and implement these semantics in Teg. In the same
way that automatic differentiation frameworks, such as TensorFlow
and PyTorch, made implementation of machine learning algorithms
accessible, we believe our differentiable programming language
makes a significant first step towards making the implementation
of differentiable graphics systems accessible.

ACKNOWLEDGMENTS

We thank Fredo Durand for the discussions of the idea in the early
stage and proofreading, Ante Qu for tips on handling friction, Paul
Zhang for his discussions on image triangulation and diffeomor-
phisms, Joshua Fishman and Tao Du for their advice on physical sim-
ulation methods, Samuel Tenka for his insightful discussions of dis-
tribution theory, and Luke Anderson for his detailed proof-reading.
This researchwas funded under DARPA agreement HR00112090017.

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,
Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat
Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, PeteWarden,MartinWattenberg,Martin
Wicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems.

Luke Anderson, Tzu-Mao Li, Jaakko Lehtinen, and Frédo Durand. 2017. Aether: An
embedded domain specific sampling language for Monte Carlo rendering. ACM
Trans. Graph. (Proc. SIGGRAPH) 36, 4 (2017), 1–16.

James Arvo. 1994. The Irradiance Jacobian for Partially Occluded Polyhedral Sources.
In SIGGRAPH. 343–350.

Sai Praveen Bangaru, Tzu-Mao Li, and Frédo Durand. 2020. Unbiased warped-area
sampling for differentiable rendering. ACM Trans. Graph. (Proc. SIGGRAPH Asia)
39, 6 (2020), 1–18.

Alan H Barr, Bena Currin, Steven Gabriel, and John F Hughes. 1992. Smooth interpola-
tion of orientations with angular velocity constraints using quaternions. Comput.
Graph. (Proc. SIGGRAPH) 26, 2 (1992), 313–320.

Harry Bateman. 1931. On dissipative systems and related variational principles. Physical
Review 38, 4 (1931), 815.

John T Betts. 1998. Survey of numerical methods for trajectory optimization. Journal
of guidance, control, and dynamics 21, 2 (1998), 193–207.

John T. Betts. 2009. Practical Methods for Optimal Control and Estimation Using Nonlinear
Programming (2nd ed.). Cambridge University Press, USA.

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan,
Theofanis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman.
2019. Pyro: Deep Universal Probabilistic Programming. J. Mach. Learn. Res. 20, 1
(2019), 973–978.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dou-
gal Maclaurin, and Skye Wanderman-Milne. 2018. JAX: composable transformations
of Python+NumPy programs. http://github.com/google/jax

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. 2018.
Neural Ordinary Differential Equations. InAdvances in Neural Information Processing
Systems, Vol. 31. 6571–6583.

Michael F Cohen. 1992. Interactive spacetime control for animation. Comput. Graph.
(Proc. SIGGRAPH) (1992), 293–302.

J.F. Colombeau. 1984. New Generalized Functions and Multiplication of Distributions.
North-Holland.

Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J. Zico
Kolter. 2018. End-to-End Differentiable Physics for Learning and Control. In Ad-
vances in Neural Information Processing Systems, Vol. 31. 7178–7189.

Martin de La Gorce, David J Fleet, and Nikos Paragios. 2011. Model-based 3D hand
pose estimation from monocular video. IEEE Trans. Pattern Anal. Mach. Intell. 33, 9
(2011), 1793–1805.

Zachary Devito, Michael Mara, Michael Zollhöfer, Gilbert Bernstein, Jonathan Ragan-
Kelley, Christian Theobalt, Pat Hanrahan, Matthew Fisher, and Matthias Niessner.
2017. Opt: A Domain Specific Language for Non-Linear Least Squares Optimization
in Graphics and Imaging. ACM Trans. Graph. 36, 5 (2017), 171:1–171:27.

P.A.M. Dirac. 1981. The Principles of Quantum Mechanics. Clarendon Press.
Peter Dyer and SR McReynolds. 1968. On optimal control problems with discontinuities.

J. Math. Anal. Appl. 23, 3 (1968), 585–603.
Conal Elliott. 2018. The Simple Essence of Automatic Differentiation. International

Conference on Functional Programming (2018).
Timon Gehr, Samuel Steffen, and Martin Vechev. 2020. 𝜆PSI: exact inference for higher-

order probabilistic programs. In Programming Language Design and Implementation.
883–897.

Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard Thomaszewski,
and Stelian Coros. 2020. ADD: Analytically Differentiable Dynamics for Multi-Body
Systems with Frictional Contact. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 39, 6
(2020).

Ioannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd Zickler, and Anat Levin. 2013.
Inverse Volume Rendering with Material Dictionaries. ACM Trans. Graph. (Proc.
SIGGRAPH Asia) 32, 6 (2013), 162:1–162:13.

Andreas Griewank and Andrea Walther. 2008. Evaluating Derivatives. Society for
Industrial and Applied Mathematics.

Yu Guo, Miloš Hašan, Lingqi Yan, and Shuang Zhao. 2020. A Bayesian Inference
Framework for Procedural Material Parameter Estimation. Comput. Graph. Forum
(Proc. Pacific Graphics) 39, 7 (2020), 255–266.

Christian Hafner, Christian Schumacher, Espen Knoop, Thomas Auzinger, Bernd Bickel,
and Moritz Bächer. 2019. X-CAD: Optimizing CAD Models with Extended Finite
Elements. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 38, 6 (2019).

William Rowan Hamilton. 1834. XV. On a general method in dynamics; by which the
study of the motions of all free systems of attracting or repelling points is reduced
to the search and differentiation of one central relation, or characteristic function.
Philosophical transactions of the Royal Society of London 124 (1834), 247–308.

Charles R Hargraves and Stephen W Paris. 1987. Direct trajectory optimization using
nonlinear programming and collocation. Journal of guidance, control, and dynamics
10, 4 (1987), 338–342.

R.C. Hibbeler. 2000. Mechanics of Materials. Prentice Hall.
Philipp Holl, Nils Thuerey, and Vladlen Koltun. 2020. Learning to Control PDEs with

Differentiable Physics. In International Conference on Learning Representations.
Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-

Kelley, and Frédo Durand. 2020. DiffTaichi: Differentiable Programming for Physical
Simulation. International Conference on Learning Representations (2020).

K. H. Hunt and F. R. E. Crossley. 1975. Coefficient of Restitution Interpreted as Damping
in Vibroimpact. Journal of Applied Mechanics 42, 2 (1975), 440–445.

Jeevana Priya Inala, Sicun Gao, Soonho Kong, and Armando Solar-Lezama. 2018. REAS:
combining numerical optimization with SAT solving. arXiv (2018).

Kenneth E. Iverson. 1962. A Programming Language. John Wiley & Sons, Inc.
Wenzel Jakob. 2019. Enoki: structured vectorization and differentiation on modern

processor architectures. https://github.com/mitsuba-renderer/enoki.

ACM Trans. Graph., Vol. 40, No. 4, Article 107. Publication date: August 2021.

http://github.com/google/jax

107:16 • Sai Praveen Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li, and Jonathan Ragan-Kelley

James T. Kajiya. 1986. The Rendering Equation. Comput. Graph. (Proc. SIGGRAPH) 20,
4 (1986), 143–150.

Michael Kass. 1992. CONDOR: Constraint-Based Dataflow. Comput. Graph. (Proc.
SIGGRAPH) 26, 2 (1992), 321–330.

Michael Kass, Andrew Witkin, and Demetri Terzopoulos. 1988. Snakes: Active contour
models. Int. J. Comput. Vision 1, 4 (1988), 321–331.

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2018. Neural 3D Mesh Renderer.
In Computer Vision and Pattern Recognition. IEEE, 3907–3916.

Diederick P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization.
In International Conference on Learning Representations.

Donald E Knuth. 1992. Two notes on notation. The American Mathematical Monthly 99,
5 (1992), 403–422.

Alp Kucukelbir, Rajesh Ranganath, AndrewGelman, and DavidM. Blei. 2015. Automatic
Variational Inference in Stan. In Advances in Neural Information Processing Systems.
568–576.

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo
Aila. 2020. Modular primitives for high-performance differentiable rendering. ACM
Trans. Graph. (Proc. SIGGRAPH Asia) 39, 6 (2020), 1–14.

Kai Lawonn and Tobias Günther. 2019. Stylized Image Triangulation. In Computer
Graphics Forum, Vol. 38. Wiley Online Library, 221–234.

Wonyeol Lee, Hangyeol Yu, Xavier Rival, and Hongseok Yang. 2020. On Correctness of
Automatic Differentiation for Non-Differentiable Functions. In Advances in Neural
Information Processing Systems.

Wonyeol Lee, Hangyeol Yu, and Hongseok Yang. 2018. Reparameterization gradient
for non-differentiable models. In Advances in Neural Information Processing Systems.
5553–5563.

Alexander K Lew, Marco F Cusumano-Towner, Benjamin Sherman, Michael Carbin,
and Vikash K Mansinghka. 2019. Trace types and denotational semantics for sound
programmable inference in probabilistic languages. Proc. ACM Program. Lang. 4,
POPL (2019), 1–32.

Minchen Li, Zachary Ferguson, Teseo Schneider, Timothy Langlois, Denis Zorin, Daniele
Panozzo, Chenfanfu Jiang, and Danny M Kaufman. 2020a. Incremental potential
contact: Intersection-and inversion-free, large-deformation dynamics. ACM Trans.
Graph. (Proc. SIGGRAPH) (2020).

Tzu-Mao Li. 2019. Differentiable Visual Computing. Ph.D. Dissertation. Massachusetts
Institute of Technology. Advisor(s) Durand, Frédo.

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018a. Differentiable
Monte Carlo Ray Tracing through Edge Sampling. ACM Trans. Graph. (Proc. SIG-
GRAPH Asia) 37, 6 (2018), 222:1–222:11.

Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo Durand, and Jonathan Ragan-
Kelley. 2018b. Differentiable programming for image processing and deep learning
in Halide. ACM Trans. Graph. (Proc. SIGGRAPH) 37, 4 (2018), 139:1–139:13.

Tzu-Mao Li, Michal Lukáč, Gharbi Michaël, and Jonathan Ragan-Kelley. 2020b. Differ-
entiable Vector Graphics Rasterization for Editing and Learning. ACM Trans. Graph.
(Proc. SIGGRAPH Asia) 39, 6 (2020), 193:1–193:15.

Peng Lin, Yonggang Hao, Baoyou Zhang, Shuzhi Zhang, and Jun Shen. 2017. Strain rate
sensitivity of Ti-22Al-25Nb (at.alloy during high temperature deformation. Materials
Science and Engineering: A (2017).

Seppo Linnainmaa. 1970. The representation of the cumulative rounding error of an
algorithm as a Taylor expansion of the local rounding errors. Master’s thesis. Univ.
Helsinki.

Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. 2019. Soft Rasterizer: A Differentiable
Renderer for Image-based 3D Reasoning. International Conference on Computer
Vision (2019).

Matthew M. Loper and Michael J. Black. 2014. OpenDR: An Approximate Differentiable
Renderer. In European Conference on Computer Vision, Vol. 8695. ACM, 154–169.

Guillaume Loubet, Nicolas Holzschuch, and Wenzel Jakob. 2019. Reparameterizing
discontinuous integrands for differentiable rendering. ACM Trans. Graph. (Proc.
SIGGRAPH Asia) 38, 6 (2019), 228.

DamianoMazza andMichele Pagani. 2021. Automatic differentiation in PCF. Proceedings
of the ACM on Programming Languages 5 (2021), 1–27.

Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. 2004. Fluid control
using the adjoint method. ACM Trans. Graph. (Proc. SIGGRAPH) 23, 3 (2004), 449–
456.

Brian Vincent Mirtich. 1996. Impulse-based dynamic simulation of rigid body systems.
University of California, Berkeley.

Don PMitchell and Arun N Netravali. 1988. Reconstruction filters in computer-graphics.
Comput. Graph. (Proc. SIGGRAPH) 22, 4 (1988), 221–228.

Igor Mordatch, Emanuel Todorov, and Zoran Popović. 2012. Discovery of Complex
Behaviors through Contact-Invariant Optimization. ACM Trans. Graph. (Proc. SIG-
GRAPH) 31, 4 (2012).

Igor Mordatch, Jack M Wang, Emanuel Todorov, and Vladlen Koltun. 2013. Animating
human lower limbs using contact-invariant optimization. ACM Trans. Graph. 32, 6
(2013), 1–8.

Henry P Moreton and Carlo H Séquin. 1992. Functional optimization for fair surface
design. Comput. Graph. (Proc. SIGGRAPH) 26, 2 (1992), 167–176.

Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2:
A retargetable forward and inverse renderer. ACM Trans. Graph. (Proc. SIGGRAPH
Asia) 38, 6 (2019), 1–17.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems. 8024–8035.

Barak A. Pearlmutter and Jeffrey Mark Siskind. 2008. Reverse-mode AD in a Functional
Framework: Lambda the Ultimate Backpropagator. Trans. Program. Lang. Syst. 30, 2
(2008), 7:1–7:36.

Ken Perlin. 1985. An image synthesizer. Comput. Graph. (Proc. SIGGRAPH) 19, 3 (1985),
287–296.

Jovan Popović, Steven M Seitz, Michael Erdmann, Zoran Popović, and Andrew Witkin.
2000. Interactive manipulation of rigid body simulations. In SIGGRAPH. 209–217.

Zoran Popović and Andrew Witkin. 1999. Physically based motion transformation. In
Comput. Graph. (Proc. SIGGRAPH). 11–20.

Michael Posa, Cecilia Cantu, and Russ Tedrake. 2014. A direct method for trajectory
optimization of rigid bodies through contact. The International Journal of Robotics
Research 33, 1 (2014), 69–81.

Ravi Ramamoorthi, Dhruv Mahajan, and Peter Belhumeur. 2007. A First-order Analysis
of Lighting, Shading, and Shadows. ACM Trans. Graph. 26, 1 (2007), 2.

Maxime Roger, Stéphane Blanco, Mouna El Hafi, and Richard Fournier. 2005. Monte
Carlo estimates of domain-deformation sensitivities. Physical review letters 95, 18
(2005), 180601.

L. Schwartz. 1950. Théorie des distributions. Number v. 2 in Actualités scientifiques et
industrielles. Hermann.

L. Schwartz. 1954. Sur l’impossibilité de la multiplication des distributions. C. R. Acad.
Sci. Paris (1954).

Benjamin Sherman, Jesse Michel, and Michael Carbin. 2021. 𝜆𝑆 : Computable semantics
for differentiable programming with higher-order functions and datatypes. Proc.
ACM Program. Lang. 5, POPL, Article 3 (2021), 31 pages.

Liang Shi, Beichen Li, Miloš Hašan, Kalyan Sunkavalli, Tamy Boubekeur, Radomir
Mech, and Wojciech Matusik. 2020. MATch: Differentiable Material Graphs for
Procedural Material Capture. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 39, 6 (2020),
1–15.

Stan Development Team. 2015. Stan Modeling Language Users Guide and Reference
Manual, Version 2.9.0. http://mc-stan.org/

Robert F Stengel. 1994. Optimal control and estimation. Courier Corporation.
J. Tabin, B. Skoczen, and J. Bielski. 2016. Strain localization during discontinuous plastic

flow at extremely low temperatures. International Journal of Solids and Structures
(2016).

Emanuel Todorov. 2011. A convex, smooth and invertible contact model for trajectory
optimization. In International Conference on Robotics and Automation. IEEE, 1071–
1076.

Christopher D. Twigg and Doug L. James. 2008. Backward Steps in Rigid Body Simula-
tion. ACM Trans. Graph. (Proc. SIGGRAPH), Article 25 (2008).

Kiwon Um, Robert Brand, Yun Fei, Philipp Holl, and Nils Thuerey. 2020. Solver-in-the-
Loop: Learning from Differentiable Physics to Interact with Iterative PDE-Solvers.
Advances in Neural Information Processing Systems (2020).

Eric Veach. 1998. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D.
Dissertation. Stanford University. Advisor(s) Guibas, Leonidas J.

WilliamWelch and AndrewWitkin. 1992. Variational surface modeling. Comput. Graph.
(Proc. SIGGRAPH) 26, 2 (1992), 157–166.

R. E. Wengert. 1964. A Simple Automatic Derivative Evaluation Program. Commun.
ACM 7, 8 (1964), 463–464.

Andrew Witkin and Michael Kass. 1988. Spacetime constraints. ACM Trans. Graph.
(Proc. SIGGRAPH) 22, 4 (1988), 159–168.

LifanWu, Guangyan Cai, Shuang Zhao, and Ravi Ramamoorthi. 2020. Analytic spherical
harmonic gradients for real-time rendering with many polygonal area lights. ACM
Trans. Graph. (Proc. SIGGRAPH) 39, 4 (2020), 134.

Dong Yu, Adam Eversole, Mike Seltzer, Kaisheng Yao, Oleksii Kuchaiev, Yu Zhang, Frank
Seide, Zhiheng Huang, Brian Guenter, Huaming Wang, Jasha Droppo, Geoffrey
Zweig, Chris Rossbach, Jie Gao, Andreas Stolcke, Jon Currey, Malcolm Slaney,
Guoguo Chen, Amit Agarwal, Chris Basoglu, Marko Padmilac, Alexey Kamenev,
Vladimir Ivanov, Scott Cypher, Hari Parthasarathi, Bhaskar Mitra, Baolin Peng,
and Xuedong Huang. 2014. An Introduction to Computational Networks and the
Computational Network Toolkit. Technical Report. Microsoft Research.

Dofl Y.H. Yun. 2013. DMesh, Triangulation Image Generator. http://dmesh.thedofl.com/
Accessed: 2021-01-26.

Cheng Zhang, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. 2020.
Path-space Differentiable Rendering. ACM Trans. Graph. (Proc. SIGGRAPH) 39, 6
(2020), 143:1–143:19.

Cheng Zhang, Lifan Wu, Changxi Zheng, Ioannis Gkioulekas, Ravi Ramamoorthi, and
Shuang Zhao. 2019. A differential theory of radiative transfer. ACM Trans. Graph.

ACM Trans. Graph., Vol. 40, No. 4, Article 107. Publication date: August 2021.

http://mc-stan.org/
http://dmesh.thedofl.com/

Systematically Differentiating Parametric Discontinuities • 107:17

(Proc. SIGGRAPH Asia) 38, 6 (2019), 227.
Yuan Zhou, Bradley J. Gram-Hansen, Tobias Kohn, Tom Rainforth, Hongseok Yang,

and Frank Wood. 2019. LF-PPL: A Low-Level First Order Probabilistic Programming
Language for Non-Differentiable Models. In International Conference on Artificial
Intelligence and Statistics (AISTATS), Vol. 89. PMLR, 148–157.

A AFFINE DIFFEOMORPHISMS

We syntactically pattern-match affine expressions and automatically
generate the appropriate mappings. Assuming the affine expres-
sion is of the pattern c0x0 + c1x1 + · · · cnxn (the translation term
does not affect the reparametrization), we can think of this as a
dot product between the expression vector ®c = [c0, c1, · · · cn] and
the variable vector ®x. In a similar manner, we can pose our target
expression as a dot product: 𝜙1 (®z, ®y) = y1 = [1, 0, · · · 0] · ®y.
Our approach to finding such a transformation is to apply a

symbolic rotation matrix 𝑅 to ®x such that 𝑅 satisfies the mapping
[1, 0, · · · 0] ↦→ [c0, c1, · · · cn].
We arrive at the following quintuplet for our affine diffeomor-

phism:

(1) Mapping: 𝜙 (®z, ®y) =
��®c��R®y, where

Rij =

𝑐
′
𝑗
, for 𝑖 = 0

−𝑐′
𝑖
, for 𝑗 = 0

𝛿𝑖, 𝑗 −
𝑐
′
𝑖 ·𝑐

′
𝑗

1+𝑐′0
, for 0 ≤ 𝑛 ≤ 1

and c

′
i denotes the normalized expressions c

′
i = ci/

��®c��
(2) Inverse: 𝜙−1 (®z, ®y) =

��®c��−1 RT®y. The inverse of a rotation trans-
formation is also the transpose.

(3) Jacobian: |J𝜙 | (®z, ®y) =
��®c��−1. Although the compiler can au-

tomatically derive an equivalent expression, we can use the
properties of our rotation transformation to simplify the re-
sulting program. The Jacobian adjustment term in this case
is the norm of the vector of coefficients.

(4) Bounds transfer: a function B𝜙 (®z) : (®a, ®b) → (®a′, ®b′). This ex-
pression can be computed through applying interval arith-
metic. The expression for the general affine case resolves to
the following:

B
(j)
𝜙

(®z) = (R®u(j) ,R®v(j)), where

u
(j)
i =

{
𝑎𝑖 for 𝑅𝑖 𝑗 > 0
𝑏𝑖 for 𝑅𝑖 𝑗 ≤ 0

}
v
(j)
i =

{
𝑏𝑖 for 𝑅𝑖 𝑗 > 0
𝑎𝑖 for 𝑅𝑖 𝑗 ≤ 0

}
Essentially, we construct expressions for the extreme values
for each target-space variable by selecting between the upper
or lower bound for each source-space variable depending on
the sign of the corresponding coefficient in R. This constructs
a set of bounds that are guaranteed to enclose the integration
domain.

(5) Bounds mask: a function M𝜙 (®z). The bounds mask is automati-
cally constructed by the compiler, using the process discussed
previously in Sec. 4.5.

B PROOF SKETCH OF LANGUAGE CORRECTNESS

Proof. In order to reason about the correctness of our transfor-
mations, we must extend the denotational semantics of L to include
𝛿 (𝛿 (𝛿 (·))). This can be done through any suitable choice of a mathemati-
cal theory of distributions [Colombeau 1984; Dirac 1981; Schwartz
1950]. This argument will remain agnostic to this choice.

Given our general position assumption, (𝐷𝛾𝐸 [[𝑒]])𝜎 = 𝐸 [[𝐹 [[𝑒]]𝛾]]𝜎
will hold everywhere except for in some 𝑛 − 2 sub-manifold of the
free variables of e. This property is true recursively for all sub-
expressions of e.
Proceeding on to the Delta Elimination passes, normalization

(Pass 1) will preserve equality. The first of our two normalization
rewrites is sound because the expression being distributed cannot
contain a Dirac delta (by linearity of the L′ grammar). The second
of the two rewrites is sound by linearity of integration. Again by
the linearity of L′, we must reach the desired normal form.
Reparameterization (Pass 2) is a direct application of change-of-

coordinates, and therefore preserves the meaning of the program.
As a diffeomorphism, the change of coordinates must preserve the
general position condition.
Finally, Delta Annihilation replaces our “volume” integral over

𝑛 dimensions with a “surface” integral over 𝑛 − 1 dimensions. This
change of integration domain is sound by the sifting property of
the Dirac delta (i.e.

∫
𝑥
𝛿 (𝑥) 𝑓 (𝑥) = 𝑓 (0)). Furthermore, thanks to our

general position assumption, the diffeomorphisms for the remaining
step/indicator-functions can only evaluate (i.e. 𝜙1) to 0 on a 𝑛 − 2 di-
mensional sub-manifold of our new domain of integration, which is
a measure zero sub-set of the integration domain. As a consequence,
this integral is well-defined regardless of the underlying theory of
distributions, and produces the expected result.

Finally, the remaining deltas are no longer contained within inte-
grals (since they have either been factored out during Delta Anni-
hilation, or were already outside thanks to normalization). The 𝜙
maps inside these deltas are zero on at most a measure zero subset
of the domain of the free variables. This is fine, since we only claim
correctness almost everywhere, like most automatic differentiation
systems’ claim without integrals [Mazza and Pagani 2021].

□

ACM Trans. Graph., Vol. 40, No. 4, Article 107. Publication date: August 2021.

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 1D Example
	2.2 Case Study I: 2D Differentiable Rendering
	2.3 Case Study II: Physics-based Animation and Control

	3 Related Work
	4 Semantics and Correctness Proof of Our Language
	4.1 Preliminaries
	4.2 Syntax and Denotational Semantics of L
	4.3 Syntactic Sugar
	4.4 Derivative Application
	4.5 Reparameterization
	4.6 Degeneracies
	4.7 Guarantee

	5 Implementation
	6 Applications
	6.1 Image triangulation
	6.2 Guided Perlin textures
	6.3 Trajectory optimization with contact
	6.4 Optimizing a discontinuous bungee

	7 Limitations and Future work
	7.1 Non-Smooth Builtins and Changes of Coordinates
	7.2 First-Class Derivatives: Inside of Integrals
	7.3 Tensors Manipulation
	7.4 Performance
	7.5 Approximations other than Integral Discretization

	8 Conclusions
	Acknowledgments
	References
	A Affine Diffeomorphisms
	B Proof Sketch of Language Correctness

