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Fig. 1. Differentiable rendering computes derivatives of the light transport equation. To differentiate with the existence of visibility, recent physically-based
differentiable renderers require either explicitly finding boundary points [Li et al. 2018; Zhang et al. 2020], or approximating the boundary contribution through
heuristics [Loubet et al. 2019]. We develop from first principles an unbiased estimator that computes the boundary contribution from interior (area) samples.
Our approach can be easily integrated with existing importance sampling methods and computes accurate and low variance gradients. For instance, the edge
sampling method [Li et al. 2018] finds it difficult to consistently sample boundary points that contribute to the derivative in the soft reflection, especially
because of the high complexity of the scene. Our method, on the other hand, uses samples from a standard path tracer and takes advantage of BSDF and light
source importance sampling to compute a robust estimate for the derivative. We validate our derivatives against the finite difference image computed w.r.t the
hedge’s translation in the upward direction. Both our method and edge sampling used an equal number of samples.

Differentiable rendering computes derivatives of the light transport equation
with respect to arbitrary 3D scene parameters, and enables various applica-
tions in inverse rendering and machine learning. We present an unbiased
and efficient differentiable rendering algorithm that does not require explicit
boundary sampling. We apply the divergence theorem to the derivative of
the rendering integral to convert the boundary integral into an area integral.
We rewrite the converted area integral to a form that is suitable for Monte
Carlo rendering. We then develop an efficient Monte Carlo sampling algo-
rithm for solving the area integral. Our method can be easily plugged into
a traditional path tracer and does not require dedicated data structures for
sampling boundaries.
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We analyze the convergence properties through bias-variance metrics,
and demonstrate our estimator’s advantages over existing methods for some
synthetic inverse rendering examples.
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1 INTRODUCTION
Differentiable rendering – the task of computing derivatives of
the light transport equation [Kajiya 1986] with respect to scene
parameters such as camera position, triangle mesh positions, and
texture parameters, has become increasingly important for solving
inverse rendering problems and training 3D deep learning models.
The discontinuities introduced by visibility pose a central challenge
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Fig. 2. Taxonomy of differentiable rendering. Both boundary sam-
pling techniques rely on complex importance sampling data structures. Li et
al. [2018] use a 6D Hough tree to find silhouettes and Zhang et al. [2020]
pre-compute a spatio-angular photon map in order to find important seg-
ments. In contrast, the reparameterization method (Loubet et al. [2019]) is
lightweight, and only needs to compute a rotation on-the-fly during the
standard Monte Carlo rendering process, but it is biased. Our technique
retains the simplicity and flexibility of the reparameterization method, while
solving its bias problem.

to differentiable rendering because their derivatives have measure
zero and cannot be sampled by traditional Monte Carlo methods.
Various approaches have been proposed to resolve the visibility

challenges. We roughly group them into three categories (Fig. 2):
• Rasterization. Many deterministic differentiable rasterizers
approximate visibility and ignore higher-order transport such
as shadow and global illumination (e.g., [Kato et al. 2018;
Loper and Black 2014]).
• Boundary sampling. These methods [Li et al. 2018; Zhang
et al. 2020, 2019] explicitly integrate over the discontinuities
that occur at object silhouettes. They can compute unbiased
gradients of pixel colors with respect to the scene parameters,
while taking higher-order transport into consideration.
• Area sampling. Loubet et al. [2019] introduced a fast ap-
proximation to boundary sampling by sampling the area in-
stead of the silhouette, through tracing auxiliary rays inside
a unidirectional path tracer, and detecting silhouettes using
heuristics. They then reparameterize the integral to eliminate
discontinuities by rotating the integration domain.

The boundary sampling approaches, while producing unbiased
results, are usually more involved in the implementation and are
less efficient, since they cannot rely on the traditional solid angle
sampling infrastructures of traditional renderers. For primary vis-
ibility, the silhouette of 3D objects can be precomputed given a
camera position. However, for secondary visibility, sampling from
the object silhouettes given a shading point is computationally chal-
lenging and requires expensive data structure queries for finding
the silhouette [Hertzmann and Zorin 2000; Li et al. 2018; Olson and
Zhang 2006; Sander et al. 2000]. Furthermore, boundary sampling
approaches first sample points on the edge, then connect them to

other light path vertices. This connection makes edges inside mirror
reflections particularly challenging to sample.

On the other hand, all the current alternatives that are not based
on edge sampling are biased and do not converge to the target
solution.

We propose a simple and practical solution for differentiable ren-
dering using area sampling. By deriving the area integral from
first principles, we show an efficient, consistent estimator for the
derivative as well as a version that produces an unbiased estimate.
Like Loubet et al.’s approach, our method does not require dedi-
cated data structures for selecting silhouette edges and can be easily
integrated into a traditional unidirectional path tracer by tracing
auxiliary rays. Unlike Loubet et al.’s approach, our method does not
introduce approximation to the integral and produces consistent or
unbiased estimates.

Our key insight is that we can convert the integral over the object
silhouette to an area integral by applying the divergence theorem.
We show that, as long as the resulting integrand of the area integral
is continuous and matches the values of the silhouette integral at
the boundaries, the two integrals are equivalent. We also show that,
under this interpretation, Loubet et al.’s method introduces bias,
since the integrands at the silhouette do not match for the two
integrals.
Given the continuity and boundary conditions, there are infin-

itely many functions that satisfy the constraints. However, since we
want to avoid boundary sampling in the first place, we are solving a
difficult boundary interpolation problem without prior knowledge
of the boundaries, while having to match the contribution at the
boundaries. To resolve this, we construct a smooth area integral
by convolving a boundary-matching but discontinuous field. We
design the convolution such that it converges to the values of the
contribution at the boundaries. We then develop a sampling algo-
rithm to produce consistent estimates for this convolution, followed
by an unbiased version that uses Russian roulette de-biasing1. We
also employ antithetic sampling and control variates to reduce the
variance introduced by the convolution.

Experiments show that our sampling algorithm introduces com-
parable variance to Loubet et al.’s method but has almost zero bias
with our consistent estimator (which reduces to zero with our unbi-
ased version). This leads to a more accurate estimation in inverse
rendering problems without the extra computational overhead of
edge-sampling methods.

Our contributions are:

• We connect the silhouette integral that occurs in differentiable
rendering, and the area integral in the traditional rendering
equation, by applying the divergence theorem.
• We identify a family of area integrals useful for handling the
discontinuities in differentiable rendering through convolu-
tion.
• We derive an efficient and practical algorithm to sample these
area integrals. Our method can be easily plugged into a uni-
directional path tracer.

1In practice, this leads to potentially unbounded memory usage, and we impose an
upper bound truncation, like any path tracer employing Russian roulette (Section 5.5).
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2 RELATED WORK
Light path derivatives. In light transport simulation, derivatives

with respect to light path parameters are often used by rendering
algorithms to guide sampling and reconstruction [Arvo 1994; Chen
and Arvo 2000; Mitchell and Hanrahan 1992; Ramamoorthi et al.
2007; Shinya et al. 1987; Ward and Heckbert 1992; Wu et al. 2020].
In more recent work, derivatives are used in Markov chain Monte
Carlo algorithms for guiding the mutation [Hanika et al. 2015; Jakob
and Marschner 2012; Kaplanyan et al. 2014; Li et al. 2015; Luan et al.
2020; Rioux-Lavoie et al. 2020]. In contrast, we are interested in
computing derivatives of light transport contributions with respect
to arbitrary parameters, including scene parameters such as camera
pose and triangle vertex positions.

Differentiable Rendering in Graphics and Vision. There is a strong
demand in both graphics and vision communities for a general-
purpose differentiable renderer. Early graphics and vision algorithms
often used specialized differentiable renderers for their specific
inverse graphics problems (e.g., [Blanz and Vetter 1999; Jalobeanu
et al. 2004; Patow and Pueyo 2003; Smelyansky et al. 2002]). There
is also an increasing interest in including a differentiable rendering
layer inside a machine learning framework (e.g., [Aittala et al. 2016;
Genova et al. 2018; Li et al. 2019; Liu et al. 2017]).
The first general-purpose differentiable renderers focused on

approximating the primary visibility and supported a limited set of
material models [de La Gorce et al. 2011; Kato et al. 2018; Liu et al.
2019; Loper and Black 2014; Rhodin et al. 2015].

Differentiable Light Transport Algorithms. Recently, Li et al. [2018]
proposed the first unbiased Monte Carlo solution for computing
the gradients of pixel color with respect to scene parameters. In
addition to correctly computing the gradients with respect to lo-
cal lighting and camera projection, their method also works for
high-order transport phenomena such as shadows and global illumi-
nation. They observed that, after pixel prefiltering, the average pixel
color changes continuously with respect to geometry parameters,
making the rendering operation differentiable. Zhang et al. [2020;
2019] further generalized the idea to handle participating media
and path-space rendering. Nimier-David et al. [2020] derived a new
differential light transport formulation that reduces the memory
requirements by propagating the derivative quantities from the
camera to light sources. Our method can be used together with
Nimier-David et al.’s formulation to handle the visibility gradient.
Li et al.’s method finds the edges that form the silhouette of the

3D scene in order to explicitly sample the Dirac delta signals that
appear when differentiating the discontinuities inside an integral.
However, this introduces significant overhead in the sampling in-
frastructure. To improve the efficiency, Loubet et al. [2019] proposed
an approximated algorithm that does not require sampling points on
the edges, by reparameterizing the integral through a rotation ma-
trix constructed by heuristics. Their method achieves lower variance
than Li et al.’s edge sampling, at the cost of increased bias, which
can have pronounced effects on stochastic gradient optimization.
Our method combines the benefits of both edge sampling and

area sampling approaches to achieve unbiasedness and efficiency.
More importantly, we show that area sampling alone can achieve

Table 1. Notation

I ≜ Rendering integral over domain Ω
Ω ≜ Domain of 3 dimensional unit vectors

𝝎
𝜔,𝜔 ′ ≜ Unit vector representing a direction in

3D space
x, y · · · ≜ 3D scene points

𝜕𝜃 𝑓 ≜ Partial derivative of scalar 𝑓 w.r.t vector
or scalar 𝜃

𝜕vu ≜ Jacobian of the mapping v→ u
∇x .f ≜ Divergence of the field f

unbiased results. This allows us to sample the silhouette integral
using a regular unidirectional path tracer, without the expensive
edge selection procedure, while maintaining correctness.

Sensitivity analysis. In the particle transport literature, Roger et
al. [2005] derived a differential Monte Carlo estimator for integrals
with deformable domains. They also realized the relationship be-
tween the boundary integral and the area integral. However, they
interpolated boundary velocities by minimizing the Dirichlet energy.
This strategy is not applicable in our case, since the minimization
requires explicit enumeration of the boundaries, which is what we
set out to avoid in the first place.

3 AREA FORMULATION OF DIFFERENTIABLE
RENDERING

Our goal is to develop a consistent or unbiased area-based sampling
method for computing the derivatives of the rendering equation. We
achieve this by applying an identity of vector calculus (the divergence
theorem) to reformulate the boundary integral as an integral over
the interior supplemented by a vector field we refer to as the warp
field. We show that the warp field needs to be continuous and be
consistent with the derivative of the boundary points. We then pick
a specific family of warp fields that depends only on quantities
readily available in the context of the rendering integral.

In Section 4, we show that we can augment a unidirectional path
tracer to sample the converted area integral by tracing auxiliary
rays at each bounce to construct an estimate for the warp field.

3.1 Boundary Integral in Differentiable Rendering
Our goal is to compute the gradient of the rendering integral:

𝐼 =

∫
𝐷

𝑓 (𝜔 ;𝜃 )d𝜔, (1)

for some domain 𝐷 (e.g., the hemispherical domain), where the
function 𝑓 depends on some scene parameters 𝜃 such as the triangle
vertex positions or material parameters. For differentiable rendering,
we are interested in the derivative 𝜕𝜃 𝐼 .

As shown in previous work [Li et al. 2018], direct Monte Carlo
sampling using 𝜕𝜃 𝑓 (x, 𝜃 ) is not unbiased since 𝑓 is discontinuous
with respect to 𝜃 , and the derivatives include Dirac delta signals.
Instead, we need to rewrite the integral to eliminate the Dirac deltas
for applying Monte Carlo integration with area-based sampling.
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(a) (b)

Fig. 3. Differentiating boundary movements. Our goal is to compute
the derivative of the average color inside domain D with respect to some
geometric parameter 𝜃 . (a) shows an example of the geometric contents
of a pixel, (b) illustrates how we partition the domain D into disjoint re-
gions, such that all the discontinuities are at the boundaries 𝜕D𝑖 (𝜃 ) . We can
then properly take the change of the boundaries into consideration when
computing derivatives of discontinuous functions inside the integrals.

To formalize this process, we take inspiration from previous differ-
entiable rendering work [Li 2019; Zhang et al. 2019] by partitioning
the domain 𝐷 into disjoint regions 𝐷0 (𝜃 ), 𝐷1 (𝜃 ), 𝐷2 (𝜃 ), · · · , such
that 𝑓 (𝑥 ;𝜃 ) is continuous within the boundaries of each piece, and
all the discontinuities are at the boundaries of the domain (Fig. 3).
Therefore the domains 𝐷𝑖 are dependent on the scene parameters 𝜃 :

𝜕I
𝜕𝜃

=
∑
𝑖

𝜕

𝜕𝜃

∫
Di (𝜃 )

𝑓 (𝜔 ;𝜃 )d𝜔. (2)

Importantly, the partition is only done for our derivation, and we
do not explicitly clip the geometry to form the partition.

Now that the integrands in the integrals are continuous, we can
rewrite the differential integrals by measuring the change of the
boundary of the domain 𝐷𝑖 (𝜃 ) with respect to parameter 𝜃 . In 1D
this is the Leibniz’s integral rule, which can be derived from the
fundamental theorem of calculus ( 𝜕

𝜕𝜃

∫ 𝑏 (𝜃 )
0 𝑑𝑥 = 𝜕𝜃𝑏 (𝜃 )). In higher-

dimensional spaces, this is characterized by the Reynolds transport
theorem [1903] (see Flanders [1973]’s article for a shorter proof),
widely used in integrals that arise in fluid dynamics where the fluid
flow expands or contracts. The definition of Reynolds transport
theorem directly yields:

𝜕I
𝜕𝜃

=
∑
𝑖

∫
D′i (𝜃 )

𝜕𝑓 (𝜔 ;𝜃 )
𝜕𝜃

dD′𝑖 (𝜃 )+
∑
𝑖

∮
𝜕Di (𝜃 )

𝑓 (𝜔 ;𝜃 ) (𝜕𝜃𝜔 ·n̂)d𝜕D𝑖 (𝜃 )

(3)
where the second term describes the rate at which the domain
expands or contracts over elements of the boundary 𝜕D𝑖 , and the
first term accounts for the continuous part of 𝑓 , and D′

𝑖
= D𝑖 − 𝜕D𝑖 .

n̂ is the outward pointing normal vector at the boundary. We call
the first term the interior derivative integral and the second term
the boundary derivative integral.

Fig. 4. Warp field formulation. We apply the divergence theorem that
shows the equivalence between the boundary integral of Reynolds transport
theorem and our area integral. The theorem relates the outgoing flux at the
boundary 𝜕𝜃𝜔 to the divergence of a warp field ®V𝜃 (x) over the domain.
Unlike the reparameterization technique [Loubet et al. 2019]), which uses
a uniform rotation to reparameterize the domain, our method produces a
spatially varying warp for which this equivalence holds. This introduces a
divergence term that intuitively moves the boundary contribution into the
interior of the derivative, where it can be computed using standard Monte
Carlo rendering.

3.2 Area form of the boundary derivative integral
Eqn. 3 is difficult to evaluate for the rendering integral due to the
boundary integral, as mentioned in the introduction. We want to
avoid dedicated data structures for edge sampling and efficiently
sample discontinuities on a mirror reflection. Furthermore, since
path tracing is a recursive integral, evaluating 𝑓 (𝑥 ;𝜃 ) in Eqn. 3
requires tracing a full path, making the path tracing cost quadratic
to the depth of the path for boundary sampling.
The rendering community has studied efficient techniques for

computing the interior integral for decades. It is natural to explore
ways to compute the boundary contribution using interior samples.

We derive our solution by directly converting the boundary inte-
gral to an area integral, thus achieving consistency and unbiasedness.
The key idea is to apply the divergence theorem, a fundamental
result in vector calculus.

Divergence theorem (Gauss-Ostrogradsky). Several vector calculus
results (Green’s theorem, divergence theorem, Stoke’s theorem)
relate the boundary integral to the interior integral:∮

𝜕A
f · nds =

∬
A−𝜕A

∇𝜔 · fd𝜔. (4)

In many applications, the divergence theorem and similar vec-
tor calculus identities are used for reducing an area integral to a
boundary integral since it reduces the dimension of the measure and
provides computational benefits (e.g., [Arvo 1995]). On the contrary,
to achieve our goal, we need to do the opposite and find an area
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integral that is equivalent to the boundary term in Eqn. 3. Further-
more, the Reynolds transport theorem limits the contribution at the
boundary to the normal direction. This allows us to ignore the curl
term that appears in the more general Stoke’s theorem and to only
compute the divergence.

We apply the divergence theorem (Eqn. 4) to rewrite the boundary
derivative integral in the same domain as the interior derivative
integral:

I𝐵 =

∮
𝜕D

𝑓 (s;𝜃 ) (𝜕𝜃 s · n̂) d𝑠 =
∬
D′

∇𝜔 ·
(
𝑓 (𝜔 ;𝜃 ) ®V𝜃 (𝜔)

)
d𝜔

=

∬
D′

(
𝜕𝜔 𝑓 (𝜔 ;𝜃 )

)
· ®V𝜃 (𝜔)d𝜔 +

∬
D′

(
∇𝜔 · ®V𝜃 (𝜔)

)
𝑓 (𝜔 ;𝜃 )d𝜔,

(5)
where the warp field ®V𝜃 (x) is a smooth interpolation of the bound-
ary velocity 𝜕𝜃 s. The last equation is due to the property of the
divergence, and we include it for the Monte Carlo estimation we
will set up later. Fig. 4 illustrates the geometry of a warp field of a
circular boundary.
There are infinitely many different warp fields that satisfy the

equation. Following the criteria of the divergence theorem, we can
see that the warp field needs to satisfy the following conditions:

(1) (Continuity) ®V𝜃 (𝜔) must be 𝐶0-continuous for all 𝑥 ∈ D′
(2) (Boundary Consistency) ∀𝜔𝑏 ∈ 𝜕D and 𝛿 ∈ R+, ∃𝜖 such

that, ∀𝜔 ∈ {𝜔, |𝜔 − 𝜔𝑏 | < 𝜖}, | ®V𝜃 (𝜔) − 𝜕𝜃𝜔𝑏 | < 𝛿 .

The continuity condition states that the warp field ®V𝜃 (x) must be
continuous. The boundary consistency condition states that the
warp field must closely match the warp of a boundary point at/near
the boundary point. We say a warp field ®V𝜃 (x) is valid if it satisfies
the above conditions for a given boundary derivative 𝜕𝜃x(𝑏) .

Intuitively, these conditions can be thought of as a smooth bound-
ary interpolation problem: we want to construct a continuous field,
while matching the values at the boundaries. These are crucial con-
ditions that are not trivial to satisfy. In the following subsection, we
will carefully identify a family of warp fields ®V𝜃 (x) that satisfies
both criteria and is suitable for differentiable rendering. We will
also show the connection to Loubet et al. [2019]’s reparameteriza-
tion method in Section 3.4. Their reparameterization can be seen
as constructing a warp field that does not, in general, satisfy the
validity criteria, explaining the bias seen in their results.

3.3 Valid warp fields for the rendering integral
The smooth boundary interpolation problem of constructing the
warp field ®V𝜃 (x) presents a unique challenge in rendering. In many
other fields such as geometry processing or numerical computation,
it is often possible to identify all the boundaries a priori, and then dis-
cretize the interior in order to construct the smooth field. However,
in the area-based rendering formulation, we want to avoid explicit
discontinuity enumeration (like the boundary sampling employed
in prior work [Li et al. 2018]) in the first place.

More concretely, we are dealingwith a blind interpolation problem,
where we have to construct a valid warp field that can be computed
without explicit samples on the boundary.

(a) parametric derivative (b) directional derivative

(c) projecting parametric derivative to
solid angle

Fig. 5. Projecting the derivative field. (a) and (b) illustrate the difference
between a directional derivative 𝜕𝝎y and the parameteric derivative 𝜕𝜃y,
since these are important components in our derivation. (a) also shows that
the parametric derivative is continuous at points on surface y. (c) shows the
computation of the parametric derivative of a point in solid angle space Ω in
terms of the derivatives of the associated scene point y, which we have easy
access to. As illustrated, the Jacobian term of the transformation 𝝎 → y is
used to find the projected version of the parametric derivative.

Exploiting structure in the scene. Our approach exploits the mani-
fold structure of the 3D scene, by observing that the derivative of a
3D scene point 𝜕𝜃x is continuous for all surface points x ∈ X. The
discontinuities in the visibility term only arise when the geometry
is projected to the solid angle space X → Ω of the point where the
radiance is being evaluated.

Selecting the warp field. We want to define a fieldV𝜃 (𝝎) for all
𝝎 ∈ Ω such that the continuity and boundary consistency condi-
tions in Section 3.2 are satisfied. Our strategy is to construct a field
that satisfies the boundary consistency, but is not necessarily con-
tinuous, by differentiating the ray-geometry intersection procedure.
The rendering integral (Eqn. 1) maps a solid angle 𝝎 at position

x to a scene point y through the ray-scene intersection operator,
which we denote by y = Intersect(x,𝝎;𝜃 ). Specifically, we use
the derivatives of the intersection function with respect to the scene
parameters 𝜃 as our initial (invalid) warp field, by automatically
differentiating the intersection function to obtain y, 𝜕𝜃y, 𝜕𝝎y =

Diff-Intersect(x,𝝎;𝜃 ). Concretely, our warp field is:

®V(direct)
𝜃

(𝝎) = 𝜕𝜃y
|𝜕𝝎y|

. (6)
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(a) discontinuous warp field (b) Gaussian convolution

(c) our harmonic convolution

Fig. 6. Boundary-aware convolution. (a) The form of the warp obtained
by using the ray-scene intersection function to transform the domain 𝝎 . It
is discontinuous at the silhouettes (shown using blue circles) but it is equal
to the correct derivative at the boundary (denoted by green lines), (b) The
warp field produced by convolving the warp field using a Gaussian kernel.
This field is continuous and smooth everywhere, but we see that it does not
match the true derivative at the boundary. More specifically, in this case
the warp at the boundary is an average of the warp on either side of the
boundary, only one of which is representative of the warp at the boundary.
(c) Our proposed convolution method uses inverse distance weights to force
the field to match the true warp at the boundary. The resulting warp field is
both continuous and consistent at the boundary.

The division by the Jacobian |𝜕𝝎y| is for converting the measure of
𝜕𝜃y from area measure to solid angle measure. This projection term
is the same as the geometry term for converting between solid angle
and area formulations in path-space rendering methods [Veach
1998]. We use it to project the derivative instead of the radiance.

The warp field ®V(direct)
𝜃

(𝝎) satisfies the boundary consistency
criterion, since at the points close to the boundary, the derivative
𝜕𝜃y
|𝜕𝝎y | approaches the boundary derivative 𝜕𝜃𝝎𝑏 .
Intuitively, this states that the rate at which a given point𝝎 moves

is equal to the motion of the corresponding 3D point adjusted by the
Jacobian of the projection between the spaces (Fig. 5). Unfortunately,
this warp field is not valid since it breaks the continuity criterion.
For example, consider two angles close together on either side of a
boundary, but which intersect different surfaces, and therefore have
very different warps.

The discontinuity of the warp field ®V(direct)
𝜃

(𝝎) is also why it is
difficult to differentiate the visibility function. In general, for a dis-
continuity in the visibility function, only one side is representative
of the edge. When we try to evaluate the warp at a point on the other
side of the discontinuity, the movement of the corresponding 3D
point is completely independent of movement of the discontinuity.
Still, in order to create a continuous warp, we must somehow ensure
our warp field is continuous.
Our solution is to convolve the direct warp field with weights

that ensure boundary consistency. This rectifies the underlying dis-
continuous field ®V(direct)

𝜃
(𝝎 ′) to produce a smooth and continuous

field ®V(filtered)
𝜃

(𝝎;𝑤)

®V(filtered)
𝜃

(𝝎;𝑤) =

∫
Ω′

𝑤 (𝝎,𝝎 ′) ®V(direct)
𝜃

(𝝎 ′)d𝝎 ′∫
Ω′

𝑤 (𝝎,𝝎 ′)d𝝎 ′
. (7)

Next, we discuss how to choose the weights 𝑤 such that the
boundary consistency is preserved.

Boundary-aware convolution. It is not immediately obvious what
the weights should be. As a counter example, Fig. 6(b) illustrates a
warp field obtained using weights from a normal distribution. The
warp field deviates heavily from the true warp at the boundary, and
this field is still not valid since it violates boundary consistency. The
warp at a point very close to the boundary would be the average of
the warp on both sides, which is not, in general, equal to (or even
close to) the warp at the boundary.
Our weights need to converge to the derivative at points close

to the boundary to produce a valid interpolation. That is,𝑤 (𝝎,𝝎 ′)
should grow to infinity when 𝝎 is on the boundary while 𝝎 ′ ap-
proaches 𝝎. We also want the weight to be small when 𝝎 is far from
the boundary. We take inspiration from the harmonic interpolation,
by selecting weights using the inverse distance to the boundaries.
Unfortunately, we do not know the true distance to the nearest

boundary point because it is difficult to find the boundary. Instead
we use the concept of a boundary-test B(𝝎 ′), which serves as a
weaker definition of a boundary.B(𝝎 ′) is essentially a soft indicator
function which takes zero value at the boundary and non-negative
everywhere else, i.e, 𝝎 ′ ∈ 𝜕Ω =⇒ B(𝝎 ′) = 0. This is the only
key requirement that B(𝝎 ′) needs to satisfy, which gives us great
flexibility over its form. Appendix A discusses our boundary test for
triangle meshes, while Appendix B discusses additional properties
of the boundary test and what would happen with a suboptimal
choice of the boundary test.

We can now write down our harmonic weights:

𝑤 (harmonic) (𝝎,𝝎 ′) = 1(
D(𝝎,𝝎 ′) + B(𝝎 ′)

) (8)

where D(𝝎,𝝎 ′) is the distance between 𝝎 and 𝝎 ′. For our im-
plementation, we use the von-Mises Fisher distance D(𝝎,𝝎 ′) =
𝑒𝜅 (1−⟨𝝎,𝝎′⟩) −1, but any smooth function that satisfiesD(𝝎,𝝎) = 0
can be used.
Our weights satisfy the handy asymptotic property that in the

limit where a point 𝝎 (𝑏) approaches a boundary (denoted by 𝜕Ω),
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lim
𝝎 (𝑏)→𝜕Ω

𝑤 (𝝎 (𝑏) ,𝝎)∫
Ω′ 𝑤 (𝝎 (𝑏) ,𝝎 ′)

= 𝛿 ( |𝝎 (𝑏) − 𝝎 |), where 𝛿 (.) is the Dirac

delta function. This implies that for a point 𝝎 (𝒃) very close to the
boundary, the weights are such that the resulting warp at 𝝎 (𝒃) is
equal to the direct warp. As we have already shown, the direct warp
is consistent at the boundaries, which implies that the convolution
with harmonic weights is also consistent. Fig 6(c) shows the result
of our harmonic interpolation.
We only analyze the weights using a limit near the boundary

and not the boundary itself, since our warp field only needs to be
defined in the smooth interior region Ω − 𝜕Ω. This allows our warp
field to be undefined at points on the boundary, and the proposed
harmonic weights are infinite at such points.

Pixel prefiltering. While, in principle, our method could handle
discontinuous pixel prefiltering such as a box filter, we always opt for
a continuous filter. For a discontinuous filter, the pixel filter integral∫
𝐴
𝑓 (𝝎)𝑑𝝎 over the pixel support 𝐴 needs to take the discontinuity

at the support’s boundary into account for the divergence theo-
rem to hold. This means our boundary test 𝐵(𝝎 ′) needs to return
0 at such boundaries. To simplify the boundary test implementa-
tion, we always use a Gaussian pixel filter truncated at a radius of
4 times the standard deviation, where the kernel contribution is
indistinguishable from the floating point error.

3.4 Relation to the reparameterization method
[Loubet et al. 2019]

Before we move to our Monte Carlo sampling algorithm for solving
the harmonic convolution integral (Eqn. 7), we discuss the relation
of our method to Loubet et al.’s reparameterization.

Althoughwe have derived the area form of the boundary term in a
different way, Loubet et al.’s method of transforming the samples us-
ing a rotation is actually a special case of our formulation. We show
that we can interpret their method as applying a particular warp
field that does not satisfy the boundary consistency requirement,
thus introducing bias to the result.
The reparameterization method applies a transformation x =

T (y;𝜃 ) in an attempt to remove the discontinuities of the integral:

I =

∫
𝑓 (x;𝜃 )dx =

∫
𝑓 (T (y;𝜃 );𝜃 )

��𝜕yT (y;𝜃 )�� dy (9)

In Appendices C.1 and C.2, we prove that this transformation can
be converted to an equivalent warp fieldV𝜽 (y) using the relation-
ship,

V𝜃 (x) = [𝜕𝜽T (x;𝜽 )]𝜽=𝜽 0 . (10)

where 𝜽 0 is the point at which we would like to compute the deriv-
ative.
Given a warp field, we can also convert it back into a transfor-

mation by finding a solution for the right-hand side of Eqn. 10.
Since this is a differential equation, there exist many possibilities for
T (x;𝜃 )’s basic form, depending on the coordinate system. Appendix
C.2 discusses linear & rotational solutions to this equation for 2D
Euclidean & 3D unit-sphere coordinate systems, respectively. The
rotational solution represents the basic transformation that Loubet
et al. [2019] uses.

We denote the rotational solutions by R(𝝎;𝜃 ). This limits the set
of possible transformations to thosewith a unit Jacobian |𝜕𝝎R(𝝎;𝜃 ) | =
1, independent of 𝜃 . We can deduce that this means the correspond-
ing warp satisfies ∇𝝎 .V𝜃 (𝝎) = 0. Unfortunately, this means that
simple rotation-based reparameterization cannot always be a valid
warp (Fig. 4 shows an example of a scenario that requires a non-zero
divergence).
Loubet et al. recognize this drawback and propose a more com-

plex transformation that samples nearby rays using a von-Mises
Fisher distribution (spherical analog of the Gaussian) and constructs
a transformation that is the average of these rotations. This can
generally be expressed using R ′(𝝎;𝜃 ) =

∫
𝑘 (𝝎,𝝎 ′)R(𝝎 ′;𝜃 ). Since

the transformation and the warp field are linearly related, the warp
field of a convolved transformation V ′

𝜃
(x) = [𝜕𝜃R ′(𝝎;𝜃 )]𝜃=𝜃0 is

equivalent to the convolution over the warp field of the original
transformationV ′

𝜃
(x) =

∫
𝑘 (𝝎,𝝎 ′)V𝜃 (x). This leads to a scenario

similar to that shown in Fig. 6(b) where the resulting transformation
is smooth but fails to meet the boundary consistency criterion.
To compensate for this bias, Loubet et al. [2019] introduce a

heuristic on top of this convolution. Since the heuristic involves
discrete operations such as sorting and comparing object IDs, it is
difficult to analytically express the resulting warp field and study
its properties. Instead, we turn to empirical comparisons with the
ground truth presented in Section 5.

4 MONTE CARLO ESTIMATION OF THE DERIVATIVE
We developed the theory of area sampling and proposed a formu-
lation for the warp field in the previous section. In this section,
we develop a Monte Carlo estimator for estimating our divergence
area integral (Eqn. 5). In the previous section, we came up with a
convolutional warp field that is itself an integral (Eqn. 7). Therefore,
we construct a nested Monte Carlo estimator to estimate the deriva-
tive integral. We first generate a sample 𝝎 for the outer divergence
integral, then generate a set of auxiliary samples {𝝎 ′1 · · ·𝝎

′
𝑁 ′} to

estimate the inner convolution integral at 𝝎. Fig. 7 sums up our
rendering process along with a few intra-pixel visualizations to
show our intermediate stages.

The convolution integral of the warp field contains a division for
normalization. A naïve Monte Carlo estimator of the reciprocal of
an integral is not unbiased, since reciprocal is not a linear opera-
tion (𝐸 [1/𝑓 ] ≠ 1/𝐸 [𝑓 ]). Fortunately, it is possible to construct an
unbiased Monte Carlo estimator from a consistent estimator using
the Russian Roulette de-biasing method [McLeish 2010]. We pro-
vide both a consistent estimator and an unbiased estimator in this
section.
Finally, naïve Monte Carlo estimation of the harmonic convolu-

tion integral can lead to large variance. We discuss variance reduc-
tion techniques using control variates.

4.1 Estimating the warp fieldV𝜃 (.)
Our goal is to estimate the divergence area integral (Eqn. 5), whose
integrand is (∇𝜔 𝑓 (𝜔 ;𝜃 )) · ®V𝜃 (𝜔) +

(
∇𝜔 · ®V𝜃 (𝜔)

)
𝑓 (𝜔 ;𝜃 )d𝜔 .

For each direction sample 𝝎 for the outer divergence integral, we
sample 𝑁 ′ auxiliary directions𝝎 ′

𝑖
in order to estimate the warp field

®V𝜃 (𝝎). Recall that the warp field is a normalized convolution with
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Fig. 7. Our algorithm first samples a ray 𝝎 based on simple path tracing. To compute the boundary contribution to the derivative, we need to estimate the
warp function at this point. To achieve this, our method samples a certain number 𝑁 ′ of auxiliary rays around this sample 𝝎 using the von-Mises Fisher
distribution. We then compute the boundary test at each auxiliary sample B(𝝎′) based on surface normals (as described in Appendix A). These boundary
values are further processed using Eqn. 8 to produce weights for the samples. Our final step computes the weighted average of the direct warp V(direct)

𝜃
at the

auxiliary samples to produce estimates for the warp field and its divergence at the primary sample.

Algorithm 1Monte Carlo estimator of the derivative

1: function radiance (x, 𝝎in)
2: Sample outgoing radiance direction 𝝎 with incoming direc-

tion 𝝎in
3: y← intersect (x,𝝎)
4: 𝐿, 𝜕𝜃𝐿, 𝜕𝝎𝐿 ← radiance (y,𝝎)
5: V̂𝜃 (𝝎),∇𝝎 .V̂𝜃 (𝝎) ← estimate-warp (𝝎, y, 𝑁 ′)
6: 𝜕𝑏

𝜃
I← ⟨𝜕𝝎𝐿, V̂𝜃 (𝝎)⟩ + 𝐿∇𝝎 .V̂𝜃 (𝝎)

7: 𝜕𝜃 I← 𝜕𝑏
𝜃
I + 𝜕𝜃𝐿

8: Î← 𝑓𝑝 (𝝎in,𝝎)𝐿
9: �𝜕𝜔in I← 𝜕𝜔in (𝑓𝑝 (𝝎in,𝝎)𝐿)
10: return Î, 𝜕𝜃 I,�𝜕𝜔in I
11: end function

a kernel of harmonic weights (Eqn. 7 and 8). While the distribution
of the harmonic weights depends on the configuration of silhouette
edges (Fig. 6), it is also correlated with a normal distribution centered
at the outer directional sample 𝝎. Therefore, we importance sample
from a normal distribution around our outer directional sample.
For hemisphere or sphere sampling, we use the von Mises-Fisher
distribution.
Algorithm 1 and 2 detail the nested Monte Carlo estimator that

computes the derivative of the radiance in the presence of discon-
tinuities. This estimator is not unbiased for finite 𝑁 ′ due to the
division over an integral in the harmonic convolution (Eqn. 7), but
it is a consistent estimate (it converges to the true derivative as
𝑁 ′ →∞).
In practice, we find that even for fairly complicated scenes, an

auxiliary ray count between 4 and 64 provides a very robust estimate

Algorithm 2 Consistent Monte Carlo estimator of the warp field

1: function estimate-warp (𝝎, y, 𝑁 ′)
2: for 𝑖 ← (1 · · ·𝑁 ′) do
3: Sample 𝝎 ′

𝑖 from vMF distribution with mean 𝝎
4: y′

𝑖
, 𝜕𝜃y′𝑖 , 𝜕𝝎y

′
𝑖
← diff-intersect

(
x,𝝎 ′

𝑖

)
5: B𝑖 ← boundary-distance (y′

𝑖
)

6: 𝑤𝑖 ← 1
( exp (𝜅−𝜅 ⟨𝝎,𝝎′

𝑖
⟩)−1)+B𝑖

/
pdf(𝝎 ′

𝑖
)

7: 𝜕𝝎𝑤𝑖 ←
(
𝜕𝝎

1
( exp (𝜅−𝜅 ⟨𝝎,𝝎′

𝑖
⟩)−1)+B𝑖

)/
pdf(𝝎 ′

𝑖
)

8: V (l)
𝑖
← 𝜕𝜃y′𝑖
|𝜕𝝎y′

𝑖
|

9: end for
10: 𝑍 ← ∑

𝑤𝑖

11: 𝜕𝑍 ← ∑
𝜕𝝎𝑤𝑖

12: V̂𝜃 (𝝎) ←
∑ (

𝑤𝑖V (l)𝑖

)
𝑍

13: ∇𝝎 .V̂𝜃 (𝝎) ←
∑⟨𝜕𝝎𝑤𝑖 ,V (l)𝑖

⟩
𝑍

−
∑
𝑤𝑖 ⟨V (l)𝑖

,𝜕𝑍 ⟩
𝑍 2

14: return V̂𝜃 (𝝎),∇𝝎 .V̂𝜃 (𝝎)
15: end function

of the derivative. However, since there is no closed-form expression
for the normalization of the weights 𝑤 (𝝎,𝝎 ′), the estimator for
the warp field is not unbiased. Still, as 𝑁 ′ →∞, it converges to the
ground truth, making it consistent.

De-biasing our estimator. In general, it is possible to produce an
unbiased Monte Carlo estimator from a consistent one using Rus-
sian roulette [McLeish 2010]. This is a technique commonly used in
Bayesian inference [Lyne et al. 2015], nuclear engineering [Booth
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Algorithm 3 Unbiased Monte Carlo estimator of the warp field

1: function estimate-warp-rr(𝝎, y, 𝑝)
2: Draw 𝑁 ′ from Geom(.;𝑝)
3: for 𝑖 ← (1 · · ·𝑁 ′) do
4: Sample 𝝎 ′

𝑖 from vMF distribution with mean 𝝎
5: y′

𝑖
, 𝜕𝜃y′𝑖 , 𝜕𝝎y

′
𝑖
← diff-intersect

(
x,𝝎 ′

𝑖

)
6: B𝑖 ← boundary-distance (y′

𝑖
)

7: 𝑤𝑖 ← 1
( exp (𝜅−𝜅 ⟨𝝎,𝝎′

𝑖
⟩)−1)+B𝑖

/
pdf(𝝎 ′

𝑖
)

8: 𝜕𝝎𝑤𝑖 ←
(
𝜕𝝎

1
( exp (𝜅−𝜅 ⟨𝝎,𝝎′

𝑖
⟩)−1)+B𝑖

)/
pdf(𝝎 ′

𝑖
)

9: V (l)
𝑖
← 𝜕𝜃y′𝑖
|𝜕𝝎y′

𝑖
|

10: 𝑍𝑖 ← 𝑍𝑖−1 +𝑤𝑖

11: 𝜕𝑍𝑖 ← 𝜕𝝎𝑍𝑖−1 + 𝜕𝝎𝑤𝑖

12: 𝑇𝑖 ← 1
𝑍𝑖
− 1

𝑍𝑖−1

13: 𝜕𝑇 𝑖 ← 𝜕𝑍 𝑖

𝑍 2
𝑖

− 𝜕𝑍 𝑖−1
𝑍 2
𝑖−1

14: end for
15: 𝑇 ← ∑ 𝑇𝑖

Geom(𝑖;𝑝)

16: 𝜕𝑇 ← ∑ 𝜕𝑇 𝑖

Geom(𝑖;𝑝)

17: V̂𝜃 (𝝎) ←
∑ (

𝑤𝑖V (l)𝑖

)
𝑍

18: ∇𝝎 .V̂𝜃 (𝝎) ←
∑⟨𝜕𝝎𝑤𝑖 ,V (l)𝑖

⟩𝑇 −∑𝑤𝑖 ⟨V (l)𝑖
, 𝜕𝑇 ⟩

19: return V̂𝜃 (𝝎),∇𝝎 .V̂𝜃 (𝝎)
20: end function

2007], machine learning [Beatson and Adams 2019], and was re-
cently used for debiasing photon mapping [Qin et al. 2015] and
sampling specular light paths [Zeltner et al. 2020].
The intuition of Russian roulette debiasing is to take a converg-

ing sequence 𝑇0,𝑇1,𝑇2, ... produced by a consistent estimator, and
construct the following infinite series:

𝑇 = 𝑇0 +
∞∑
𝑖=1
(𝑇𝑖 −𝑇𝑖−1). (11)

Since𝑇 converges to the right answer, if we can build an unbiased es-
timator for𝑇 , we can turn the consistent estimator into an unbiased
one. Building unbiased estimators for an infinite series is a common
task in physically-based rendering: in path tracing, the infinite Neu-
mann series of indirect bounces is estimated by probabilistically
terminating the estimation.

Using the same idea, we sample the series 𝑇 by sampling a finite
length from a discrete distribution. We treatN′ as a random variable
following a geometric distribution. For every path bounce, during
the auxiliary sampling step, we sample a new 𝑁 ′ for the estimation
of the warp field. This version produces an unbiased estimate of the
warp field, which in turn makes our derivative estimate unbiased.
Algorithm 3 describes the Monte Carlo estimator.

In practice, using the consistent version with high 𝑁 ′ to reduce
bias is often faster than Russian Roulette since it can be compli-
cated to manage a dynamic number of rays, especially as rendering
infrastructure continues to move to memory-constrained GPUs.

Illustration Radiance Reference

No Variance Reduction Antithetic Variates Antithetic Variates +
Control Variates

Fig. 8. Variance reduction. We use antithetic variates and control variates
to combat the additional variance in interior regions introduced by the kernel
convolution. We show the variance reduction from antithetic variates, where
we sample on either side of the center of the kernel equally.We further reduce
the variance by controlling the estimator with an approximate estimator
built using the linear assumption.

Reparameterization Ours

Fig. 9. We compare the gradient variance between our method and the repa-
rameterization method [Loubet et al. 2019]. The comparison uses an equal
number of paths per pixel for both methods. Since Loubet et al.’s method
traces two correlated paths for each sample, we compare our 32 samples-
per-pixel render to their 16 samples-per-pixel render, while maintaining the
same number of auxiliary rays (4 per bounce).

4.2 Variance Reduction
Some parts of our estimator exhibit high variance if used directly
without explicit variance reduction. We found that smooth regions
suffer significantly from the variation of both the harmonic weights
and the warp field divergence.

To motivate the variance issue, consider a scene with an infinite,
flat emitter where the parameter 𝜃 is the emitter’s translation. If
this emitter is also perfectly normal to our viewing direction (facing
the camera), our expected gradient is 0, since all points are moving
with exactly the same velocity w.r.t 𝜃 . However, we find that the
gradient of the weight normalization exhibits very high variance
since each of the individual spatial weight derivatives ∇𝝎𝑤 (𝝎,𝝎 ′)
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Illustration Radiance Reference (FD) Ours Loubet et al. 2019

Fig. 10. We compare our per-pixel gradients with the reparameterization method [Loubet et al. 2019] on scenes with varying levels of complexity. Cube has a
simple and smooth geometry and motion to show that our area-sampling method produces the correct edge derivative for direct visibility. Corkscrew and
HCylinder show rotations of cylinder-like meshes that create difficult situations for area-sampling methods. Teapot shows that our method is accurate
even for sharp specular reflections. Plant-Pot and Hedge use meshes with a large number of primitives to produce complicated intra-pixel configurations of
edges. Cube, HCylinder and Teapot used a von-Mises Fisher directional light, while the others used rectangular area lights. The insets visualize the absolute
error between the finite difference reference and the produced gradient. Our method closely matches the reference in all these cases. These experiments were
intended to highlight the bias of each method, and therefore they were compared at high (≥ 128) samples per pixel.
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Fig. 11. Optim-Corkscrew:We compare our method with the reparametrization method [Loubet et al. 2019] on a gradient-based optimization task. Both
methods are tasked to recover the angular orientation of a corkscrew by observing its soft shadow, starting from the same set of initializations (blue circle). Due
to the bias in the reparameterization method, none of the optimizations converged (orange point). In contrast, we are able to recover the target solution from all
of the initializations. As recommended by Loubet et al., for reparameterization, we use a smooth area light source designed to have a smooth falloff near the
boundaries in order to reduce bias. The smooth falloff causes a brightness change to the scene.

can have a large value, depending on the location of the samples
w.r.t the center of the distribution. The resulting estimator exhibits
high variance even though there is no complexity in the scene, and
the expected gradient is 0.

Antithetic Variates. Our approach to counter this variance is to apply
antithetic variates [Owen 2013]. The key idea behind this widely
used variance reduction technique is to transform the samples such
that the resulting estimator is negatively correlated with the original
estimator. It is fairly straightforward to find such a transformation
for symmetric weights such as the Gaussian distribution and the
von-Mises Fisher distribution. We rotate our samples 180𝑜 about the
center of the distribution. Intuitively, the gradient contribution due
to the weights at this transformed sample is exactly the negative
of the contribution due to the original sample. Fig. 8 demonstrates
the significant variance reduction obtained from using antithetic
variates.

Control Variates. Antithetic variates offer the most variance reduc-
tion when the underlying warp field is roughly uniform. Consider
the same scene as before, but with a flat emitter at an angle to the
camera. Our intersection derivative 𝜕𝜃𝜔 is no longer uniform but
exhibits approximately linear variation. We find that even though
our boundary derivative estimator has an expected value of 0 (since
there are no edges, all the contribution comes from the interior de-
rivative integral), it exhibits high variance and therefore requires a
lot of samples to converge to the correct value. However, we see that
in this particular scenario, we can directly compute the divergence
of the warp if we know the slope of the underlying linear surface,
without having to go through an extensive estimation step.

Therefore, we use this approximate estimator as a control vari-
ate to reduce the variance of our unbiased estimator. Appendix D
provides additional details of the construction of the linear approx-
imation and its utility in variance reduction. Fig. 9 compares the
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Fig. 12. Optim-Plant: We experiment with 6 degrees of freedom pose optimization of an object with complex structure at 8 samples per pixel. Our estimator
provides robust gradients that allow for smooth convergence even at low sample counts. The reparameterization gradient method employs specific heuristics in
order to better estimate the correct gradient. However, it was designed with the assumption that a pixel contains a simple configuration of discontinuities. This
assumption breaks down here and causes the optimization to diverge completely. We visualize the trajectories for multiple initializations.

relative variance (with antithetic and control variates) and the repa-
rameterization method. The variance reduction methods outlined
here are particularly important when used for optimization (Figs.
11 and 12), since we generally use very low sample counts for fast
convergence.

5 RESULTS AND DISCUSSION
We implemented both the consistent and unbiased versions of our
method on the open-source redner repository [Li et al. 2018]2 primar-
ily because it already contains infrastructure to obtain parametric
and spatial derivatives (𝜕𝜃𝐿, 𝜕𝝎𝐿). Our implementation runs on
multi-core CPUs and uses Embree [Wald et al. 2014] for ray tracing.

5.1 Comparison with Loubet et al.[2019]
We compare ourmethod to Loubet et al.’s reparameterizationmethod
[2019]. Their method relies on approximating a local rotation to

2https://github.com/BachiLi/redner

compute an approximation to the derivative. Since their method can
be interpreted as constructing a warp-field that is not consistent
at the boundary, the underlying bias is proportional to the total
discrepancy of the warp over the set of discontinuous points (Sec-
tion 3.4 and Fig. 4). To reduce the bias, Loubet et al. introduced a
kernel convolution (similar to our harmonic convolution in Eq. (8))
as well as a heuristic to adjust the warp estimate based on neighbor-
hood sampling. While these adjustments significantly reduce bias
for simple configurations of boundaries, it
• fails for scenes with dense and interleaved geometry (such as
a dense bush or plant),
• introduces bias when the interior’s motion is inconsistent
with the boundary and,
• does not easily generalize (more discussion in Section 5.4),

In Fig. 10, we include a comparison of the per-pixel gradients for
a single parameter to highlight the systematic bias introduced by
the reparameterization method’s approximations.
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To show the importance of our robust, consistent (or unbiased)
gradient, we explore two complex pose estimation problems using
a large number of initializations, Optim-Corkscrew (Fig. 11) and
Optim-Plant (Fig. 12). We show that the biased reparameterization
method consistently fails to obtain the correct solution. In some situ-
ations, the method even diverges completely, due to bias introduced
by the heuristic.

Both Optim-Corkscrew and Optim-Plant used a target resolu-
tion of 128× 128, a three-level image pyramid loss and a rectangular
area light source. For the reparameterization method, we use the
smooth-area emitter recommended by Loubet et al. [2019], which
blurs the outer 10% of the rectangular light source in order to reduce
bias. Optim-Corkscrew used 𝑁 = 8 samples per pixel and 𝑁 ′ = 8
auxiliary samples, while Optim-Plant used 𝑁 = 16 with 𝑁 ′ = 4.
Both optimizations used the fixed 𝑁 ′ variant (consistent warp es-
timator). The Russian-roulette variant did not provide significant
difference in the end result. Optim-Corkscrew using 𝜅 = 5 × 105
for its weight distribution and Optim-Plant using 𝜅 = 104. The
manually tuned concentration parameter 𝜅 = 104 worked very well
for all our experiments, providing almost-zero bias, except for the
case of the rotating corkscrew, which presents a difficult challenge
for area-based methods. This particular case requires a more con-
centrated von-Mises Fisher distribution to avoid bias when 𝑁 ′ is
fixed. We leave an adaptive approach to choosing the concentration
parameter as future work.

5.2 Comparison with Li et al. [2018]
We also compare both the variance and performance of our algo-
rithm with the unbiased edge-sampling method proposed by Li et
al. [2018]. Edge-sampling is a boundary method which seeks to find
silhouette edges and sample points on them to estimate the bound-
ary integral. Our experiments in Fig. 13 show that while this is very
efficient for the first bounce (direct visibility), it struggles to find
silhouettes for higher-order effects such as glossy reflections. This
effect is worse for scenes with high depth complexity, as shown
by the Hedge scene in Fig. 1 and 13, which contains over 200K
triangles arranged in dense layers. Since the silhouette sampling is
not occlusion-aware, most of the boundary points that are sampled
end up occluded. This results in glossy reflections being almost
completely missed, manifesting as fireflies instead. Edge-sampling is
still unbiased, but the poor sampling means it can take a very long
time to converge (a similar phenomenon occurs when attempting to
render caustics using a simple path tracer). In contrast, our method
is area-based, and does not suffer from these sampling issues, al-
though this comes at the cost of increased variance in the interior.

5.3 Performance
Despite being CPU-bound, our method has reasonable run-times.
For the practical optimization experiments Optim-Corkscrew and
Optim-Plant (Fig. 11 and 12), the CPU implementation of our
method takes 0.95s and 4.88s respectively, for a full iteration. The
GPU-based reparameterization method takes 0.28s and 0.35s per

iteration. For our method, we run on an Intel Core i9-9900K. For Lou-
bet et al.’s method [2019], we use their GPU-only implementation
running on an 11GB NVIDIA RTX 2080 Ti GPU using OptiX.

Fig. 14 shows that our method has similar or better performance
when compared to redner’s CPU implementation [Li et al. 2018].
Loubet et al. [2019] show that their performance is similar to red-
ner (on GPU). We therefore expect similar performance gains of
∼ 5× if our method is ported to GPU. For simpler geometry, edge-
sampling is faster, where our consistent method has run timeswithin
a factor of 2. However, with increasing scene complexity, this gap
reduces quickly, with Ours-Consistent running faster than Edge-
Sampling for theHedge scene, which contains over 200K primitives.
Fig. 14 also shows the performance of our unbiased Russian

roulette variant described in Alg. 3. Even though the average number
of auxiliary rays is the same for both Ours-Consistent and Ours-
Unbiased, the overhead due to the additional book-keeping required
by the Russian roulette technique makes this variant twice as slow.
This is one of the reasons we primarily used Ours-Consistent for
our optimization experiments.

5.4 Discussion of Generalizability
Unlike existing methods that differentiate in the presence of discon-
tinuities, our method has been derived for a general integral. It relies
only on the boundary test B(.), which can be quickly redefined for
a different integration problem. The boundary test is, in general,
much easier to compute than the actual boundary itself. This opens
up an exciting range of possibilities.

Extension to other representations. For defining an easily com-
putable boundary test, we note that triangle meshes, which we use
currently, present a harder challenge than many other representa-
tions, owing to the locality of information. It is easier to develop an
efficient boundary test for alternative representations like signed
distance fields, Bezier curves, implicit functions, and most curved
geometry (spheres, cylinders, etc.). Thus, in principle, our method
could be used with other geometry representations by altering the
boundary test. Most existing methods assume a mesh structure com-
posed of planar elements, and it is unclear how to extend them to
new representations.

Extension to distribution effects. The derivation of the core idea
behind our estimation algorithm is based on the divergence theorem,
which can be generalized to higher-dimensional space. Therefore,
our warping method can be directly applied to differentiate other
rendering domains such as motion blur (3 dimensions with two
spatial and one temporal coordinates) and depth-of-field (4 dimen-
sions with two spatial and two angular variables). The boundary
test would have to be redefined accordingly to test for boundaries
in higher dimensions.

Extension to path space. Our idea can also be potentially applied
to more complex domains like path space [Zhang et al. 2020] and
primary sample space. However, the definition of the boundaries in
path space must be investigated first, since a single point in path
space can pass through several occluders. It is not immediately
obvious which definition will produce a valid warp field in path
space.
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Fig. 13. We compare our per-pixel gradient with the unbiased edge-sampling method proposed by Li et al. [2018]. We perform comparisons with both the
consistent and unbiased versions of our algorithm. Since edge-sampling is also unbiased, we focus on variance comparisons by using low sample count
gradients. Scene Cube was rendered at 𝑁 = 32 samples per pixel while Pot used 𝑁 = 64 samples per pixel and Hedge used 𝑁 = 128. Ours-Consistent used
an auxiliary count of 𝑁 ′ = 8 while Ours-Unbiased drew the auxiliary count from a geometric distribution with the same mean, 𝑁 ′ ∼ Geom( 18 ) . Pot used an
over-tesselated teapot mesh to show Edge-Sampling’s difficulty in handling secondary effects for complex meshes.

5.5 Limitations
Implicit edges. Our current implementation of the boundary test
B(.) does not automatically consider implicit edges (triangle self-
intersections) in triangle meshes. The implications of this are subtle:
the warp at the implicit boundary point is estimated to be the av-
erage over the warp in the neighborhood, since the samples are
not correctly weighted. This biased estimate is still usually very
accurate, and it produces a result similar to the re-parameterization
technique. However, since our boundary test B(.) does not detect
the implicit edges, the resulting warp field has no guarantee of valid-
ity, with the consequence that our method is not provably unbiased
in the presence of such implicit edges.

Truncation bias in practical implementation. In practice, like other
methods that are debiased through Russian Roulette such as path
tracing, our method has to truncate at some finite limit, or else
run out of time and compute memory. Our choice for the limit
(𝑁 ′ ≤ 512) is large enough to make the resulting truncation bias
indistinguishable from floating point error. However, depending
on the choice of kernel size and memory limits, we can run into
situations where our estimator produces non-negligible bias.

We can reason about this behavior through the Chernoff-Hoeffding
theorem, which can be used to find the asymptotic decay rate of our

inner warp field estimator. The resulting variance and truncation
bias from the Russian Roulette modification can be loosely tied to
this decay rate. An example of such an analysis for a general Monte
Carlo estimator can be found in McLeish’s article [2010].

Incoherent workload of Russian roulette debiasing. Our Russian
roulette debiasing can introduce an incoherent workload for parallel
execution. Each path vertex can have a different amount of auxiliary
rays to trace, leading to thread divergence and dynamic memory
allocation. We have left an efficient GPU implementation of our
method as future work.

6 CONCLUSION
We have used the divergence theorem to unify boundary sampling
and area sampling methods in differentiable rendering. We further
state the conditions for an area sampling estimator to be consis-
tent/unbiased: continuity of the warp field and matching boundary
velocity. We have shown why existing area sampling methods do
not produce unbiased derivatives. This allowed us to develop an
algorithm that applies an additional convolution using weights in-
spired by harmonic interpolation to build consistent or unbiased
estimators of the derivative. Our method has the simplicity advan-
tage of area sampling, since the warp field can be computed during
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Fig. 14. We compare the render times for the experiments in Fig. 13, which
were performed at equal sample count. For edge-sampling, we used the
CPU version of redner. Across scenes of varying complexity, we see that our
method has render times in the same order of magnitude as edge-sampling.
The largest disparity is observed for simple scenes where edge-sampling can
be twice as fast. As the scene complexity increases, we notice a significant
drop in the performance as well as an increase in variance, when compared
with our method.

the standard Monte Carlo rendering process, and the advantage of
being unbiased. We have demonstrated through inverse rendering
experiments that an unbiased estimator of gradients can be critical
for stable convergence. Furthermore, area sampling backpropaga-
tionmethods such as ours are general. They can rely on the sampling
infrastructure developed for the forward pass and naturally deal
well with depth and geometric complexity.
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A BOUNDARY-TEST B(.)
Our implementation of the boundary-test functionB(.) takes advan-
tage of the loose requirements defined in Section 3.3. The primary
requirement is that B(𝝎) → 0 as 𝝎 approaches the boundary. As
Fig. 15 illustrates, we can take advantage of the surface normals to
design a good boundary test. The dot product between the surface
normal and the ray direction is 0 at silhouette points, and it is a
continuous function within a boundary (B(𝝎) does not need to
be continuous across boundaries). Since this inner product can be
computed quickly for various representations, it serves as a light-
weight starting point for computing B(𝝎). For triangle meshes, we
need to handle open edges that only associate with one face. We
additionally control the spread by applying a nonlinear function to
the inner-product at each vertex.
We compute the boundary test B(.) for triangle meshes using

the following procedure

(1) We find the triangle that intersects the ray in the direction 𝝎.
For each triangle vertex, check if any of the adjacent edges are
silhouette edges. An edge is silhouette if it (i) has an adjacent
face that is back-facing, or (ii) it is open (has only one adjacent
face).

(2) Compute a value B𝑣 for each vertex 𝑣 . If a vertex 𝑣 is asso-
ciated with a silhouette edge, set B𝑣 = 0. For vertices with
no silhouette edges, we compute the non-linear composition

(a) (b)

Fig. 15. (a) An illustration of a complex smooth surface. We note that all
points visible to the camera are such that the inner product between the cam-
era direction and the normal direction ⟨𝝎, n⟩ is positive. At the silhouettes,
this inner product is 0. (b) shows the variation of the dot product over the
surface, demonstrating that within the interior (excluding boundary points),
this is a smooth function.

of the dot product ⟨𝝎, n⟩, B𝑣 =
1−(1−⟨𝝎,n⟩2)

1−(1−𝛽) (1−⟨𝝎,n⟩2) . Here, n
is the normal at each vertex, pre-computed as the average
normal of all adjacent faces. The parameter 𝛽 controls the
spread-rate and we use 𝛽 = 0.01 for our experiments. We
found empirically that this value gave us the least variance
and was not particularly sensitive to scene composition or
geometry.

(3) We use barycentric coordinates to propagate the B(.) at the
vertices to the intersection point.

However, for some over-tessellated objects with low geometric
detail, the mesh elements constituting the boundary can become so
small that the resulting boundary function is very sparse, leading to
a noisy estimator. It is possible to design boundary tests with better
behavior by propagating information on the mesh, although this
can increase the complexity.

B CONTINUITY OF THE WARP FUNCTION
In Section 3.3 we defined a set of weights based on harmonic in-
terpolation (Eqn. 8). The harmonic weights depend directly on the
boundary-test function B(.). Here, we discuss some additional prop-
erties of B(.).
We can reason about the continuity of theV𝜃 through its diver-

gence. If the divergence is finite for interior (non-boundary) points,
then it must follow that the warp field is continuous in the inte-
rior. Using typical vector calculus identities and the product rule of
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differentiation, we represent the divergence ofV𝜃 as

∇𝝎 .V𝜃 (𝝎) =
∫
Ω

𝜕𝝎𝑤 (𝝎,𝝎 ′)𝑇V (𝑑)𝜃
(𝝎 ′)

∫
Ω𝑤 (𝝎,𝝎 ′)d𝝎 ′( ∫

Ω𝑤 (𝝎,𝝎 ′)d𝝎 ′
)2 −

𝑤 (𝝎,𝝎 ′)V (𝑑)
𝜃
(𝝎 ′)𝑇

∫
Ω 𝜕𝝎𝑤 (𝝎,𝝎 ′)d𝝎 ′( ∫

Ω𝑤 (𝝎,𝝎 ′)d𝝎 ′
)2 d𝝎 ′ (12)

.
This divergence equation, aside from being an important quantity

for our algorithm, also only depends on the derivative of the weights
w.r.t the primary sample 𝝎. As long as this derivative exists at all
points in the interior, the divergence is finite. It is easy to see that
our proposed harmonic weights in Eqn. 8 satisfy this property as
long as our distance functionD(𝜔,𝜔 ′) is differentiable. This means
that B(.) does not need to be differentiable or even continuous for
the resulting warp field to be continuous.

C RELATION TO REPARAMETERIZATION
Extending the discussion in Section 3.4, we prove that a warp field
V𝜃 (x) can be converted into a reparameterization x = T (y;𝜃 ), and
vice-versa. Throughout this proof, we assume that we are attempting
to find the derivative w.r.t 𝜃 at a known point in parameter space,
which we will denote as 𝜃0.

C.1 T (x;𝜃 ) → V𝜃 (x)
For a given reparameterization T (y;𝜃 ), the resulting integral can
be re-written as

I =

∫
𝑓 (𝑥)dx =

∫
𝑓 (T (y;𝜃 );𝜃 ) |det𝐽T |dy

where 𝐽T is the Jacobian of the reparametrization.
The resulting parametric derivative at 𝜃 = 𝜃0 is then

𝜕𝜃 I =

∫ [
𝜕𝜃 𝑓 (T (y;𝜃 );𝜃 ) |det𝐽T |

]
𝜃=𝜃0

dy+∫ [
𝑓 (T (y;𝜃 );𝜃 )𝜕𝜃 |det𝐽T |

]
𝜃=𝜃0

dy

We use two properties to obtain the final form of the derivative:
(1) By construction, the transformation T (y;𝜃 ), obeys the rule

𝜃 = 𝜃0, T (y;𝜃0) = y [Loubet et al. 2019]
(2) The Jacobi’s formula [Magnus and Neudecker 1999], which

states that 𝜕𝜃 |det𝐽T | = tr(adj(𝐽T )𝜕𝜃 𝐽T )
The first property also implies that the adjugate of the Jacobian

at 𝜃 = 𝜃0 is 𝐼 , the identity matrix. We also note that the trace of a
square Jacobian matrix is simply the divergence of the underlying
mapping.

Applying these observations, we arrive at the following equation:

[𝜕𝜃 I]𝜃=𝜃0 =
∫

𝜕𝜃 𝑓 (y;𝜃0)dy+∫
𝜕y 𝑓 (y;𝜃0) [𝜕𝜃T (y;𝜃 )]𝜃=𝜃0dy+∫

𝑓 (y;𝜃0)∇y .[𝜕𝜃T (y;𝜃 )]𝜃=𝜃0dy
.

Fig. 16. We illustrate of how our control variates estimator reduces the
variance in 3 increasingly complex examples. The integrand we want to
estimate is 𝑀 (x) = 𝑔 (x)𝜕x𝑘 (x)V𝜃 (x) . Our control variate is 𝐶 (x) . (a)
and (b) show scenarios roughly uniform and roughly linear functions for
the underlying radiance and warp field. Our linear approximation-based
estimator 𝐶 (x) provides a near-perfect correlation in both cases, almost
completely removing the variance of the resulting estimator𝑄 = 𝑀 −𝐶 +
E[𝐶 ]. In (c), we see a more complex underlying function and while our
approximate estimator does not capture all the features, it is correlated
enough to provide significant variance reduction.

This equation is now in the form of Eqn. 5, which implies that
using a warp fieldV𝜃 (x) = [𝜕𝜃T (x;𝜃 )]𝜃=𝜃0 produces an equivalent
integral.

C.2 V𝜃 (x) → T (x;𝜃 )
To convert back from a warp field to a transformation, we find solu-
tions to the differential equationV𝜃 (x) = [𝜕𝜃T (x;𝜃 )]𝜃=𝜃0 . There
are several possibilities for a transformation that produces the same
warp field. Here, we detail the simplest warp fields for two different
coordinate systems.

2D free coordinates. Consider the transformation

T (y;𝜃 ) = y + (𝜃 − 𝜃0)V𝜃 (x) (13)

This satisfies property 1 from Appendix C.1, i.e., 𝜕yT (y;𝜃 ) = 𝐼 .
Also, note that [𝜕𝜃T (y;𝜃 )]𝜃=𝜃0 = V𝜃 (x).

The result in Appendix C.1 can now be applied to this trans-
formation, which shows that the reparameterized integral that is
equivalent to using our warp field integral with the given warp field
V𝜃 (y).

3D unit-sphere coordinates. In a similar way, we can find a simple
transformation for coordinates that are constrained on the unit
sphere. A simple translation would be incorrect here since it would
transform points off the spherical domain. Instead, the transforma-
tion will have to be a rotation.

R(𝝎;𝜃 ) = cos
(
(𝜃 − 𝜃0) ∗ |V𝜃 (𝝎) |

)
𝝎 +

sin
(
(𝜃 − 𝜃0) ∗ |V𝜃 (𝝎) |

)
V̂𝜃 (𝝎)
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D CONTROL ESTIMATOR
In this section, we elaborate upon the discussion in Section 4.2. More
specifically, we provide an explicit form for the linear approximation
used to reduce the variance of our main estimator through the
method of control variates.

We revisit the warped-area boundary integral (Eqn. 5) in order to
understand the source of the variance:

I𝐵 =

∬
D′

(
∇x 𝑓 (x;𝜃 )

)
· ®V𝜃 (x)dx +

∬
D′

(
∇x · ®V𝜃 (x)

)
𝑓 (x;𝜃 )dx

We use the pixel prefilter integral to exemplify our control vari-
ates. Our control variates is applicable to secondary bounces as well.
When computing derivatives for an entire image, each pixel is an
integral over the effective radiance 𝑓 (x;𝜃 ), which is the product of
a response function (the pre-filter 𝑘 (x)) and the incoming radiance
function (𝑔(x;𝜃 )). In all our experiments, the pre-filter is a standard
normal distribution with 𝜎 = 1/2px. Here, x is a coordinate over
the 2D image plane.
For clarity, we will express our integrals in terms of random

variables and expectations. We will also use linear algebra notation.
The first integral in the boundary integral formulation can now be
written in terms of a two-dimensional uniform random variable x
over the pixel’s domain (We assume that x = ®0 is the pixel center).

I
(1)
𝐵

= Ex

[
𝑔(x;𝜃 )𝜕x𝑘 (x) · ®V𝜃 (x)

]
+ Ex

[
𝑘 (x)𝜕x𝑔(x;𝜃 ) · ®V𝜃 (x)

]
The primary source of variance is the first term of this expansion,

𝑀 = 𝑔(x;𝜃 )𝜕x𝑘 (x) · ®V𝜃 (x). The term 𝜕x𝑘 (x) is just the derivative

of the normal distribution, the expected value of which is 0. How-
ever, in general, this term is non-zero across the domain of the
pixel. While we know the expected value of 𝜕x𝑘 (x), the product
V𝜃 (x)𝑔(x;𝜃 )𝜕x𝑘 (x) has an unknown mean value.
To circumvent this, we construct an approximate estimator by

finding a linear approximation for 𝑔 ∗ V such that the resulting
estimator has a known (i.e., analytically computable) mean value.
A locally linear approximation can be constructed using the mean
values and the mean first-order derivatives of𝑔(.) (𝜇𝑔 = Ex [𝑔], ∇𝑔 =

Ex [𝜕x𝑔]) and V(.) (𝜇V = Ex [V], ∇V = Ex [𝜕xV]). Fortunately,
estimating these quantities is easy since we have access to the
derivatives of the radiance 𝑔(.) as well as the warp fieldV(.) when
computing the primary estimate.
The effective first order derivative of the approximation is then

the matrix 𝐴 = 𝜇𝑔∇V + 𝜇V∇𝑇𝑔 . Our control variate is then (in the
quadratic form)

C = 𝜕x𝑘
𝑇𝐴x (14)

Since 𝑔(.) is a scalar andV(.) is a vector, the first-order derivatives
of these quantities are a vector and a matrix, respectively. The re-
maining random variables 𝑘 (x) and x have known distributions.
Therefore the expected value can be computed by using some com-
mon statistics results, specifically the expected value of a quadratic
form:

E[C] = tr
(
𝐴 cov(𝜕x𝑘𝑇 , x)

)
+ E[𝜕x𝑘]𝑇𝐴 E[x]

For the case of the normal distribution, this simplifies to

E[C] = 𝜎2tr
(
𝐴
)

Fig. 16 illustrates how 𝐶 is, in general, correlated with 𝑀 and
therefore the resulting estimator 𝑄 = 𝑀 − 𝐶 + E[𝐶] has reduced
variance.
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