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Abstract— We present an automatic approach for the task of
reconstructing a 2D floor plan from unstructured point clouds
of building interiors. Our approach emphasizes accurate and
robust detection of building structural elements, and unlike
previous approaches does not require prior knowledge of
scanning device poses. The reconstruction task is formulated as
a multiclass labeling problem that we approach using energy
minimization. We use intuitive priors to define the costs for the
energy minimization problem, and rely on accurate wall and
opening detection algorithms to ensure robustness. We provide
detailed experimental evaluation results, both qualitative and
quantitative, against state of the art methods and labeled
ground truth data.

I. INTRODUCTION

Robotic applications of accurate room level segmentations
of indoor raw data are endless. The ability to identify walls,
doors, and clutter already provides a wealth of information
for various robotic systems. In addition, identifying room
boundaries helps in tasks such as topological mapping,
semantic mapping, automatized professional cleaning, and
human-robot interaction. Within the robotics community, the
development of tools such as GMapping [1] have made
creating 2D grid-maps standard practice when dealing with
mobile robots. Similarly, creating large scale 3D maps of
various indoor environments has become increasingly easy,
especially with the advent of low-cost RGB-D cameras.

However, there are several difficulties in obtaining accurate
room level segmentations from point cloud data. Current
scanner technology is imperfect, and noise is frequent either
as registration errors, or missing data. Furthermore, interiors
of residential buildings are highly cluttered with furniture and
other objects. Separating clutter from permanent structures
such as walls and doors is difficult as clutter can occlude
permanent structures. For example, bookshelves often span
the entire height of a wall, and recognizing such scenarios
remains difficult.

Current approaches make a number of assumptions to
make the problem tractable: knowledge of the direction of
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the up-vector, straight walls, alignment to a pre-defined Man-
hattan world frame or knowledge of the original scanning
device poses from where the data was acquired. In our work
we lift as many of these assumptions as possible, and present
a novel method which relies only on the knowledge of the
direction of the up-vector with respect to the ground. Our
contributions are:
• A robust method of detecting openings in wall seg-

ments.
• An efficient method for computing a set of synthetic

sensor poses / viewpoints which yield an initial labeling
of the input point cloud.

• A two-step energy minimization problem: first a binary,
inside-outside labeling step for noise reduction, and
second a multi-label minization step which partitions
the data into separate semantic entities.

We provide detailed experimental evaluation results
against state of the art methods and labeled ground truth
data and we show that our method outperforms related
approaches.

II. RELATED WORK

Bormann et al. [2] provide a comprehensive list of meth-
ods suited for segmenting 2D maps into separate semantic
entities, as well as a more detailed analysis of four selected
methods. In our results section we include a comparison to
the best performing method presented by Bormann et al.

Pronobis et al. [3] describe a system which learns how
to combine laser and visual data to categorize semantic
entities into pre-trained categories. The sensor data is pro-
cessed incrementally to build a semantic map as the robot
traverses the environment. Xiong et al. [4] use a region
growing approach to segment out structural elements and
classify them using a logistic regression model. Using a
Constructive Solid Geometry model, Xiao and Furukawa [5]
are able to reconstruct semantically meaningful room regions
in museums, but their use of the Hough transform to detect
wall segments is restricted to uncluttered scenes. Turner and
Zakhor [6], [7] construct a floor plan by triangulating the 2D
regions and merging them based on a graph cut approach to
separate rooms.

Armeni et al. [8] describe a system for parsing and
classifying 3D point clouds of entire buildings into rooms,
and further into building elements (walls, doors and objects).
One of the novel elements of their method is the usage of
convolution operators on different axes to detect walls based
on the empty spaces between them, using the assumption that
the rooms are all aligned to a predefined Manhattan world



Fig. 1: System overview.

frame. Assuming a single Manhattan frame is limiting, and
even simple scenarios exhibit multiple Manhattan frames [9].

Oesau et al. [10] perform an analysis along the z axis
to decompose the input point cloud into horizontal and
vertical structures, after which a volumetric model is ex-
tracted through a binary energy minimization process solved
using Graph-cut. Closer to our work, Ochmann et al. [11]
use Graph-cuts iteratively in a multi-label minimization
framework. The initial set of labels is obtained from the
assumption that the viewpoints from which the environment
was scanned are known. In contrast, we don’t use prior
viewpoint information, and instead generate the initial labels
automatically. A further distinction arises from detecting
openings in the point cloud: while [11] employs a pre-trained
SVM classifier, we perform an analysis on the projection of
the wall plane on a 2D image, an operation which requires no
training data. In [12] Mura et al. segment out planar patches
in the 3D point cloud taking occlusions due to clutter into
account. Unlike us, their method of detecting planar patches
uses a smoothness-based region growing approach which is
less robust in the case of noisy data. Further, the authors also
use a 2D cell complex data structure to represent the patches
in 2D, and define a set of weights between the faces of the
complex which are propagated using diffusion maps.

In [13] Mura et al. further extend this method and explic-
itly encode adjacency relations between structures in a graph-
based scene representation which is used to separate the
walls, floor and ceiling from clutter. The data is assembled
into a 3D cell complex and the optimal number of rooms is
computed through a Markov Clustering step performed using
visibility weights defined in the cell complex. Finally, parti-
tioning of the cell complex space into rooms is done through
a multi-label Markov Random Field label assignment. Our
method is more generic as we do not rely on a-priori
viewpoint information. Furthermore, we do not explicitly
encode adjacencies between floor-walls-ceiling, which can
be error prone especially in the case of noisy or missing
data. In addition, instead of a first clustering step to obtain
the number of rooms, our method first computes the energy
minimization partition and subsequently merges regions by
cross-checking the inferred walls with the primitives detected
in an earlier step.

There is significant prior work [14], [15], [16], [17]
in semantic segmentation of indoor RGB-D images using
machine learning techniques. While such approaches are
attractive for gaining a better semantic understanding of the

rooms extracted by our algorithm, they cannot be used for the
task of high level room reconstruction as they lack contextual
geometric information and require RGB-D images.

III. SYSTEM OVERVIEW

Similar to prior work, we use a point cloud representation
of the environment. The capturing and processing of the
input point cloud is outside the scope of this work, and
we assume that the data is already registered. Our method
is a hierarchical parser into disjoint, semantically meaning-
ful entities that we call rooms. We define a room as the
interior of a simple closed curve in the plane that can be
separated from other rooms through meaningful separators.
We interpret a meaningful separator as an opening that
semantically disconnects two connected regions. These can
be either doors, or openings in wall segments.

We trade off between two metrics using an energy min-
imization formulation to obtain a maximum a posteriori
labeling for each room. The energy minimization problem
requires an initial labeling of the data, commonly obtained
in the literature [11], [13] through the assumption that a set
of viewpoints from which the point cloud was acquired is
known. In our approach we lift this assumption, and instead
compute a set of viewpoints from the Voronoi partition of
the 2D projection of the data.

Computing the 2D projection of the data involves the
detection of the ceiling, walls and openings. We define a wall
as a planar patch orthogonal to the ground plane. While this
does not account for all wall segments (slanted or curved
walls cannot be detected), it is a common assumption in
automatic reconstruction methods, and such walls account
for the vast majority of structural elements. Ceiling segments
are detected using a similar method, but we allow variation
up to 45o off parallel.

We detect openings using the information gained from
empty spaces in wall segments. Intuitively, we adopt a
heuristic approach where empty spaces are compared with
a parametric model of a door for height, width, and shape.

A high level overview of our approach is shown in Fig. 1.

IV. SEGMENTATION OF STRUCTURAL
ELEMENTS

We now proceed to describe in detail each section of
the pipeline, starting from the coarser elements (wall and
ceiling planes), down to the fine detail elements (doors and
viewpoints).



A. Primitive Detection

Fig. 2: Plane primitives extracted from a point cloud, arbi-
trarily colored.

We start from the method of Schnabel et al. [18], [19],
which offers an efficient way of detecting primitive shapes
of arbitrary orientations and sizes in an unordered 3D point
cloud. As described in [18], each shape is described by a
parametric model along with a set of supporting indices
representing points in the original point cloud which are
within a certain distance threshold of each other (i.e. a
connected component). The primitive shapes supported are
planes, cylinders and spheres. At this point we limit our-
selves to plane primitives, however, we can easily extend
our method to also support curved walls, as they can be
parametrized by a cylindrical primitive. Fig. 2 shows the
typical output of this step.

B. Wall and Ceiling Detection

To identify ceiling plane primitives we project all the
points in the point cloud onto a 2D grid aligned with the
XY-plane. For each occupied cell in the grid, we find the
3D point in the point cloud with the highest Z coordinate.
We use the 3D points obtained to identify relevant ceiling
plane primitives, and proceed in a similar way to identify
floor plane primitives.

We define walls as planar patches of points which stretch
between the floor and the ceiling, with the restriction that
the normal to the wall plane be perpendicular to the floor
up vector. The wall candidates still contain a number of
false positives corresponding to cupboards, shelves, screens,
etc. which we would like to filter out. However, actual
walls are most often occluded by the presence of clutter
in front of the sensor, making it difficult to reason about
their true height. Mura et al. [12] uses viewpoint information
to reason about occlusions in the point cloud, and discard
planes corresponding to false positives. However, in our
setting we do not have access to the viewpoint information.
Instead, we perform a per-candidate analysis and identify
gaps corresponding to openings (such as doors) or due to
occlusions created by clutter.

We represent each wall candidate P in Hessian normal
form, P = (~n, p), where ~n is the normal to the plane, and p
is the distance to the origin. We define a 2D reference frame
B in the plane, with origin aligned to the plane lower left
corner. One column of B consists of the floor up vector ~z
and the second lies in the plane and is obtained by: ~z × ~n.
Using B we project all the points of the wall candidate P to

an image which we analyse for gaps and openings (see Fig.
3).

(a) (b)

Fig. 3: Plane with projection. (a) Point cloud of a room with
selected plane points colored in blue. (b) 2D projection of
the wall points on a 2D plane with white pixels denoting
free cells and blue pixels occupied cells.

C. Opening Detection
We define an opening as any patch of empty space con-

tained within planar wall segments that is the required size
and shape. We start with the connected components defined
by each detected plane (see Fig. 3b). By analysing the 2D
projection defined by a wall segment, we can detect opening
candidates by looking for rectangle patches satisfying certain
width and height requirements. An efficient implementation
yields a solution in O(n) time, where n is the number of
pixels in the image. As an example, in Fig. 3b the cluster
of white pixels on the left of the image corresponds to an
opening, while the cluster on the right represents unobserved
space due to occlusion by the couch.

D. Viewpoint Generation
We project the ceiling segmentation on the ground plane

and mark all points in the bounding box of the segmentation
as free space. The projections of the walls and detected
openings are marked as obstacle space.

The resulting projection is noisy in areas with low ceiling
point density and at the intersection between ceiling planes
and wall planes. We run an energy minimization step to
obtain a refined foreground/background segmentation.

This has the advantage of providing a simple and very
efficient room reconstruction method. The rooms frequently
cluster in connected components and a flood fill algorithm is
capable of obtaining semantic labels (Fig. 4). In the results
section we provide qualitative and quantitative evaluations of
the semantic segmentation obtained at this point - see Table
Id and Fig. 8f.

This approach however relies on almost perfect wall
and opening detection, and produces jagged walls. We can
leverage the simplified representation to obtain simulated
viewpoints. By sampling viewpoints automatically, we do not
restrict ourselves to data that encodes the original viewpoints.

The 2D projection can be described as free space (white
pixels in Fig. 4b) and obstacle space (black pixels). We
can compute the medial axis of each free space component
following the work of [21] - Fig. 5a shows the resulting
Voronoi graph. Points that will have most visibility lie along
the medial axes of free space. To sample viewpoints we



(a) (b) (c)

Fig. 4: Simple room reconstruction. (a) 2D projection of ceiling points and wall candidates. Notice a clear separation between
rooms, but noisy interior. (b) Best foreground/background segmentation after energy minimization. (c) Rooms after flood
filling.

proceed in a greedy fashion by selecting the pixel which
observes the most pixels in a radius around itself. We repeat
this process until all but a small fraction of the free space
pixels are visible from at least one viewpoint. The radius
chosen reflects the operating range of the sensor used to
capture the data - this ensures that even in the case of large
rooms we will need multiple viewpoints, thus ensuring we
obtain an oversegmentation of the scene. In all experiments
we use a radius of 3m (the typical operating range of several
commercially available 3D scanners).

The resulting set of viewpoints is displayed in Fig. 5b.
To recover viewpoints in the original pointcloud, we

project the 2D viewpoints back into the original 3D space
and place them at mean height.

(a) (b)

Fig. 5: Initial viewpoint labeling. (a) Voronoi graph. (b)
Viewpoints in 2D shown in red. Points visible from at least
one viewpoint shown in gray, while unobserved points are
colored white.

V. ROOM RECONSTRUCTION

To obtain semantically meaningful rooms from the ex-
tracted primitives, we make use of a cell complex data
structure. This has the advantage of producing a planar graph
that encodes spatial relationships between regions defined by
wall segments. The graph structure allows us to define unary
and binary potentials for use with an energy minimization
algorithm for semantic labeling.

A. Cell Complex

A cell complex or arrangement of lines [22], [23] is a
geometric data structure describing how the intersection of
a set of lines partitions space. To construct a cell complex,
we project the points associated with each wall segment to
the ground plane and find a line of best fit by solving the
associated least-squares problem. To deal with curved wall
surfaces, we can find piecewise linear approximations of the

projected curve and insert each individual line segment into
the cell complex.

The cell complex induces a planar graph in Euclidean
space with vertices representing intersections between line
segments, and edges naturally induced by the segments.
Every planar graph induces a dual graph with vertices
representing faces in the primal and edges between adjacent
faces (see Fig. 6). We work with the dual to obtain a per
face labeling. We define an energy minimization problem
on the dual graph by associating unary potentials with the
vertices (representing the faces in the cell complex) and
binary potentials with the edges.

Formally, we propose to solve the following

min
l

∑
v∈V

Uv(lv) +
∑

v,w∈E
Bv,w(lv, lw) (1)

where l ∈ L|V | is a per vertex label vector drawn from a finite
labeling set, Uv : L → [0, 1] is the unary potential function
associated with vertex v, and Bv,w : L × L → [0, 1] is the
binary potential function associated with the edge (v, w). It
is important for our purposes that the true number of rooms
be at most equal to |L| (i.e. the initial segmentation has to
be an oversegmentation).

The unary potentials describe the likelihood that regions
have an associated (coarse) labeling obtained from an over-
segmentation. The unary potentials are a guess on the true
partition of the rooms. To define easy to compute unary
potentials, we make a simplifying assumption that the rooms
are close to convex. Using the synthetic viewpoints defined

Fig. 6: Cell complex example. This figure shows the main
components of a cell complex data structure. We show the
full primal graph as black edges. A few examples of dual ver-
tices and dual edges are shown. Dual vertices (corresponding
to primal faces) are shown as red circles, and dual edges are
shown as dashed red lines.



(a) (b) (c) (d)

Fig. 7: Room reconstruction end-to-end: (a) Initial point cloud. (b) Initial viewpoint labeling of point cloud - each color
represents points associated with a different viewpoint. (c) Initial room segmentation. (d) Final room segmentation, after
merging.

previously, we can label points within a fixed radius from
each viewpoint using a viewpoint specific color. This cap-
tures the intuition that points that can be seen from the same
viewpoint are more likely to be part of the same room.
An example coloring of cloud points based on viewpoint
visibility is shown in Fig. 7b.

We use the colored points to obtain a potential associated
to each face (recall that faces correspond to vertices in the
dual graph). For each face in the cell complex, we calculate
the density of points of each color whose projection to the
plane falls within that face.

We define a unary potential associated with each face and
color as the ratio of points colored with that specific color
over all points that fall within a face. Formally, let cij be
the number of points associated with viewpoint j that fall in
face i. For each face i we define a potential θij =

cij∑
j cij

.
To detect faces in the cell complex that correspond to

empty space, we perform a density threshold check. As the
subsampling grid size is given as 0.05m, we can compute
an average density for each meter squared. If a cell complex
face does not contain a density of points that is within a
given factor of the average density, we mark it as empty. We
create a fictitious viewpoint labeled 0 for the empty spaces,
and to each empty region we associate a potential θij = 1 if
j 6= 0 (i.e. j is any other label), and θij = 0 if j = 0 (i.e. j
is the empty label).

Binary potentials are obtained from the wall information.
Each edge in the cell complex is within the linear span of a
wall segment. If we write e for the cell complex edge, and
w for the original wall segment, we obtain a binary potential
between the two faces separated by edge e as

Bu,v(lu, lv) =

{
0 if lu = lv

1− |e∩w||e| otherwise.

Here |e| denotes the length of the segment e, and e ∩w is
the segment intersection of e and w. This can be either a
segment, a point, or empty.

This potential intuitively describes the likelihood that two
regions are contained within the same room. If there is a
large wall segment that separates the two regions, then the
regions are unlikely to cluster together. Note that we must
enforce Bu,v(l, l) = 0 to maintain semi-metricness of the B
function. This is required to apply the graph-cut algorithm
of Boykov and Kolmogorov [24].

B. Room Segmentation

We solve the minimization problem (1) using the alpha
expansion algorithm of Boykov and Kolmogorov [24].

The output of the energy minimization can be seen in 7c.
The room segmentation algorithm can lead to an overseg-
mentation in cases where imaginary walls are inferred. This
is the case for long corridors, and such regions can be merged
in a post-processing step.

To merge two regions, we detect the overlap between the
edge separating two regions and the wall segments that were
detected by the RANSAC algorithm. If the overlap is small
(less than 20% of the wall overlaps the inferred separator),
we choose to merge the two regions into one. We show the
output of this step in Fig. 7d.

VI. EVALUATION AND RESULTS

To test our implementation as well as compare with related
work we have created a dataset consisting of 10 large scale
point clouds, with ground truth segmentation labels1 (see
Fig. 9a and b). All point clouds were subsampled in a
voxel grid at a resolution of 0.05m. We mention that our
data was collected using cheap RGBD sensors and presents
certain challenges which invalidate some of the assumptions
made by the related work such as increased noise, occasional
registration errors, slanted ceilings, up-vector not perfectly
aligned with (0,0,1).

For evaluation we perform standard intersection over union
(IoU) and precision/recall tests and compare with other state
of the art methods. The intersection over union metric is de-
fined as the ratio between the area of the intersection between
the results and the ground truth and the union of the same.
We compare the 2D segmentation results of the previous
sections with hand labeled data. The IoU is taken from a
best match with the labeled data (see Fig. 8). Additionally,
we also perform a coarse evaluation by measuring precision
and recall of detected rooms. We compute true positives as
regions whose intersection with the ground truth covers at
least half of the room surface area. If a room covers multiple
ground truth rooms, we only account for one (see e.g. room
10 in Fig. 9). False positives are rooms not present in the
ground truth labeling, while false negatives are given either
by a room that is not detected by the method, or by a room
that is incorrectly connected to a different room. The results

1The data is available upon request.



(a) (b) (c)

Fig. 8: Intersection over union operation. (a) Ground truth labeled data set. (b) Our results on the same data set. (c) Intersection
over union visualization; regions colored red are incorrectly labeled.

(a) Bormann et al. [2] (b) Ochmann et al. [11] (c) Mura et al. [13] (d) Sec. IV (e) Sec. V

Prec. Rec. IoU Prec. Rec. IoU Prec. Rec. IoU Prec. Rec. IoU Prec. Rec. IoU

1 1 0.9 0.71 0.8 0.8 0.74 0.9 1 0.75 1 0.8 0.92 1 0.9 0.93
2 0.75 1 0.77 0.6 1 0.7 1 1 0.9 0.83 0.83 0.81 1 1 0.95
3 1 0.82 0.77 0.8 0.73 0.83 1 1 0.81 1 1 0.87 1 1 0.95
4 0.8 1 0.83 0.57 1 0.62 1 0.75 0.88 1 1 0.91 1 0.75 0.89
5 0.72 1 0.88 0.63 1 0.73 1 1 0.95 1 1 0.92 1 1 0.94
6 1 0.75 0.65 1 1 0.88 1 0.92 0.9 1 1 0.91 1 1 0.93
7 1 0.5 0.67 1 1 0.86 1 1 0.86 0.91 0.91 0.90 1 0.8 0.82
8 1 1 0.8 0.67 0.8 0.78 1 1 0.9 1 1 0.94 1 1 0.91
9 0.75 0.75 0.85 0.89 1 0.79 1 1 0.95 1 0.75 0.87 0.89 1 0.92
10 0.47 0.9 0.61 0.69 0.9 0.68 1 0.1 0.44 0.7 0.7 0.7 0.64 0.9 0.7

Mean 0.85 0.86 0.75 0.77 0.92 0.76 0.99 0.88 0.83 0.94 0.90 0.87 0.95 0.94 0.89

TABLE I: Results and comparison with state of the art. We measure precision and recall based on the number of detected
rooms against the ground truth labeling. To obtain a measure for the error in area, we compute the intersection over union
score of the best labeling pairing between each method and the ground truth. (The results shown for Bormann et al. [2]
correspond to the Voronoi segmentation method.)

are summarized in Table I. Qualitative results are displayed
in Fig. 9.

We perform the same evaluation on three of the meth-
ods described in [2]: morphological, distance and Voronoi
methods. In Table Ia we show the results of the Voronoi
segmentation method, which performed the best. We note
that the methods described in [2] were applied after the
initial 2D projection was computed, and thus after walls and
doors were segmented out and all other clutter removed. In
keeping with the original intent of [2] we did not mark the
doors as impassable areas. In some cases [2] yields good
results (see Fig. 9d, rows 6 and 9), however, overall these
methods don’t generalize well and perform poorly when
applied to a more varied dataset. We compare here with the
segmentation resulting after the steps described in Section
IV of our method - see Table Id, and in Fig. 9f.

We notice a much better segmentation as compared to [2]
which we attribute to our energy minimization step which
smooths out some of the 2D projection noise, as well as the
marking of doors as obstacles. Notice however that when
the door detection fails the flood-fill operation joins rooms
together, as is the case in e.g. Fig. 9f rows 2 and 9.

Even though precision and recall for room detection are
high in these methods, the area of the rooms is more
prone to errors, thus making these approaches less attractive
for analysis of indoor reconstructions. A second reason to
prefer cell complex approaches is that they yield much more
intuitive room boundaries composed of few straight line
segments. Notably, we compare with the work of Mura et

al. [13] and Ochmann et al. [11] whose methods share many
similarities to our own. Since [11], [13] require viewpoint
information, we supply the viewpoint positions computed by
our method for the purpose of the comparison.

The method of Ochmann et al. [11] - see Table Ib and Fig.
9c, yields good results in terms of detecting the true walls of
the environment, and the resulting segments follow closely
the outline of the ground truth segmentation. However, we
notice that the method is prone to over-segmenting the envi-
ronment. [11] includes a method for identifying ”false” walls
induced by the energy minimization, based on a supervised
machine learning approach, which appears to yield false
results on our data thus leading to the over-segmentation.

The method of Mura et al. [13] also uses a cell complex
to define an energy minimization problem, however the
reasoning is done in 3D. The results, reported in Table Ic and
Fig. 9e, show that the method performs quite well and with
a few exceptions is able to segment environment correctly.
[13] has one real failure case on our data (see Fig. 9e, row
10), where the method fails to segment out the environment.
We mention here that this instance of our dataset is quite
challenging, as it consists of an atypical layout: two very
large rooms with very high ceilings, and connected to a
number of smaller rooms; this instance is also much bigger
in terms of real world volume than the others. We attribute
the poor performance of [13] to (i) failure to encode the
environment primitives of this challenging instance into one
of the 6 types of structural paths described in the method, and
(ii) failure of the Markov clustering algorithm to compute the



correct number of rooms.
We outperform the state of the art for quantitative mea-

sures of area which are often desirable when gathering
statistics on building layouts - see Table Ie and Fig. 9g.
Our results are better even though we have presented a more
generic approach, independent of viewpoint information. We
note that instance 10 of our dataset is a partial failure case
for our method as well, due to the fact that in parts of the
environment the ceiling is not visible / has not been scanned,
which results in our method marking those areas as empty.
Comparing our final results with the segmentation resulting
after Section IV we note that we are able to improve the
overall segmentation of the environment into rooms, while
at the same time the resulting segments have much clearer
boundaries composed of a few straight-line segments. The
runtime of our method varies between 30 - 120 seconds,
depending on the complexity (i.e. number of points) of the
input point cloud.

Our approach suffers from the typical issues present in
cell complex reconstruction approaches. First, as we rely
on a parametric plane detection method to discover walls,
atypical candidate wall planes are not accurately detected
(e.g. in the case of buildings where the walls are not per-
pendicular to the ground plane). A volumetric cell complex
approach can sidestep this issue, but it is less robust to noise
and computationally more expensive due to the increase in
dimensionality. Second, we rely extensively on the presence
of ceiling points to detect regions that are outside, with the
disadvantage that regions with partial / unobserved ceilings
are not detected accurately.

VII. CONCLUSIONS

We have presented an automatic method for reconstructing
room information from raw point cloud data using only 3D
point information. Our method is the first such method to not
rely on viewpoint information without relying on a Manhat-
tan frame assumption. We have given extensive quantitative
results that prove our method outperforms the state of the art
on both fine grain and coarse grain segmentation tasks.

There are several avenues for future research. One appeal-
ing direction is to leverage the power of object recognition
systems to aid in a truly semantic manner. Knowledge of,
for instance, which room is the kitchen versus which room
is a bedroom would be invaluable for robotic applications. A
different avenue for research involves the use of volumetric
primitives for full 3D model reconstructions.
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Fig. 9: Qualitative results of semantic segmentations: (a) shows the original data (ceilings removed for clarity) and (b) the
ground truth labelling. We compare with the methods from [11] [2] [13], displayed in (c),(d) and (e). We also show our
results in (f) - simple segmentation as defined in Section IV and (g) - segmentation after the energy minimization step
described in Section V. All images show a top-down view of an orthographic projection of the data.


