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Abstract— We present a distributed control strategy for the
aggregation of multiple modular robots into one connected
structure optimized for use with 3D modular pivoting cube
robots such as the 3D M-Blocks [1]. We use the intensity from
a light source as input to a decentralized control algorithm
that drives the robots together. We describe the algorithm, give
provable guarantees on convergence, and discuss experiments
carried out in simulation and with a hardware platform of ten
3D M-Blocks modules. In this paper we contribute provably
correct algorithms for the aggregation of generic modular
robots; we show how these algorithms can be applied on real
hardware by evaluating them on the 3D M-Blocks platform.

I. INTRODUCTION
We wish to develop modular robotic systems capable of

responding to global external stimuli through local interac-
tions and distributed control. One implementation of this
vision involves using a stimulus source to form an aggregate
structure that could be used later as the basis of forming a
robot with a desirable shape or as the foundation for per-
forming a group locomotion task. Extensive prior work has
addressed the design and control of systems of modular self-
reconfigurable robots [2], [3]. In this paper we build on our
previous work that introduced the M-Block [4] and 3D M-
Block [1] hardware modules, in addition to theoretical work
describing reconfiguration algorithms following the pivoting
cube model [5]. In the pivoting cube model (PCM), modules
or groups of modules are able to rotate about any edge on a
cubic lattice, while this framework is not as generally appli-
cable as the more well known sliding cube model, the authors
believe it is more practical to implement with real world
robotic hardware. We previously presented the 3D M-Blocks
[1], a 50mm characteristic length self-reconfigurable modular
robot able to implement the (PCM) on a cubic lattice in
three dimensions through angular momentum actuation. With
this work we extend the capabilities of the 3D M-Blocks
modular robots in three areas: (1) hardware, (2) reasoning,
control algorithms and simulations and (3) experimental
evaluation. The 3D M-Blocks described previously have been
augmented with environmental sensing and custom IR-based
communication electronics which support cube to cube com-
munications on each face. This new communication system
enables decentralized algorithms which require information
exchange between modules. The ability to communicate with
and detect adjacent modules coupled with environmental
sensing abilities allow the new 3D M-Blocks to exhibit group
behaviors with local interactions with global guarantees.
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We are especially interested in the ability of a scattered
group of robots to find each other and form an aggregate
using the individual modules pivoting motion for locomotion.
For rotating modules moving independently on a lattice of
robots the challenge is in the localization, coordination and
control algorithms for directing module movements. When
the modules pivot into the next lattice block, their location
can be determined when the robots attach to the next lattice
point. However when the modules are in an unstructured
environment moving independently of a lattice there is an
additional challenge since the location of each module after
a pivoting step is uncertain due to bounces subsequent to the
pivoting step caused by to the angular momentum transfer
involved with movement.

In this paper we consider decentralized control and ag-
gregation for modular robots. We present an algorithm that
solves this problem when there is a signal in the environment
that follows a gradient that can be sensed by all of the robots
at all times. The algorithm is a decentralized optimization
with a cost function. We describe the algorithm, prove its
convergence to a single aggregate (independent of the initial
starting positions of the robots) and present simulation results
and describe experiments with a group of ten 3D M-Block
modules that are capable of detecting and following light
gradients. The algorithm in this paper builds on our prior
work on adaptive coverage for mobile robots [6] and extends
that body of work to forming aggregates for modular robots
that can move independently on the ground, and on a lattice
of modules following the pivoting cube model.

Specifically this paper contributes:
• A theoretical discussion of the problem of aggregation

in arbitrary configuration settings. Provably correct and
efficient algorithms are described in a generic setting
that extends to the pivoting cube model naturally.

• A provably correct decentralized control algorithm for
aggregation modules following the pivoting cube model,
where the robot modules can move independently on a
lattice of modules or on the ground.

• An extension of the 3D-M-Blocks hardware to include
environmental sensing and an IR based system for face-
to-face communications.

• Experiments demonstrating a hardware implementation
of several different distributed aggregation algorithms
using the 3D M-Blocks where light is the global external
stimulus.

A. Related Work
We build on prior work in aggregation, self-reconfiguration

and decentralized control optimization. Recent work in cost-



effective swarm robotics has shown aggregation and recon-
figuration in swarms of up to thousands of robots [7], [8];
however, this work has been restricted to 2D structures. An
example of aggregation for modular robots that are collec-
tively capable of locomotion in 3D environments has been
given in [9] but the modules are not capable of individual
motion and must be ferried to their docking locations by
wheeled robots. In addition several other systems are able
to aggregate swarms of smaller robots into larger structures,
including [10] and cluster flow control locomotion using
Atron modules [11]. Most similar to our approach is that
taken by the SYMBRION project which envisions a swarm
robotic system wherein all robots are capable of autonomous
motion, and can configure into larger aggregates through
reversible connections [12]. To the best of our knowledge, the
SYMBRION system has not been implemented in practice
at a similar scale to the M-Blocks.

The immediate extension of aggregation is reconfiguration:
the planning of a series of moves that transforms one
aggregate into another of a different shape. For example, 27
modules can reconfigure into a 3x3x3 cube to move around
the environment easily, and reconfigure into a different
morphology when faced with obstacles. Research in this area
has often assumed connectivity as a strong requirement of
the process. For 2D shapes, an algorithm that uses O(n2)
moves for a configuration with n modules has been pro-
posed in the pivoting cube model under a weak connectivity
constraint [13]. More recent work showed that under certain
conditions on the shape of the initial and final configurations,
reconfiguration is possible in O(n2) moves in both 2D and
3D, and O(n) parallel moves in 2D. Particularly relevant
in the context of this paper, reconfiguration can also be
achieved through self-disassembly of modules from a regular
structure [14], [15].

Related to the problem of aggregation is distributed cov-
erage control. The goal in distributed coverage control is
to maximize coverage of an area by finding controllers for
individual robots that are designed to function with only local
information. While aggregation into a single structure is not
the end goal, problems in distributed coverage control share
many similarities with aggregation: the control algorithms
must be distributed and simple as the robots have limited ca-
pabilities; the algorithms must have convergence guarantees;
there is often a sensory stimulus that must be maximized. An
example of a distributed coverage problem solved through
sensory feedback is given in [6], [16]. This problem concerns
robots moving in a 2D plane, but the algorithm can be
extended to 3D. Recently, these techniques have been applied
to create spoof-resilient multi-robot networks [17].

II. DECENTRALIZED AGGREGATION WITH
SENSORY STIMULI

In this section we establish theoretical guarantees on con-
vergence under a general framework. Specifically, we assume
our robots have integrator dynamics, and can sense the
gradient of a sensory function φ. We show that for convex φ
or for unbounded communication radii, aggregation is always
achieved, and the convergence rates are bounded. We also
explore a constrained version of the problem where robots

are restricted to move along low dimensional subspaces of
the configuration space, and provide convergence guarantees
for such situations as well.

A. Problem Statement and Assumptions
We study the problem of aggregating n robots in a

bounded set. Let W be a closed bounded subset of RN ,
and let pi denote the position of the ith robot in W .

Assume the ith robot is capable of communication within
a ball of radius ri denoted by B(pi, ri). Define the sensory
function φ :W → R, where φ(q) is the value of the sensor
at position q.

In what follows we assume the robots follow integrator
dynamics

ṗi = ui.

where ui is the control vector of the ith robot, and ṗi is the
usual velocity vector.

This assumption is common in the coverage control liter-
ature [6], [16], [18], [19]. We further assume that each robot
has knowledge of the gradient of the sensory function ∇φ(q)
at each point q ∈ W .

Unlike in coverage control, we do not require that each
robot be able to compute its Voronoi cell, nor does each
robot need to have any knowledge of surrounding robots.

Under this setting, the goal of each robot is to minimize
its distance to every other robot:

Ji(p−i) =
1

2

∑
j 6=i

‖pi − pj‖22 (1)

where p−i = (p1, . . . ,pi−1,pi+1, . . . ,pn). The global cost
function of the system (p1, . . . ,pn) can be written

J(p1, . . . ,pn) =
1

2

n∑
i=1

n∑
j=1

‖pi − pj‖2. (2)

Equations (1) and (2) cannot be optimized directly without
knowledge of the position of every robot.

Since ‖ · ‖2 is a metric, we can exploit the triangle
inequality and write∑

j 6=i

‖pi − pj‖2 ≤
∑
j 6=i

(‖pi − q‖22 + ‖pj − q‖22)

for any point q ∈ W . It is clear that a minimizer for the
latter problem is to set pi = q for all i. Thus, finding a
control law that drives all robots to the same position q will
also minimize equation (1).

We assume that ∇φ is Lipschitz, that is, it satisfies
‖∇φ(x) − ∇φ(y)‖ ≤ C‖x − y‖ for some constant C and
all x,y ∈ W . The Lipschitz condition can be understood
intuitively as a bound on the rate of change in a small time
frame. We require this condition for several reasons. First,
from a practical standpoint there will always be errors in the
position estimation and control law of the robot. If φ were
to vary unboundedly, small errors can compound rapidly.
Second, there is a strong correlation between aggregation of
robots, and the gradient descent algorithm for finding local
minima of functions. Lipschitz continuity of φ follows from
the local bound on the ∇φ, and allows us to give qualitative
convergence guarantees.



(a) (b)

Fig. 1: Simulation of aggregation control laws. (a) Control
law (3); the robots’ initial positions are shown as circles and
the trajectories shown as red lines; we draw the contour lines
of the sensory function. (b) Control law (4); the robots’ initial
positions are shown as circles with the trajectories shown as
red lines.

B. Decentralized Aggregation Control
We wish to derive a control law that will drive the robots

together in a reasonable manner. By reasonable we mean
here the following:

1) If φ is strictly convex, the control law will drive the
robots to the same position. While this may seem a
stringent requirement on φ, note that most point source
stimuli (e.g. light or sound) satisfy convexity

2) If for each robot W ⊆ B(pi, ri), then the control law
will drive the robots to the same position. Effectively,
this condition states that the communication radius of
the robot includes the entire configuration space. All
robots must be able to communicate with all other
robots.

The first condition motivates the following control law:

ui = −α∇φ(pi) (3)

where α is a line search parameter.
Control law (3) is a gradient descent method and is guar-

anteed to converge to a local minima if φ is differentiable,
∇φ is Lipschitz, and α is chosen to satisfy the Wolfe
conditions [20]. The intuition here is that we want the robot
to move towards a direction that has the largest drop in
intensity of φ, thus moving towards the minimum of φ. If φ
is globally convex, control law (3) converges to the global
minimum for each robot. That is to say, we chose q to satisfy

min
x∈W

φ(x).

We call φ strongly convex if it is twice differentiable and
satisfies ∇2φ � dI for some constant d where I is the
identity matrix, and ∇2φ is the Hessian matrix

(
∂φ

∂pipj

)
i,j

for i, j ∈ {1, . . . , n}. If φ is strongly convex, then control
law (3) converges at exponential rate.

However, we also require that the robots are able to ag-
gregate if they can communicate over the entire environment
(the second requirement). Equation (3) does not achieve this
for functions that are not globally convex.

To motivate the second control law, consider again the cost
function (2). The derivative of J with respect to pi is given

by

∂J

∂pi
= (n− 1)pi −

∑
j 6=i

pj .

This suggests the following control law to force robots
together:

ui = −pi +
1

|N (i)|
∑

j∈N (i)

pj . (4)

where N (i) is the set of robots that robot i can directly
communicate with; that is, those robots j for which pj ∈
B(pi, ri).

Note that in the case of W ⊆ B(pi, ri), equation (4)
reduces to

ui = −pi +
1

n− 1

∑
j 6=i

pj .

We recall that a fixed point of a dynamical system is
a point where all first derivatives vanish. It is clear that
pi = 1

|N (i)|
∑
j∈N (i) pj is a fixed point of the system. We

also recall that a fixed point is asymptotically stable if, as
time goes to infinity, the system approaches the fixed point.
Formally, we can write:

Definition 2.1: A fixed point xe of a system ẋ = f(x(t))
with x(0) = x0 is asymptotically stable if it is Lyapunov
stable and there exists a δ such that if ‖x0 − xe‖ < δ then
limt→∞ ‖x(t)− x0‖ = 0.

Here we have used the definition of Lyapunov stability.
Intuitively Lyapunov stability is a bound on how far away
a system can get from a fixed point if it starts within some
distance δ from the fixed point.

We will use Lyapunov functions to verify the asymptotic
stability of our control law [21]. We propose the following
Lyapunov function:

Vi =

n∑
i=1

∑
j∈N (i)

‖pi − pj‖2 (5)

We need to check the two Lyapunov requirements for
asymptotic stability:

• Vi(x) > 0.
• V̇i(x) < 0 for some neighborhood around the mean

position.

The first condition is immediate from the definition of Vi.
For the second condition, we have

V̇i(pi) = ∇Vi(pi) · ui

= −|N (i)|

pi −
1

|N (i)|
∑

j∈N (i)

pj

2

.

Since V̇i(x) < 0 for x 6= 1
|N (i)|

∑
j∈N (i) pj . By LaSalle’s

invariance principle, the system is asymptotically stable to
the mean position of the neighborhood.



C. Stochastic Control

We consider now the problem of finding a control law for
robots that have restricted dynamics. Consider the following
model:

Definition 2.2: A robot is said to have partially stochastic
dynamics if at any time it can select between two actions:
• Move according to the control law (ṗi|V ) = (ui|V )

for some V ⊂ W with dimV ≤ dimW . That is to say,
the motion of the robot is restricted to a subset of free
space: for example, a robot moving in two dimensions
can be restricted to move only along a straight line.

• Uniformly sample a subset V ′ ⊂ W to move in. Note
that since the position of each robot is a continuous
function of time, the current position pi must be in-
cluded in the subset V ′.

This definition is prompted by particular behavior in the
3D M-Blocks, and a use case will be shown in Section III.

The conditions on V are that it be connected, closed,
and convex for the control law to make sense, and that φ
restricted to V remain continuous. Moreover, if v1, . . . , vm
form a basis of V , we require that the partial derivatives ∂φ

∂vi
exist for all i.

We consider again the problem of driving the modules
together. We wish to minimize the global cost (2) under this
new setting. We first note that if φ is convex over W , then it
is convex when restricted over V . Since V is convex, λx +
(1−λ)y ∈ V for all x,y ∈ V , and convexity of φ|V follows
from convexity of φ over W .

We will use the notation V ′ ∼ U(x,W) to denote a
uniform sampling from W of subsets that contain the point
x. For a concrete example, consider sampling the set of all
lines passing through a point x in two dimensions. This can
be accomplished by sampling uniformly a direction vector y
and taking the line x + y.

Therefore, we can adapt the control law (3) to

ui =

{
−β∇(φ|V )(pi), if ∇(φ|V )(pi) 6= 0,

V ∼ U(pi,W), otherwise.
(6)

The sampling step is only performed after the robot has
reached a minimum of ∇(φ|V ). The procedure is detailed
in Algorithm 1.

Algorithm 1 Stochastic Control
1: repeat
2: if there is a direction of decrease in the stimulus then
3: set ui = −β∇(φ|V )(pi)
4: else
5: sample new subspace in which to move
6: until good enough solution is reached

Algorithm 1 is not guaranteed to converge for arbitrary
φ and sampling procedures. However, under certain assump-
tions on the sampling procedure, we can provide convergence
guarantees of (6) to the true global minimum of the function.
By convergence, we mean that there exists some time T such
that for all t > T , we have ui = 0. Examples include moving

only along different coordinate axes (a variant of coordinate
descent [20]).

Let us restrict ourselves to the case where V is sam-
pled uniformly over all m-dimensional hyperplanes where
m < n (also called m-dimensional flats). To sample an m-
dimensional flat that contains pi, we can sample m points
x1, . . . ,xm from W , and define the flat as intersection
between the linear span of {pi,x1, . . . ,xm} and W .

We will prove the following:
Theorem 2.1: If V is sampled uniformly over the set of

m-dimensional flats, and φ is convex over W , then control
law (6) converges.

We will make use of the monotone convergence theorem
which we restate here in a simple form (see [22]):

Theorem 2.2: (Monotone convergence) If (an) is a mono-
tone sequence of real numbers, then this sequence has a finite
limit if and only if the sequence is bounded.

We are now ready to prove Theorem 2.1.
Proof: Let the p1

i , . . . ,p
n
i be the sequence of points

for which ∇φ(pji ) = 0. By the convexity of φ, we have
φ(p1

i ) ≥ φ(p2
i ) ≥ . . . ≥ φ(pni ). This series is monotone

and bounded since φ is bounded. Applying the monotone
convergence theorem, we can conclude that control law (6)
converges.

We conclude this section with a simulation result. For
the simulation, we assumed there are n = 10 robots placed
according to a normal distribution in R2. We use a Gaussian
function

φ(x) = e(x−µ)Σ−1(x−µ)T

as the sensory stimulus with µ = 0 and Σ equal to the
identity plus a small off-diagonal term.

We use control laws (3) and (4) in two simulation exper-
iments. For control law (3), we fix α = 1 as the step size,
and perform gradient ascent. Simulation runs are shown in
Fig. 1. Both control laws converge to a single point, thus
achieving aggregation. We note here that convergence rate
depends on the choice of parameters and control law. If the
robots can communicate with all other robots, then moving
towards a shared center can be significantly faster.

Of course, it is always possible that the sensory function
has multiple local minima, and after aggregation the robots
are split into distant clusters (such an example is shown
in Fig. 2). However, in such cases it is impossible to
achieve a single aggregate without assuming prior knowledge
about the structure of the environment, sensory function, or
knowledge of the number of robots in the system. Such
assumptions are untenable in our physical implementation
using the M-Blocks, and generally untenable for modular
robotics systems.

In the sections that follow, we explore a specific example
of aggregation in the pivoting cube model.

III. AGGREGATION OF MODULAR ROBOTS IN
THE PIVOTING CUBE MODEL

Following Section II, we implement the algorithms de-
scribed in the pivoting cube model. We showcase an example
arising from our hardware implementation where the stochas-
tic control described in the previous chapter is important.



Fig. 2: A single aggregate is impossible in this scenario.
The robots are distributed in an environment with two local
maxima and have very limited communication capabilities.
As can be observed, two aggregates are formed. Without
prior knowledge of the number of modules, such scenarios
cannot be resolved into a single aggregate.

A. Theoretical Results

Let W be a bounded two dimensional region into which
we embed a lattice structure L, for example a 2D grid over
R2. Assume there are n modules, and let p1(t), . . . ,pn(t) ∈
N → L denote the positions of the modules at time t.
All modules have the same mass and the laws of gravity
hold. Each module can pivot about its edges to reach new
positions on the lattice. The modules move independently
of one another and require only information about edge
connected neighbors to determine whether pivot moves are
valid. We assume it takes unit time for a cube to execute a
move from one lattice position to another.

Since our focus is on aggregation and not path planning,
we assume there are no obstacles in the environment. To
achieve aggregation, each module will independently follow
the maximum direction of a stimulus located at position pL.
We say that the process has converged if there are no viable
moves that would move any module in the environment
closer to the stimulus source. We assume the modules are
initially scattered throughout the environment, which allows
us to restrict our attention to the two-dimensional plane.

The 3D M-Blocks have sensors embedded on each of the
six faces that output a number from 0 to 1024 representing
the intensity of the sensor readings on that particular face.
Let I1, . . . , I6 be the intensity readings on each of the 6
faces.

If the algorithm converges at time tf , we try to minimize
the maximum distance between any module and the stimulus
source at tf :

min max
i
‖pi(tf )− pL‖. (7)

where pL is the position of the stimulus source and i ∈
{1, . . . , n}.

Since pL is difficult to estimate, each module will attempt
to maximize a fitness function that uses the stimulus intensity
readings:

1

|{Ij |Ij 6= 0}|
∑
Ij 6=0

Ij (8)

(a)

(b)

Fig. 3: Pivoting moves. In these examples the green module
pivots around the gray modules. (a) Pivot by π/2 moves the
M-Block horizontally. (b) Pivot by π moves the M-Block
diagonally.

Equation (8) is an average over faces that have non-
zero stimulus intensity readings. As we only count non-
zero intensities, the maximum is achieved when a module
is directly below the source, as then Equation (8) reduces to
maxj Ij .

We will use the notation Inj
to denote the stimulus

intensity reading on the face with surface normal nj.
To drive towards a stimulus source, each module must

first estimate the direction of the source. This is the purpose
of Algorithm 2. This direction is used as a gradient in
Algorithm 3 to drive the module towards the stimulus.
Algorithm 3 can be interpreted as greedily selecting the
move that moves the robot closest to the stimulus source
and repeating until convergence.

Any move is a translation that can be written as a sum
of at most two face normals (e.g. the move that takes a
module from (0, 0, 0) to (1, 1, 0) can be written as a sum
of (1, 0, 0) and (0, 1, 0)). A move is possible if the volume
swept by the module during rotation does not collide with
any other module or the environment. We say a move is
weakly admissible if the intensity reading on at least one of
the faces corresponding to the normals is greater than 0. We
call a move strongly admissible if the intensity reading on
all of the faces corresponding to the normals is greater than
0 (see also Fig. 4).

We can use this information to provide a estimated
direction towards the stimulus source. Using the notation
described above of nj for the normal of a face, we can
estimate the direction of the stimulus source as∑

j∈faces

Ijnj.

Algorithm 2 implements the stimulus direction estimation
strategy discussed above.

Algorithm 2 Estimate direction of stimulus source

1: function ESTIMATESTIMULUSDIRECTION(Cube i)
2: for each face j do
3: Ij ← STIMULUSINTENSITY(j)
4: nj ← surface normal to face j
5: return

∑
faces Ijnj



Algorithm 3 acts as a controller for each module. Note the
following: we choose the move whose direction is closest
to the direction of the stimulus source estimated using
Algorithm 2. Also, note that we only iterate over feasible
moves in line 4.

Algorithm 3 Drive cube towards estimated direction

1: function STEP(Cube i)
2: d ← ESTIMATEDSTIMULUSDIRECTION(Cube i)
3: sort moves by distance to d
4: for each move M do
5: let n1, . . . ,nk s.t.

∑k
i=1 ni = M

6: if ∃j ∈ 1, . . . , k s.t. Inj
> 0 then

7: return M
8: return NIL
9:

10: function DRIVE(Cube i)
11: M ← STEP(Cube i)
12: while M 6= NIL do
13: apply move M
14: M ← STEP(Cube i)

We wish to prove the following:
Theorem 3.1: For a cube with initial position pi(0) that

only performs weakly admissible moves there is only a finite
set of coordinates at which it can later reside. This set is the
sphere in the l1 norm with radius

‖pL − pi(0)‖1

and center pL.
Proof: For our hardware platform, the stimulus is a

light intensity reading. In this case we can use Lambert’s
law

Inj
∝ nj · dj. (9)

to ensure that intensity readings on faces that are oriented
away from the stimulus source read 0. In cases where this
does not hold (e.g. sound intensity), we can use just the
largest two values and all proofs follow.

As we assume weak admissibility, the module cannot take
a move that would place it farther away in the l1 norm from
the stimulus source than pi(0), for such a move would have
a component oriented away from the stimulus source, and
would thus not be chosen by Algorithm 3.

For the 2D case, Figure 4 shows the set of coordinates
at which the blue cube can reside. In yellow are shown
the points satisfying weak admissibility, while in green are
shown those satisfying strong admissibility.

Strong admissibility guarantees convergence as the module
can only move closer to the stimulus source. To ensure
convergence with weak admissibility, we require an extra
O(1) memory per cube to detect two step cycles.

We now show that Algorithm 3 converges to the global
maximum of Equation (8) for one module.

We can prove the following:
Theorem 3.2: Algorithm 3 converges to a single aggre-

gate. Moreover, the following two properties will be satisfied:

Fig. 4: Coordinates at which the blue module can reside. In
green are positions that are strongly admissible, while weakly
admissible positions are in yellow. The circle represents the
projection of the stimulus source onto the plane.

1) There will be a module in the final configuration that
is at the closest lattice point to the projection of the
stimulus source on the plane.

2) The final configuration has no holes.
To give an example of Property 1, consider several 3D

M-Blocks under a light source. Property 1 states that there
will always be an M-Block on the lattice point closest to the
light source.

Proof: We first prove Property 1. Assume there is no
such module. For a module to be unable to move closer to the
stimulus source, there must be other modules one step closer
across both directions in the Manhattan norm. This chain of
modules is finite and terminates either with a module located
closest to the projection of the stimulus source, or with a
module that is able to take a move closer to the stimulus
source. But we can take this move and repeat the argument.
Since the set of possible moves is finite, this process will
eventually terminate when there is a module that is located
at the closest lattice point to the projection of the stimulus
source.

Assume now that the algorithm converges but there are
multiple aggregates. Let CL be the module in Property 1.
Find the closest module to CL that is not part of the same
aggregate as CL. If this module cannot move closer to the
stimulus source, there are modules blocking it, but these
modules are then closer to the stimulus source, and thus
closer to CL while still part of a different assembly contra-
dicting our assumption that we chose the closest module.

Property 2 follows by an analogous argument to the above.

To determine whether a move is possible only requires
local information (knowledge of modules connected on each
face) about a cube’s neighbors in the plane. Each module
requires O(1) time to make a decision about which move to
take. Algorithm 3 thus scales to arbitrarily many modules and
converges in time proportional to the maximum l1 distance
between any module and the projection of the stimulus
source on the plane.

B. Stimulus Tracking with Stochastic Control

The algorithms developed above guarantee convergence
when the modules are restricted to move along a lattice



structure. For example, if there is a base of “scaffold”
modules that are not capable of actuating, but provide support
for modules that can actuate, the algorithms above apply.
One example is in automatic manufacture of buildings: a
few modules can be active at a time, and reside on a base of
inactive modules. Selectively aggregating just a few modules
at a time, simple shapes such as cuboids and prisms can
be constructed. However, when the modules are moving
on an arbitrary surface, the inertial forces generated during
reorientation and motion are sufficiently high to cause the
robot to swerve. This motion often reorients the forward
direction of the M-Block; as such, the algorithms described
previously cannot be applied as is. We show, however, that
this situation is captured by Algorithm 1.

We assume the M-Block can be modeled as a point x
endowed with a direction vector u. The stimulus source is a
circle centred at xL with radius RL (write CL for this circle).
The M-Block has reached the goal if ‖x − xL‖2 ≤ RL. In
continuous space, the control strategy is:

1) Move along u or −u to closest position to light source.
This effectively projects xL onto the line passing
through x that has direction u.

x′ = x + uT (xL − x)u

2) If the goal is not reached, sample a new direction
vector u uniformly at random.

Intuitively, steps 1 and 2 describe a situation where the
module moves as much as possible towards the stimulus
source along the line it is currently oriented towards, and
when it cannot improve its position further, the module
performs a reorientation maneuver.

The equivalence to control law (6) follows immediately.
If the gradient of the stimulus function restricted to the line
of motion of the robot is non-zero, we simply move along
this line until we reach a maximum (step 1). Otherwise,
we reorient the robot, effectively sampling a new line along
which to travel (step 2).

As a line is an m-dimensional flat in R2, we can apply
Theorem 2.1 to prove convergence.

IV. RESULTS AND EXPERIMENTAL DATA

To verify the correctness of our algorithms, we imple-
mented them in simulation and on our hardware platform,
the 3D M-Blocks. As a stimulus, we use the light intensity
from a point light source located above and to the side of
the modules.

A. Simulation Results

To test aggregation in free space, we implemented a
Monte Carlo simulation of the algorithm. We averaged 100
simulation runs and plotted the expected number of moves
until convergence on a 100 × 100 grid with RL = 1, and
Rx = 1 (Fig. 5). The stimulus source is placed at the
origin. Recall that RL is the radius of a circle around the
stimulus source at which we consider the modules to have
converged. We can define RL with respect to the size of
the modules, but we must have RL > 0 as otherwise the
convergence set has measure 0. We can observe that there

Fig. 5: We measured the number of moves until convergence
starting from each grid cell and averaged over 100 experi-
mental runs. A quadratic convergence rate can be observed.

is a quadratic convergence rate to the origin from all points
which is independent of RL.

B. Hardware Experiments
We tested the light tracking algorithm running in a dis-

tributed fashion on ten 3D M-block modules [1], which
have been upgraded to include an ambient light sensor on
each face, an additional IMU on the module’s frame, and an
additional Arduino programmable processor. The experiment
was performed with no centralized information, controller
or module-to-module communication, with the algorithm
running on the embedded Arduino programmed processor.
The modules were free to move in an environment 0.9 m
by 0.6 m with foam covered floor and walls. In every
experimental run the modules moved closer towards the light
source on average, and the majority of the modules joined
aggregates (Fig. 6)

The goal of this experiment is two-fold; first to minimize
the distance of each module from the stimulus source; second
to form the smallest number of aggregates with the maxi-
mum number of cubes per aggregate in order to eventually
facilitate shape reconfiguration. There are several minor
differences between the algorithm running on the 3D M-
Blocks and the simulations, which are artifacts the hardware.
As opposed to the theoretical implementation which exhibits
predictable dynamics, the 3D M-Blocks modules exhibit
complex dynamics and motion, especially when consider-
ing interactions involving magnetic and inertial forces with
neighboring modules. Additionally due global communica-
tion constraints, the modules stop moving when they connect
to at least one other module, forming an aggregate. This is
in contrast to the theoretical model where the modules are
able to move independently regardless of the positions of
neighboring modules. In future work we home to add the
ability for aggregates of modules to work together to move
as a group.

V. CONCLUSIONS
In this paper, we presented a decentralized control algo-

rithm for the aggregation of modular robots following the



(a) 0 s (b) 30 s (c) 60 s (d) 90 s (e) 120 s
Fig. 6: Still frames illustrating one representative run of the distributed light tracking algorithm running on eight 3D M-
Blocks modules. (a) Shows the starting locations of the modules. (e) Shows the final location after the completion of the
experiment.

TABLE I: Experimental data from our hardware experiment.
We measured the following statistics: 1) Average distance
of the center positions of the modules as measured from
an overhead camera. 2) maximum distance traveled by a
single module. 3) number of modules in the largest aggregate
(defined as physically connected modules, either edge to
edge or face to face connections). 4) number of modules
that are in an aggregate of at least two modules compared
to the total number of active modules.

Mean Maximum Largest Modules
Distance (m) Distance (m) Aggregate Aggregated

1 0.25 0.64 3 5 / 8
2 0.13 0.58 3 7 / 10
3 0.106 0.37 2 6 / 10

pivoting cube model. We derived an algorithm for generic
modular robots following integrator dynamics that tracks
a sensory stimulus (in our case a light source) and gave
provable guarantees for its correctness and convergence.
We implemented the control scheme on the 3D M-Blocks,
our hardware platform for the pivoting cube model, which
demonstrates the practicality of the scheme.

There are many potential extensions to our work. We are
investigating a scheme for reconfiguration. Note that, unlike
the algorithm presented in [5], we are faced with several
problems: all intermediary structures must be stable and not
topple during a move; some moves are difficult for the 3D
M-Blocks hardware and are to be avoided; and removing the
need to use an intermediate structure (in [5] a line structure)
for reconfiguration is desirable for efficiency.
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