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Abstract— We consider the problem of monitoring events
occurring at discrete locations in a stochastic, time-varying
manner. Our problem formulation extends prior work in per-
sistent surveillance by considering the objective of maximizing
event detections in unknown, dynamic environments where the
rates of events are time-inhomogeneous and may be subject
to abrupt changes. We propose a novel monitoring algorithm
that effectively strikes a balance between exploration and
exploitation as well as a balance between remembering and dis-
carding information to handle temporal variations in unknown
environments. We present an analysis proving the long-run
average optimality of the policies generated by our algorithm
under the assumption that the total temporal variations are
sub-linear. We present simulation results demonstrating the
effectiveness of our algorithm in several monitoring scenarios
inspired by real-world applications, and its robustness to both
continuous-random and abrupt changes in the statistics of the
observed processes.

I. INTRODUCTION

Persistent surveillance tasks often require the agent to
monitor stochastic, spatially-distributed events of interest in
unknown, dynamic environments over long periods of time.
Uncertainty over time-varying event statistics necessitates the
robot to travel from one landmark to another, identify the
regions of importance, and adapt to the temporal variations
in the environment over time. The overarching objective
is to maximize the number of events observed in order to
enable efficient data collection, which may be imperative
for a successful surveillance mission. Applications include
monitoring of wildlife, natural phenomena (e.g., floods,
volcanic eruptions), and friendly and unfriendly activities.

We consider a novel persistent surveillance problem in
which a mobile robot is tasked with monitoring transient
events that occur in discrete, spatially-distributed landmarks
according to station-specific Poisson processes with un-
known, time-varying statistics. We assume that the moni-
toring task is conducted by a single robot equipped with
a limited-range sensor that can only record measurements
when the robot is stationary at a location, i.e., it cannot make
measurements while traveling. Hence, the robot must travel
to each location and wait for transient events to occur for
an appropriately generated amount of time before traveling
to another location. The persistent surveillance problem is
to generate an optimal sequence of location-time pairs that
maximize the total sightings of events.
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1) A persistent surveillance problem formulation that
bridges the monitoring objective of maximizing event
observations with the objective of minimizing regret
by introducing a new definition of weak regret for
persistent surveillance.

2) A novel monitoring algorithm for generating appropri-
ate policies to monitor transient events in unknown,
dynamic environments where the total variation over
time is bounded by a variation budget VT that is known
a priori.

3) An analysis proving that under the assumption that
the total variation of the event rates are bounded by
a variation budget VT = o(T ), our algorithm achieves
sub-linear regret over time.

4) Simulation results that characterize our algorithm’s
effectiveness in minimizing regret (i.e., maximizing the
number of event observations) in several dynamic and
random environments and comparing its performance
to adaptive monitoring algorithms.

II. RELATED WORK

Our work leverages and builds upon prior work in persis-
tent surveillance, mobile sensor scheduling, and stochastic
optimization. The problem of persistent surveillance has been
studied in a variety of real-world inspired monitoring appli-
cations such as underwater marine monitoring and detection
of natural phenomena [1]–[11]. These approaches generally
assume that the robot can obtain measurements while mov-
ing and generate paths that optimize an application-specific
monitoring objective, such as mutual information.

The problem of persistent surveillance can be formulated
as a mobile sensor scheduling problem and has been studied
extensively in this context [12]–[15]. Mobile sensor schedul-
ing in environments with discrete landmarks are of particular
relevance to our work. For instance, [3] considers monitoring
discrete locations such as buildings, windows, and doors
using a team of autonomous micro-aerial vehicles (MAVs).
In [16], the authors present an approach to the min-max
latency walk problem and [17] extends this work to the multi-
objective mobile sensor scheduling problem for surveillance
of transient, stochastic events via cyclic policies. Recently,
[18] extended the work of [17] by introducing a method with
provable guarantees that relaxed the assumption of known
event statistics.

Other related work includes variants and applications of
the Orienteering Problem (OP) to generate informative paths
that are constrained to a fixed length or time budget [19].
Yu et al. present an extension of OP to monitor spatially-
correlated locations within a predetermined time [20]. In [21]



and [22] the authors consider the OP problem in which the
reward accumulated is characterized by a known function
of the time spent at each point of interest. In contrast to
our work, approaches in OP predominantly consider known,
static environments and budget-constrained policies that visit
each location at most once.

As exemplified by the aforementioned works, a variety
of monitoring algorithms have been presented and shown
to perform well empirically. However, literature on methods
with theoretical performance guarantees in unknown, time-
varying environments has been sparse and limited. The added
complexity stems from the inherent exploration and ex-
ploitation trade-off, which has been rigorously addressed and
analyzed in canonical Multi-armed Bandit (MAB) literature
[23]. Our work differs from the traditional MAB formulation
in that we consider optimization in the face of travel costs,
non-stationary processes, distributions with infinite support,
and continuous state and parameter space. To the best of our
knowledge, this paper presents the first treatment of a MAB
variant exhibiting all of the aforementioned complexities and
a monitoring algorithm with provable regret guarantees with
respect to the number of events observed.

MAB formulations that relax the assumptions of the
traditional MAB problem are of particular pertinence to
our work. Besbes et al. present a non-stationary MAB
formulation where the variation of the rewards are bounded
by a variation budget VT and present policies that achieve a
regret of order (KVT )1/3T 2/3, which is long-run average
optimal if the variation VT is sub-linear with respect to
the time horizon T [24]. The authors mathematically show
the difficulty of this problem by proving the lower bound
of Ω((KVT )1/3T 2/3), which implies that long-run average
optimality is not achievable whenever VT is linear in T .

Garivier et al. consider a non-stationary MAB setting
where the distributions of the rewards change abruptly at
unknown time instants, but the number of changes up to
time T , ΥT , is bounded and known in advance [25]. The
authors present discounted and sliding window variants of
the Upper Confidence Bound (UCB) algorithm [26], [27]
that achieve a regret of O(

√
TΥT log T ) and also prove the

lower-bound of Ω(
√
TΥT ) on the achievable regret in this

setting, which is linear if the number of abrupt changes grows
linearly with time. Prior work on the MAB formulation with
switching costs tells a similar story regarding the difficulty
of the aforementioned MAB extensions: Dekel et al. prove
the lower-bound of Ω̃(T 2/3) on the achievable regret in the
presence of switching costs [28].

Recently, Srivastava et al. presented an approach with a
provable upper bound on the number of visits to sub-optimal
regions that bridges surveillance and MAB for monitoring
phenomena in an unknown, abruptly changing environment
[29]. However, their approach considers a discrete state and
parameter space (i.e., the generation of observation times
is not considered), assumes Gaussian distributed random
variables –which may be less suitable for monitoring instan-
taneous events (such as arrivals), assumes that the number
of abrupt changes are bounded and known in advance, and

does not explicitly take travel cost into consideration.
We build upon prior work and consider an unknown,

dynamic environment where the robot is tasked with vis-
iting each location more than once, observing stochastic,
instantaneous events for an appropriately generated time,
and adapting to the temporal variations in the environment
over an unbounded amount of time. Unlike prior work in
persistent surveillance which has focused on environments
with a bounded number of abrupt changes, our problem
formulation extends to continuously-varying as well as to
abruptly-changing environments, as long as the total variation
is bounded [24]. We introduce a novel monitoring algorithm
with provable guarantees with respect to the number of
event sightings and present simulation results of real-world
inspired monitoring scenarios that support our theoretical
claims.

III. PROBLEM DEFINITION

Let there be n ∈ N+ discrete stations in the environment
where transient events of interest occur according to inhomo-
geneous Poisson processes. The temporal variations at each
station i ∈ [n] are governed by an integrable rate function
λi : R≥0 → R+ that is station-specific and independent of
those of other stations. We assume that the rate functions can
exhibit an unbounded number of abrupt changes, however,
we require that the total variation of each function λi within
the time horizon T ∈ R+ be bounded by a variation budget
VT ∈ R+ [24], i.e.,

sup
P∈P

np−1∑
j=1

max
i∈[n]

∣∣λi(pj+1)− λi(pj)
∣∣ ≤ VT , (1)

where P =
{
P = {p1, . . . , pnP

} | P is a partition of [0, T ]
}

.
We assume that there exists a travel cost, c : [n]× [n]→

R≥0, associated with going from one station to another. Due
to sensor constraints that mandate the robot to be stationary
to make accurate measurements, the robot cannot make
observations while traveling. Our overarching monitoring
objective is to generate an optimal sequence of station-
time pairs that dictate the appropriate station visit order and
respective observation windows in order to maximize the
number of sighted events.

More formally, a policy π =
(
(s1, t1), . . . , (sm, tm)

)
is

a sequence of m ∈ N+ ordered pairs where each ordered
pair, (s, t), denotes an observation window of t ∈ R≥0

time at station s ∈ [n]. For any non-negative reals a, b
such that a ≤ b, let Ni(a, b] denote the random number
of events that occur in the time interval (a, b] at station
i ∈ [n]. It follows then that E

[
Ni(a, b]

]
=
∫ b
a
λi(τ) dτ

by definition of an inhomogeneous Poisson process at each
station i. The expected number of events obtained for any
policy π =

(
(s1, t1), . . . , (sm, tm)

)
constrained by the total

surveillance time T can then be computed as follows:

E[N(π, T )] :=

m∑
j=1

∫ oj(π)+tj

oj(π)

λsj (τ) dτ, (2)



where oj(π) denotes the start of the jth observation window,
i.e., o1(π) = 0 and for any integral value j > 1,

oj(π) :=

j−1∑
k=1

tk + c(sk, sk+1).

Our notion of weak regret is defined relative to the
maximum number of expected events, N∗T at a single best
station after an allotted monitoring time of T ∈ R+:

N∗T = max
i∈[n]

E
[
Ni(0, T ]

]
= max

i∈[n]

∫ T

0

λi(τ) dτ.

We seek to generate policies that minimize the expected
regret with respect to the quantity N∗T . We let R(π, T ) denote
the regret accrued by policy π =

(
(s1, t1), . . . , (sm, tm)

)
after time T

R(π, T ) := N∗T −N(π, T ) (3)

and define our optimization problem with respect to the
expectation of R(π, T ).

Problem 1 (Persistent Surveillance Problem). Compute the
optimal monitoring policy, π∗ =

(
(s∗1, t

∗
1), . . . , (s∗m, t

∗
m)
)
,

that minimizes the expected regret with respect to the allotted
monitoring time T

π∗ = argmin
π

E[R(π, T )]. (4)

In what follows, we seek to minimize a long-term variant
of Eqn. 4. We define the long-run average optimal policy as

Definition 1 (Long-run Average Optimal Policy). A policy
π =

(
(s1, t1), . . . , (sm, tm)

)
is called a long-run average

optimal policy if and only if

lim sup
T→∞

E[R(π, T )]

T
=

E[N∗T ]− E[N(π, T )]

T
≤ 0. (5)

IV. METHODS

In this section, we describe the intuition behind our ap-
proach, and present a detailed algorithm. Our approach trades
off exploration and exploitation by leveraging information
gained within bounded time steps. Specifically, we partition
our alloted time into equal length intervals called epochs.
Within each epoch we reason about the currently known
best station and attempt to cleverly remove stations that are
suboptimal with high probability. By removing suboptimal
stations, future passes through the list of remaining stations
are expected to yield better long-term rewards and require
less traveling overall from one station to another.

The algorithm begins by computing the length of each
epoch as a function of the total time T , variation bud-
get VT , and maximum travel time between each station
Ttravel = maxi,j∈[n]:i 6=j c(i, j). The variables Ni and Ti,
denoting the total number of observations and the total time
spent at station i respectively, are reset at the beginning of
each epoch. Discarding out-dated information in this way
enables us to balance ”remembering” and ”forgetting” by
computing the average rate, λ̂i = Ni/Ti, for each station
using only information obtained within that epoch. For each

epoch, our method employs an extension of the Improved
UCB Algorithm [27] as a subprocedure that is appropriately
calibrated to take travel time into consideration.

Algorithm 1: Dynamic Upper Confidence Bound Mon-
itoring Algorithm

Input: Time horizon T , variation budget VT , number of
stations n, and travel costs c : [n]× [n]→ R≥0.

Effect: Monitors locations of interest for T time.
1 Ttravel ← maxi,j∈[n]:i 6=j c(i, j);
2 // Compute the length of each epoch
3 τ ← (nλmaxT/VT )

2
3 ;

4 while tcurrent ≤ T do
5 // Initialize parameters, discarding all previously

obtained information from previous epochs
6 Ti ← 0 ∀i ∈ [n]; Ni ← 0 ∀i ∈ [n];
7 S ← {1, . . . , n};
8 ∆̃← λmax;
9 // Determine the end point of the current epoch

10 Tend ← tcurrent + τ ;
11 while tcurrent ≤ Tend do
12 // Compute the goal observation time

13 Tobs ←
8λmax log

(
τ∆̃2
)

3∆̃2
;

14 if |S| > 1 then
15 for i∗ ∈ S such that Ti∗ < Tobs do
16 ti∗ ← min

{
Tend − tcurrent, Tobs − Ti∗

}
;

17 Observe at station i∗ for ti∗ time;
18 Ti∗ ← Ti∗ + ti∗ ;

19 else
20 ti∗ ← Tend − tcurrent;
21 Observe at the sole station i∗ ∈ S until Tend;
22 Ti∗ ← Ti∗ + ti∗ ;

23 // Identify and remove suboptimal stations

24 ξ ←
√

8λmax log
(
τ∆̃2
)

3Tobs
;

25 λ̂∗ ← maxi∈S λ̂i − ξ;
26 B ← {i ∈ S | λ̂i + ξ < λ̂∗};
27 S ← S \B;
28 ∆̃← ∆̃

2 ;

V. ANALYSIS

In this section, we present analysis proving that the policy
π generated by Alg. 1 is long-run average optimal with
respect to our definition of weak regret. To establish our
result, we proceed by bounding the total regret in each epoch,
and then sum the regret over all k epochs to obtain an upper
bound on the entire monitoring horizon of length T .

A. Preliminaries
Assumption 1 (Bounded Rates). For a given time horizon
T ∈ R+, the rate parameters ∀i ∈ [n] λi : R≥0 → R+ are



bounded above by a known constant λmax.

Define a stage indexed by m ∈ N as the completion
of the inner while loop of Alg. 1 (i.e., execution of lines
13-31) and denote the partition of the time horizon T into
k = dTτ e epochs as τ0, . . . , τk−1 of length τ each (with
the possible exception of τk−1). For a given stage m, we
define ∆̃(m), Tobs(m), S(m), and ξ(m) as the values of
each variable at stage m (see Alg. 1). Let wi,0, . . . , wi,m
be the m + 1 ∈ N observation windows at station i ∈ [n],
where each observation window wi,j is defined by an interval
(ai,j , bi,j). Note that

∑m
j=0(bi,j − ai,j) = Tobs(m).

We let λ̂i(m) denote the sample mean of the rate param-
eter and let λ̄i(m) denote the ground-truth mean rate after
observing at station i for m stages. We define λ̄i to denote
the average rate of a station over a specific epoch (that is
clear from the context) and let λ̄∗ = maxi∈[n] λ̄i denote the
epoch-specific optimal rate of the best station ∗. Finally, we
let ∆i = λ̄∗ − λ̄i denote the difference in the rates of a
station i in comparison to that of the optimal station over an
epoch.

Lemma 1 (Concentration Inequalities). For any station
i ∈ [n] and arbitrary sequence of observation windows
wi,0, . . . , wi,m such that Tobs =

∑m
j=0(bi,j − ai,j) and

ξ ∈ R≥0:

P
(
λ̂i(m) > λ̄i(m) + ξ

)
≤ exp

(
−3Tobsξ

2

8λmax

)
and for ξ ∈ [0, λmax]

P
(
λ̂i(m) < λ̄i(m)− ξ

)
≤ exp

(
−3Tobsξ

2

8λmax

)
.

B. Regret over an epoch

Our proof employs results established in, and follows a
similar structure as the proof given by [27] and [24]. Let
Vj denote the total variation in the rates during an arbitrary
epoch τj ,

Vj = sup
P∈Pj

np−1∑
k=1

max
i∈[n]

∣∣λi(pk+1)− λi(pk)
∣∣, (6)

where Pj is a partition of epoch τj . Summing over all epochs
j = 1, . . . , dTτ e, note that

∑dT/τe
j=1 Vj ≤ VT .

Let mi = min{m : ∆̃(m) < ∆i/8} denote the first
stage index in which our guess ∆̃(m) is close to the actual
difference in the rates for stations i ∈ S. The following
inequalities follow by definition

∆̃(mi) =
λmax

2mi
<

∆i

8
≤ 2∆̃(mi) =

2λmax

2mi
(7)

and

ξ(mi) =

√√√√8λmax log
(
τ∆̃2(mi)

)
3Tobs(mi)

= ∆̃(mi) < ∆i/8.

We will consider bounding the regret incurred by mon-
itoring suboptimal locations, i.e., B = {i ∈ S | ∆i >

∆}, instead of monitoring the optimal station ∗, where

∆ = max{4Vj ,
√

8 exp(1−3/(5λmax))
τ }. Note that suboptimal

in this context refers to stations in B, i.e., those stations with
significantly high optimality gaps, in contrast to any station
i with ∆i > 0. Let B(m) = B ∩ S(m) denote the set of
suboptimal stations still in the set S(m) after m stages. Let
Rm(i, j) denote the event that a station i ∈ S(m) is removed
at the end of stage m (or before) by station j.

We decompose the total expected regret over an epoch
of length τ , E[Rtotal(π, τ)], and consider the regret incurred
by observing and traveling separately, i.e., E[Rtotal(π, τ)] =
E[Robs(π, τ)]+E[Rtravel(π, τ)]. The following lemmas estab-
lish bounds on the probability that an optimal station removes
a suboptimal station and vice-versa.

Lemma 2 (Conditional Probability of Rm(i, ∗)). Given that
the optimal station ∗ ∈ S(mi), the probability of removing
a sub-optimal station i ∈ B(mi) from S(mi) at stage mi (or
before) by the optimal station ∗ is given by

P (Rmi(i, ∗) | i∗ ∈ S(mi)) ≥ 1− 2

τ∆̃2(mi)

where mi = min{m : ∆̃(m) < ∆i/8}.
Proof. We will proceed by finding an upper bound for
the probability that an arbitrary sub-optimal station is not
removed during the duration of the epoch τj . Consider the
following inequalities for some stage m

λ̂i(m) ≤ λ̄i(m) + ξ(m) (8)

λ̂∗(m) ≥ λ̄∗(m)− ξ(m). (9)

If conditions (8) and (9) hold at stage m = mi under the
assumption that ∗ ∈ S(mi), then it follows that i will be
removed from S(mi) at stage mi

λ̂i(mi) + ξ(mi) ≤ λ̄i(mi) + 2ξ(mi) by (8)
≤ λ̄i + Vj + 2ξ(mi) by (6)
< λ̄i + ∆i − Vj − 2ξ(mi)

≤ λ̄∗ − Vj − 2ξ(mi)

≤ λ̄∗(mi)− 2ξ(mi) by (6)

≤ λ̂∗(mi)− ξ(mi) by (9)

where we used the fact that ∆i > 2Vj + 4ξ(mi).
Using Lemma 1, the probability that either (8) or (9) does

not hold is as follows.

P
(
λ̂i(mi) > λ̄i(mi) + ξ(mi)

)
≤ 1

τ∆̃2(mi)
,

and similarly for condition (9)

P
(
λ̂∗(mi) < λ̄∗(mi)− ξ(mi)

)
≤ 1

τ∆̃2(mi)

By the union bound, the probability that the sub-optimal
station is not eliminated in stage mi (or before) is bounded
above by 2

τ∆̃2(mi)
≤ 512

τ∆2
i

.



Lemma 3 (Conditional Probability of Rm(∗, i)). The prob-
ability that the optimal station ∗ is removed by a suboptimal
station i ∈ B(mi) at stage mi (or before) is given by

P (Rm(∗, i)) ≤ 1

τ∆̃2(mi + 1)

Proof. Consider the event that an arbitrary sub-optimal sta-
tion i ∈ B removes the optimal station ∗ at stage m∗. This
implies that the following removal condition holds at m∗

λ̂i(m∗)− ξ(m∗) > λ̂∗(m∗) + ξ(m∗). (10)

If we assume that the inequalities (8) and (9) hold at stage
m∗, then (10) leads to the contradiction λ̄i+2Vj > λ̄∗ since
∆i > 4Vj :

λ̄i + Vj ≥ λ̄i(m∗)
≥ λ̂i(m∗)− ξ(m∗) by (8)

> λ̂∗(m∗) + ξ(m∗) by (10)
≥ λ̄∗(m∗) by (9)
≥ λ̄∗ − Vj .

Thus, it follows that if (8) and (9) hold at stage m∗,
the optimal station ∗ will not be removed at this stage.
Thus, using previously established results, we have that
the probability that an arbitrary sub-optimal station i ∈ B
removes ∗ at stage m∗ is at most 2

τ∆̃2(m∗)
.

Summing over all stages preceding mi, we have:

P (Rm(∗, i)) ≤
mi∑

m∗=0

2

τ∆̃2(m∗)
= 2

mi∑
m∗=0

22m∗

τλ2
max

≤ 22(mi+1)

τλ2
max

=
1

τ

(
2mi+1

λmax

)2

≤ 1

τ∆̃2(mi + 1)
≤ 1024

τ∆i
.

Using Lemmas 2 and 3 in conjunction with standard regret
bound techniques (such as the one outlined in [27]) yields
the following per-epoch regret.

Lemma 4 (Distribution-independent Epoch Regret). The
per-epoch expected regret of our algorithm, E[Robs(π, τ)],
with respect to an arbitrary epoch j of length τ and with
total variation budget Vj is at most

E[Robs(π, τ)] = O
(
Vjτ + n

√
τλmax

)
.

Lemma 5 (Bound on Travel Time Per Epoch). In an epoch
length of duration τ , the total regret incurred by traveling
from one station to the other is bounded above by

E[Rtravel(π, τ)] = O (log(τ)nλmaxTtravel) .

Proof. By definition of our algorithm, no more than
O(log(τ)) stages can be executed within an epoch of length
τ . Moreover, since the cardinality of S is at most n at each
stage, the regret incurred per stage is bounded above by
nλmaxTtravel, which yields the result.

C. Total Regret

Theorem 1 (Long-run Average Optimality). The total ex-
pected regret of Alg. 1, E[R(π, T )], over the entire moni-
toring duration T and total variation budget VT is bounded
by

E[R(π, T )] = O
(
V

1/3
T T 2/3(nλmax)2/3

)
,

for a choice of epoch length τ = O(nλmaxT/VT )2/3 as long
as nλmaxTtravel is negligible relative to T , i.e., nλmaxTtravel =
O(1).

Proof. Invoking Lemmas 4 and 5 and summing over dTτ e
epochs yields

E[R(π, T )]

=

dT/τe∑
j=1

O
(
Vjτ + nλmax(

√
τ + log(τ)Ttravel)

)
= O(VT τ) +O

(
(
T

τ
+ 1)(nλmax

√
τ)

)
= O

(
VT τ +

Tnλmax√
τ

)
.

Setting τ = (nλmaxT/VT )2/3 we have

E[R(π, T )]

= O
(
V

1/3
T T 2/3(nλmax)2/3 + T 1/3V

2/3
T (nλmax)1/3

)
= O

(
V

1/3
T T 2/3(nλmax)2/3

)
= o(T ),

which establishes the long-run average optimality of our
algorithm.

VI. RESULTS

We evaluate the performance of our algorithm in simulated
environments subject to temporal variations and compare
its effectiveness in maximizing the number of observa-
tions within the allotted monitoring time. In particular, we
compare our algorithm (Alg. 1) to the following baseline
and adaptive procedures that are inspired by state-of-the-art
methods:

1) Random Choice & Time: picks a station i∗ uniformly
at random and observes for a random time t∗i ∼
Exp(λexp(tcurrent, i

∗)).
2) ε-greedy: explores with probability ε(tcurrent) (see Ran-

dom Choice & Time) and exploits otherwise, i.e. i∗ =
argmaxi∈[n] λ̄i and t∗i ∼ Exp(λexp(tcurrent, i

∗)).
3) Discounted ε-greedy: same procedure as ε-greedy ex-

cept discounted sample means, λ̃i, are used instead.
4) Discounted Cyclic Policy: generates cyclic policies

using an extended version of the algorithm introduced
by [17] where discounted sample means, λ̃i, are used
to ensure adaptiveness.

where λexp(t, i) = λ̄i/(nε(t)) and ε : R≥0 → [0, 1] denotes
the exploration function defined as ε(t) = 1/ log t. Methods
3 and 4 employ discounted sample means which is computed
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Fig. 1: The two scenarios explored in our experiments. a) The sinusoidal rates of each Poisson process as a function of time
with VT =

√
T and T = 100 minutes. b) The rates of each Poisson process as a function of time generated by a discrete

random walk as described in Sec. VI-B. The figure depicts the rates of three stations over a time horizon T = 100 minutes
and variation budget VT = T 2/3.

as follows at time tcurrent

∀i ∈ [n] λ̃i =

∑dtcurrente
t=0 γ(dtcurrente−t)Ni(t)∑dtcurrente
t=0 γ(dtcurrente−t)Ti(t)

, (11)

where γ = 0.99 and Ni(t) and Ti(t) denote the sum of events
observed and the total observation time spent at station i up
to time t respectively.

A. Sinusoidal Variations

We consider the simulated scenario involving the surveil-
lance of two spatially-distributed stations where events oc-
cur according to unknown event statistics that are subject
sinusoidal temporal variations. The rate functions of the two
stations are given as a function of the variation budget VT
where VT depends sub-linearly on the allotted surveillance
time, VT =

√
T (see Fig. 1)(a):

λ1(t) =
1

2
+

1

2
sin

(
πVT t

T

)
λ2(t) =

1

2
+

1

2
sin

(
πVT t

T
+ π

)
.

The cost of travel from one station to the other is assumed
to be 3 minutes of travel during which the robot is unable
to record any observations.

Figures 2(a)-(b) show the average performance of each
monitoring algorithm given a time horizon T = 20, 000 min-
utes, over 100 trials. Our algorithm (shown in cyan) achieves
sub-linear regret over time, reaffirming the theoretical prop-
erty of our algorithm established in Sec. V. In comparison
to the other adaptive monitoring algorithms, our algorithm
is the only procedure that achieves E[R(π, T )]/T ≈ 0 (see
Def. 1). Furthermore, Fig. 2(c) shows that our algorithm
observes the highest percentage of event sighting with respect
to the cumulative number of all events that occurred across
all stations.

B. Discrete Random Walk

In the previous subsection, we considered environments
with temporal variations with a relatively small variation
budget VT =

√
T where the changes in the environment were

continuous and sinusoidal. In this subsection, we consider
a significantly more erratic and challenging scenario in
which we increase the budget to VT = T 2/3 and allow
discontinuous, abrupt temporal variations in the event rates.
In particular, we consider monitoring 3 stations where the
rate functions follow a bounded discrete random walk that is
generated as a function of the variation budget VT = T 2/3.

Namely, for each station i ∈ [n], we construct a station-
specific random sequence defined by X0 ∼ Uniform(0, 1)
and Xt for t ∈ N+, t ≤ T :

Xt =

{
Xt−1 + Ut if Xt−1 + Ut > 0

Xt−1 + |Ut| otherwise
(12)

where Ut ∼ Uniform(−VT /T, VT /T ). Then, the rate func-
tion associated with station i ∈ [n] is defined as

λi(t) = Xdte. (13)

Figure 1(b) depicts an example generated by this construction
performed with a curtailed time horizon of T = 100 minutes.
The travel time between one station i to the other j, i 6= j,
is uniformly drawn, i.e., c(i, j) ∼ Uniform(1, 5) minutes.

Figures 3(a)-(c) show the performance of each monitoring
algorithm for a time horizon T = 20, 000 minutes, averaged
over 100 trials. The figures tell the same story as did
those from the previous subsection: our algorithm (cyan)
is the only method to achieve sub-linear regret over time
(Figs. 3)(a)-(b), which reaffirms the long-run average opti-
mality of the policies generated by our algorithm, depicted
in Fig. 3(b). In addition to minimizing the regret metric
formalized in Sec. III, the policies generated by our method
achieve the highest percentage of observed events taken with
respect to all of the transpired events at 3 stations, as shown
in Fig. 3(c).
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Fig. 2: a) Plot of total regret R(π, T ) = N∗T −N(π, T ) over time. The figure depicts sub-linear growth of regret over time
for our algorithm (cyan), as expected from our theoretical results (Sec. V). b) Growth of total regret over time expressed
as the quotient R(π, T )/T . Our algorithm achieves sub-linear regret over time and that R(π, T )/T → 0. c) Percentage of
events observed with respect to the sum of events that occurred across all stations in the environment subject to sinusoidal
variation over time. Our algorithm approximately attains optimal number of expected events in this setting consisting of 2
stations.
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Fig. 3: Left-to-right a) Total regret as a function of time, i.e. R(π, T ) = N∗T −N(π, T ), in the simulated scenario involving
discontinuous, abrupt changes. Our algorithm (shown in cyan) achieves the lowest regret at all times of the allotted monitoring
time T = 20, 000 minutes. b) Growth of the total regret over time, R(π, T )/T , in an abruptly changing environment. c)
Percentage of events observed with respect to all of the events that transpired in the abruptly changing environment (Sec.
VI-B) at all stations during the time horizon T.

VII. CONCLUSION

In this paper, we presented a novel algorithm for monitor-
ing transient events in unknown, dynamic environments over
a long period of time. The algorithm proposed in this paper
builds upon and extends the state-of-the-art in persistent
surveillance by introducing a method of constructing policies
that are provably long-run average optimal even in scenarios
subject to discontinuous, abrupt temporal variations. Our
method hinges on novel connections between persistent
surveillance and the Multi-armed Bandit (MAB) problem
variants, which may be of independent theoretical interest.

Our favorable simulation results in both continuously

and abruptly changing environments reaffirm our theoretical
results and show the potential applications of our algorithm
to a wide range of monitoring applications. We envision
that our algorithm may be employed to facilitate persistent
surveillance missions, such as detection and tracking efforts
at a large scale.
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