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ABSTRACT

Surface tension is an important property of liquids. It has diverse
uses such as testing water contamination, measuring alcohol con-
centration in drinks, and identifying the presence of protein in
urine to detect the onset of kidney failure. Today, measurements
of surface tension are done in a lab environment using costly in-
struments, making it hard to leverage this property in ubiquitous
applications. In contrast, we show how to measure surface tension
using only a smartphone. We introduce a new algorithm that uses
the small waves on the liquid surface as a series of lenses that focus
light and generate a characteristic pattern. We then use the phone
camera to capture this pattern and measure the surface tension.
Our approach is simple, accurate and available to anyone with a
smartphone. Empirical evaluations show that our mobile app can
detect water contamination and measure alcohol concentration.
Furthermore, it can track protein concentration in the urine, provid-
ing an initial at-home test for proteinuria, a dangerous complication
that can lead to kidney failure.
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1 INTRODUCTION

Mobile computing has recently seen a surge in research on inex-
pensive methods for measuring liquid properties, and identifying
liquid type [11, 18, 27, 35]. The developed methods can detect water
contamination, and distinguish a variety of liquid types including
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Figure 1: CapCam setup: The phone is placed on a paper
cup. Capillary waves are generated by the vibro-motor in-
side the smartphone. Then with the flashlight, the camera
of the phone can capture a bright-and-dark pattern, from
which we can calculate the surface tension of the liquid.

water, milk, oil, and different alcohol concentrations. The goal of
this line of research is to enable liquid testing outside the lab en-
vironment, and encourage ubiquitous applications. However, the
proposed designs require a specialized setup (a robot [35], a special
container [11], etc.), and use devices typically unavailable to the
general population (e.g., UWB radios, or RFID readers). While they
make an important step toward ubiquitous liquid testing, they are
still difficult to use by lay users.

This paper asks whether it is possible to deliver such services to
lay users without a specialized setup, and using only a device that
almost everyone has: a smartphone. Answering this question is not
simple. Typically, liquid testing is done by measuring a particular
property, such as electric permittivity or optical absorption, and
using the measurements to identify the liquid type and characteris-
tics [11, 18, 27, 35, 41]. However, none of the properties used in past
work can be measured with a smartphone. To address this problem,
we explore an alternative liquid property, surface tension, and de-
velop algorithms and system architectures that enable measuring
surface tension using only a smart phone.

Surface tension characterizes the force that holds the surface
molecules together, and minimizes the surface area. Measuring
surface tension can reveal water contamination, and allow for dis-
tinguishing liquid types [7, 30]. Water has a relatively high surface
tension [39], and when polluted with organic compounds such as
bacteria, oil, petroleum or its derivatives, its surface tension de-
creases significantly [7, 30]. Hence, one may use this property to
detect water contamination. Further, lipids and proteins act as sur-
factants, i.e., they reduce surface tension. Thus, measurement of
surface tension may be used to detect adulterated milk [2, 31, 37].
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Alcohol also reduces surface tension, a property that can be lever-
aged to measure alcohol concentration [33]. Most interestingly, the
ability to measure surface tension at home can enable early detec-
tion of medical problems. For example, low surface tension of urine
may indicate the presence of excess protein, a dangerous complica-
tion in diabetes patients [12, 20, 32]. Daily measurements of urine
surface tension help detect diabetic nephropathy (the chronic loss
of kidney functions), and monitor the effect of treatment [12].

Today, measurements of surface tension require a device called
tensiometer, which typically costs thousands of dollars [15]. They
are often conducted by dipping a platinum plate into the liquid, and
carefully measuring the force required to pull it out. The process is
complicated and requires professional training [15]. This high bar
hampers the ubiquitous application of surface tension.

We introduce CapCam(Capillary Camera), the first mobile app
that measures liquid surface tension using only a smartphone. To
measure surface tension, the user places the smartphone on top of a
light-weight container, like a paper cup, and activates the app, as in
Fig. 1. The phone vibrates and forces the container’s wall to vibrate.
The vibration generates capillary waves on the liquid surface, i.e.,
small waves whose wavelength characterizes the liquid’s surface
tension. Our app uses the flashlight camera to take a few photos of
the liquid, which it processes to estimate the capillary wavelength
and hence the surface tension. Our approach is accurate, simple,
cheap, and accessible to any user with a smartphone.

Measuring capillary waves just using smartphones is quite chal-
lenging for two reasons. First, the waves are very shallow [4]; simply
trying to image them at the liquid surface does not yield accurate
results. Thus, instead of imaging the capillary waves directly, we
image their reflections at the bottom of the container. We model the
small waves on the surface as a series of convex and concave lenses.
When illuminated with the flashlight on the phone, the lenses focus
the light and create a pattern of bright and dark rings on the bottom
of the container. The focusing effect of the small lenses makes this
pattern much higher contrast than the waves on the surface, and
hence easier to capture and characterize using a camera.

The second challenge stems from the camera rolling shutter.
Phone cameras do not capture images in one snapshot; they cap-
ture a picture by sequentially scanning rows of photo diodes [22].
Since the waves are moving, the sequentially scanning creates mo-
tion artifacts in the captured image. If uncorrected, these artifacts
can lead to large measurement errors. CapCam addresses this prob-
lem by recognizing that the direction orthogonal to the scanning
direction is not affected by motion artifacts; it processes the image
to identify this orthogonal direction, and uses the line of pixels
along that direction to measure capillary waves.

We have implemented CapCam on an iPhone X, and evaluated
its performance by comparing its output against that of a high-end
digital tensiometer. Our evaluation reveals the following findings:

e CapCam accurately measures liquid surface tension using
only a smart phone. Specifically, CapCam has an absolute
surface tension error of only 0.75mN/m. In comparison,
an entry-level manual tensiometer [21] has a resolution of
0.5mN /m, costs several thousand dollars, and requires ex-
pert knowledge.
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e CapCam has enough resolution to detect small differences in
alcohol concentration of 0.5%, whereas past work is limited
to large differences of 20% for Nutrilyzer [27] and 25% for
RFIQ [18]. CapCam’s resolution allows it to easily detect
water contamination and distinguish between clean water,
water from puddles and water that was left exposed for a
long period. CapCam also has enough sensitivity to track
changes in protein levels in urine as they transition from
healthy to dangerous levels, providing an initial at-home test
of proteinuria.

Contributions: This paper makes the following contributions:

(1) It introduces CapCam, the first design that estimates liquid
surface tension using only a smartphone, without any spe-
cialized hardware. CapCam is also the first mobile app that
detects water contamination, measures alcohol concentra-
tion, and tracks changes in protein levels in urine.

It presents multiple novel algorithms including: 1) an algo-
rithm for inferring capillary wavelength by creating a char-
acteristic pattern on the bottom of the container, and 2) an
algorithm for characterizing the impact of rolling shutter on
capillary waves and eliminating the resulting measurement
errors.

(3) It provides an implementation and empirical evaluation that

demonstrate the efficacy of the proposed design.

2 RELATED WORK

2.1 Liquid Testing in Mobile and Ubiquitous
Computing

The topic of liquid testing has recently attracted a significant in-
terest [11, 18, 27, 35, 41]. Most proposals try to infer electric per-
mittivity [11, 35, 41], a property that characterizes how a liquid
affects radio waves. For example, TagScan [35] and LiquID [11]
measure the time delay and power attenuation incurred by an RF
signal as it traverses the liquid of interest. Their approach requires
a complex setup (a moving robot, or a particular container) and
uses special radios not typically used by lay users. Further, since
RF attenuation and phase are highly sensitive to liquid depth, these
systems have to be carefully calibrated. As a result, these methods
either exhibit relatively large errors ( 10% in LiquID [11]) or they
avoid measuring exact values and resort to classifying the liquid
as one of a few known types (as in TagScan [35]). There are also
proposals that identify liquids using RF coupling, as in RFIQ [18], or
RF reflections as in RadarCat [41]. They too use special radios (Soli,
or RFID readers); further they rely on a classifier to distinguish a
few liquid types or a few concentration levels, and do not generalize
to unseen liquid types or concentration levels.

Some proposals rely on optical absorption. Specifically, when
shining intensity-modulated light on a liquid, different liquids pro-
duce uniquely different sound spectra. These solutions require cus-
tom hardware and have a relatively limited resolution. For example,
by analyzing the received spectra, Nutrilyzer [27] can predict alco-
hol concentration level with a limited resolution (20%).

CapCam is inspired by the above work, but focuses on liquid
testing using a smartphone, a device that almost every user has.



Session 5: Sense and See

2.2 Measuring Surface Tension

Today, surface tension is measured in the lab using an expensive
device called tensiometer [40]. Tensiometers differ in the physical
property they use for their measurements:

e Force: Most tensiometers measure the force that brings the
surface molecules together. They operate by submerging
a platinum probe (like Du Notiy Ring [14] or Wilhelmy
plate [13]) in the liquid, and precisely measuring the force
required to pull the probe out.

e Pendant drop: This method measures surface tension by ana-
lyzing the curved shape of a drop of liquid. [5, 19]. It requires
extreme cleanliness, and a tight control over the drop size,
and the measurement procedure [5, 13].

e Contact angle: This method measures surface tension by
measuring the contact angle between a drop of liquid and
some solid surface [42]. However, the equilibrium contact
angle can vary within a range and depends on the drop size.
Thus, this method requires a sophisticated measurement
procedure [28, 42].

o Capillary waves: This method measures surface tension by
vibrating the liquid and measuring the capillary waves on
the surface. Since the amplitude of the capillary waves is ex-
tremely small, researchers usually measure the wavelength
using a technique called optical diffusion [3, 24, 43]. It re-
quires shining a directional laser on the surface and analyz-
ing the diffraction pattern on a receiving screen.

Although these methods can achieve high accuracy, expensive in-
struments and sophisticated measurement procedures prevent their
ubiquitous use. In comparison, CapCam extends the model based
on capillary waves to allow a non-expert user to measure surface
tension using only a smart phone.

While some past work has attempted to measure surface tension
using a smart phone, all past proposals require additional complex
hardware, and none is able to complete the measurements with
only a smartphone [8, 9, 17, 36]. Specifically, the work in Wei et al.
[36] uses a cell phone camera to capture images of capillary waves.
However, it ignores the rolling shutter effect, which leads to poor
performance. Further, it requires custom hardware where a large
container is elevated between two stands while projecting light
from the bottom, a signal generator that excites the liquid, and
a paper screen held on top of the surface. Both Goy et al. [17]
and Chen et al. [9] are based on the Pendant Drop method. They
use cellphone cameras to capture images of a drop of liquid. The
method requires specialized equipment to exercise tight control of
the drop’s size and shape. It also requires extreme cleanliness and
a complex measurement procedures making it hard to conduct by
non-experts. Chen et al. [8] is based on the Contact Angle method.
As in the previous methods, it leverages a phone camera for analysis
but ignores the rolling shutter, and requires custom hardware to
control the size of the drop and its contact angle as it touches a
special solid surface.

CapCam builds on the above work. However, unlike these meth-
ods, CapCam can measure surface tension simply using a smart-
phone app without any special hardware. Further, it can be operated
by an average user without any training.
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3 CAPILLARY WAVES PRIMER

In this section, we provide a primer on capillary waves and their
relation to surface tension. For waves propagating on a fluid surface,
gravity (g) and surface tension (y) are the forces that make the liquid
restore its flat surface. Those forces control the dispersion relation of
the wave, which relates itswavelength (1) to the vibration frequency
(f), and liquid density (p), and can be expressed by the following
equation (see Chapter. 16 of Blandford and Thorne [6] for a detailed
derivation):

@rf)? = g(2n/2) + %(ZHM)S- (1)

When the waves are large, like those observed on the surface of
a lake, they are dominated by the gravity term g, and referred to as
gravity waves. When the waves are small, the effect of gravity is
negligible, and the waves are dominated by surface tension y; they
are called capillary waves.

We can re-order the terms in the above equation to measure
surface tension as follows:

_ @af? - gx/h)
@/ 1)?

This equation provides a procedure for measuring surface ten-
sion using capillary waves. Specifically, we can use a vibration
source to generate capillary waves on the liquid’s surface. Knowing
the vibration frequency f, we can substitute the gravity term and
the liquid density from the corresponding data sheets.! Hence, all
we need is to measure the wavelength A in order to measure the
surface tension.

The challenge however is that capillary waves are very shallow
—i.e., the displacement they cause in the liquid surface is one to a
few microns. This is about one tenth of the average thickness of a
human hair. Thus, such waves are invisible and their measurement
typically requires dedicated laboratory equipment [3, 24, 36, 43]
with a complicated setup and procedure. In the rest of this paper,
we describe CapCam, a novel design that can measure capillary
wavelength using only a smartphone.

@)

4 CAPCAM DESIGN

CapCam measures surface tension using a phone’s camera, flash-
light, and vibro-motor. The process is very simple. The user places
the smartphone on top of the container (e.g., a cup) and activates
the CapCam app, as in Fig. 1. CapCam uses the phone’s vibro-motor
to generate capillary waves on the liquid surface, then takes a few
photos of the vibration pattern using the phone flashlight camera.
It uses a series of algorithms to process these photos to infer the
capillary wavelength and hence the surface tension.

CapCam’s inference algorithm addresses the challenge of mea-
suring very shallow capillary waves, and makes it possible to mea-
sure the wavelength with only a smartphone. In this section, we
describe the model and analysis underlying CapCam’s wavelength
inference algorithm. We describe how we deal with phone hardware
(e.g., rolling shutter) in the next section.

!Liquid density is a constant given temperature and pressure. For most applications,
one can assume room temperature and atmosphere pressure. If the measurements
are conducted at unusually high/low temperatures or very high elevation, one should
substitute the corresponding liquid density from the liquid’s data sheets.
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Figure 2: An cross-section illustration of the setup. Be-
cause of refraction, light rays are focused/diverged by the
crests/troughs of the waves, resulting in a series of dark and

bright rings on the bottom.

4.1 CapCam’s Wavelength Inference
Algorithm

We model the crests and troughs of capillary waves as a series of
convex and concave lenses. By shining a flashlight on the waves
from the top, we can create a visible pattern that reflects off the
bottom of the container. Specifically, and as shown in Fig. 2, when
the light goes through a wave crest, it is focused into a small area
on the bottom of the container. On the other hand, when the light
goes through a wave trough, it diverges causing a dark region on
the bottom of the container. This results in a series of bright and
dark rings on the bottom of the container.

If we try to capture this pattern using a smartphone, the cam-
era would see only the reflections that exit the liquid surface and
propagate through air towards the camera. However, due to reci-
procity [25], light reflected from the bottom towards the surface
experiences the opposite effects of light entering the surface from
air —i.e., light rays from the bright rings will diverge and light rays
from the dark rings will converge. Hence, if the camera is exactly at
the same position as the flashlight, it will not see any pattern. How-
ever the camera is never at the exact same location as the flashlight.
Hence the light rays that it receives do not trace the exact path of
the incoming light. As a result, the focus and divergence effects
that the light experienced while traversing the surface from air to
liquid do not get cancelled as it traverses the surface from liquid to
air. Hence, the pattern continues to be visible to the camera albeit
at lower contrast.

After we take an image of the pattern at the bottom of the con-
tainer, we measure the distance between two consecutive bright
rings in terms of pixels, denoted as p. We need to convert p from
pixel-based distance to real distance. Of course, this depends on the
distance between the camera and the bottom of the container, which
we denote as d + h, where d is the distance between the camera and
the surface of the liquid, and A is the depth of the liquid. Let us use
rq+h to refer to the resolution of the camera for objects at distance
d+h. Then, we can convert the distance between consecutive bright
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Figure 3: An illustration of the wavelength calculation. We
plot only the rays that pass through the center of the crests
of the waves, which do not bend.

rings in the image, p, into real distance, Ap, as follows:

Ap = plrash ©)
Next, we want to use the interval between two bright rings to
estimate the capillary wavelength. To calculate the relationship
between the two, we approximate the surface waves as perfect
lenses; when the incident ray goes through the center of a lens,
its direction is unchanged, as shown in Fig. 3. Thus, the relation
between the capillary wavelength A and the interval between two
bright rings, 4, is:

A=(d/d+h)-Ap (4)
Combining the two equations, we have:
3 d d P 5)

ST T TR T
Since camera resolution is inversely-proportional to distance
from the imaged object, we have:

rixdy =ryxdp (6)
Therefore, we can rewrite Equ. 5 as follows:
p p
= (7)

S rasnr@d+h)/d g
where p is the number of pixels between two consecutive bright
rings, and r is the camera resolution for objects at distance d, i.e.,
at the liquid surface.

Equ. 7 and the model underlying it provide us with an algorithm
to compute the capillary wavelength. They also show that, we
only need to measure the distance between the camera and the
liquid surface, and use the corresponding resolution to convert the
inter-ring pixels in the image to the actual capillary wavelength.

Note that, it is enough to calibrate the camera resolution at one
default distance based on Equ. 6. The resolution r at distance d can
be computed as

r= (r() X d())/d

where ry is the resolution at the default distance dj.

®)
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4.2 TIllustrative Simulation

To provide a better visual understanding of CapCam’s algorithm,
we build a simulator based on ray tracing. The surface of the liquid
and the bottom of the container are discretized into dense pixels.
Our simulation can be divided into two phases. First, the light
source emits light rays onto each pixel on the surface, and for each
light ray, we calculate its location of arrival at the bottom of the
container. Then the intensity of each bottom pixel is set to the
total number of rays falling on that pixel. In the second phase, we
densely sample locations inside each pixel in the camera, and trace
the light rays that fall on the camera to their origin on the bottom
of the container. This allows us to obtain the set of pixels on the
bottom of the container that are reachable from that camera pixel.
The intensity at each camera pixel is set to the sum of the intensity
of all reachable bottom pixels.

We show the results of a simulated experiment in Fig. 4. By
comparing Fig. 4d with Fig. 4e, we can see that the peaks of the
pattern on the bottom of the container are much sharper than the
crests of the capillary waves at the surface. This is because the crests
of the surface waves focus light into a series of much narrower
bright rings at the bottom of the container, therefore increasing the
contrast. Also by comparing Fig. 4f with Fig. 4e, we can see that
troughs of the pattern captured by the camera are distorted and the
peaks are shifted to the left. This is because the slight separation
between the camera and the light source which causes the camera to
see the pattern from its own angle. But still, we can use the imaged
pattern to calculate the wavelength accurately using Equ. 7. In this
simulation, the camera has a resolution of 40 pixel-per-millimeter
at the surface distance, and the wavelength is 3mm. At these values,
and assuming the liquid is water, the wavelength is exactly 120
pixels.

5 DEALING WITH SYSTEM CHALLENGES

The algorithm in section 4 measures the surface tension using the
following: a high frequency vibro-motor that can be used to excite
capillary waves, a light source to provide illumination, and a camera
to capture the resulting pattern. Thankfully, a smartphone includes
all three components.

Thus, in principle, we can measure the wavelength in the image
captured by the phone, and convert from pixel-based distance into
real distance using Equ. 7, which gives us the surface tension. But
in reality, we face several challenges due to the reality of phone
hardware. Particularly, there are two main factors that prevent us
from measuring the wavelength accurately: the camera’s rolling
shutter and the instability of the phone’s vibration frequency.

5.1 Rolling Shutter Effect

As explained earlier, the wavelength is the distance between two
consecutive bright rings. Since the rings are concentrated (see
Fig. 4c), we can pick a particular direction along the radius of
the rings and use it to measure the distance between consecutive
bright rings, which would then yield the wavelength. Unfortunately,
it is not that simple. In reality, not all directions give the correct
wavelength. Fig. 5 shows an example image of the ring pattern due
to capillary waves. The figure shows three radial directions along
and the corresponding wavelength in number of pixels. The figure
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shows that the average number of pixels between two consecutive
bright rings along these three directions is 109, 111, and 115. The
differences between these estimates of the wavelength cause a sig-
nificant difference in the resulting estimate of surface tension. In
fact a difference of two pixels leads to an error of 4mN/m in sur-
face tension, which is more than 5% of the water’s surface tension
y = 72mN /m. This means that we have to figure out which of these
radial directions yields the correct estimate of wavelength, and use
only that direction.

In order to pick the correct radial direction for our estimation,
we first need to understand why different directions yield differ-
ent distances between the bright rings, i.e., different wavelengths.
The reason is the rolling shutter. Rolling shutter refers to that a
camera captures a picture by sequentially scanning rows of photo
diodes [22]. Therefore pixels are not recorded at exactly the same
instant, and since the wave is traveling rapidly, this will result in a
Doppler Effect.

In the example in Fig. 5, the camera is scanning from right to left,
and the wave is propagating from the edge of the cup to the center.
The propagation direction and the scanning direction are aligned
for the radius on the right (in the figure), and are opposite for the
radius on the left. Thus, the measured wavelength is shorter along
the left radius and longer along the right radius. As for the radius in
the middle, the propagation direction of the wave is perpendicular
to the camera scanning direction, hence the measurement is not
affected by the rolling shutter.

Therefore for accurate estimation, we want to measure the wave-
length along the radius perpendicular to the camera’s scanning
direction (the green line in Fig. 5). Given that the camera scan im-
ages horizontally, the correct radius is along the vertical direction
in the image. We can ask the user to manually pick the vertical
radius. However it is preferable to do it automatically to reduce
user overhead and any potential errors. To do so, we search for the
vertical line in the image that maximizes symmetry. Specifically,
since the line we are looking for is a radius of the concentrated
rings, the pattern on its left should be similar to the pattern on the
right (i.e., the intensity of the few pixels to the left of the line is
similar to the intensity of the few pixels to the right of the line).
Thus, we only need to find a vertical line whose neighbor pixels
are symmetric with respect to itself. This is similar to detecting
reflection symmetry in images and can be solved by convolving
with a wavelet filter [10]. Specifically, we design a wavelet filter
(shown in Fig. 6) that is -1 on the left side and +1 on the right side.
When convoluting with a image, result will be close to zero only
when there is reflectional symmetry in the reception field of the
filter.

The reflection symmetry is only observable when the reception
field of the filter is large enough, e.g. at the scale of one wavelength,
which is about a hundred pixels. To increase the reception field
of the filter, instead of use a big filter which is expensive, we can
down-scale the image to speed up the convolution process. Then
for each column in the convolved image, we calculate the sum of
the absolute values of all of its pixels. Because of the property of the
filter, the result in the ideal column should have the lowest value.
Therefore, we select the column with minimum sum as the ideal
location to measure the wavelength. The algorithm is visualized
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Figure 4: A simulated experiment showing the relation between the waves on the surface, the pattern on the bottom of the
container and the captured image. Figures on the second row show the pixel value along the yellow line in the corresponding
first row figure. Comparing 4d with 4e, we see that the crests of the pattern on the bottom are both sharper and higher value
than the crests of the waves on the surface. This is due to the focusing effect on the lenses. Also note that in 4f, the crests are
shifted to the left; this is because the camera and the light are not co-located.

Figure 5: A sample image taken by a smartphone. The three
lines represent three radii with different directions. Num-
bers besides the lines are the corresponding wavelength
measured in number of pixels, and they are different from
each other. This suggests that picking a wrong radii may re-
sult in a significant error.

in Fig. 7. Note that, in the implementation, we also average across
multiple images to improve robustness of the algorithm.

This algorithm can locate the vertical radius accurately. Further,
since it is based on very simple operations, it is highly efficient and
can run on an ordinary smartphone.

5.2 Unstable Vibration Frequency

When vibrating, the frequency of the vibro-motor on the phone
is not always constant; it shows small perturbation around the
center frequency. Further, because of API restrictions, smartphones
are forbidden to vibrate continuously. Instead, they have to follow

280

-1

Figure 6: The wavelet filter for detecting local reflectional
symmetry. Values on left side are all -1, and +1 on the other
side. And values in the middle column is 0. The convolution
result will be zero when there is reflectional symmetry.

a vibrate-stop-vibrate pattern. Therefore the vibro-motor need to
constantly accelerate and decelerate, results in an unstable vibration
frequency. The randomness in the vibration frequency affects the
capillary waves, making the wavelength measured from a single
image unreliable.

To deal with this issue we use a large number of images in our
estimation. Fortunately, smartphones are able to capture images
at a very high frame rate (e.g. iPhone’s burst mode). Thus, we can
obtain hundreds of images within a few seconds. Since the location
of the phone is not changed during this short period, we can use
all of those images to obtain a more robust location for computing
the wavelength using previous method. Then for each image, we
extract the pixel value on the column we have selected, and apply
a peak detection algorithm to extract all the peaks, and calculate
the interval between every two peaks. To combat with the unstable
frequency, we create a histogram of the all wavelength estimates.
Noticing that, because of the vibrate-stop-vibrate pattern that the
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Figure 7: The algorithm for identifying the ideal location along which to measure the wavelength. We first scale down the
image, and convolute it with a filter for detecting local symmetry. Then calculate the sum of the absolute values for each
column. Then the column with lowest sum is the location where its wavelength is not affected by the rolling shutter effect.
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Figure 8: A sample histogram of estimated wavelengths with

200 images.

motor follows, a simple average across all the wavelengths will
result in an estimation bias. Instead, we smooth the histogram with
a Gaussian filter, then pick the location of the maxima to be the
estimated wavelength. A histogr am generated with 200 images is
shown in Fig. 8

6 USER INTERFACE AND IMPLEMENTATION

We implement CapCam as a standalone iOS App using the Swift
programming language. To speedup processing, we use Apple’s
Accelerate Framework[1] for SIMD operations like convolution and
summation. This yields over 1000x speedup compared to a naive
Swift implementation.

Two main user interfaces of CapCam are shown in Fig. 9. The UL
on the left (Fig. 9a) is the configuration interface. On this interface,
we introduce each component from top to the bottom. The first
component is the preview of the camera. On the preview, there is a
blue frame showing the area where we run our analysis algorithm.
By cropping the image, we are able to achieve a much faster speed
without sacrificing accuracy. Next there are three text fields. The
first text field is for the user to input the distance between the
surface and the camera. The app includes a ruler to assist the user
in measuring the distance directly with the phone. The second text
field is for the density, and its default value is 1.0. The third text field
is for the user to specify the number of captured images. Having
more images will increase the accuracy, yet will take a longer time.
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Figure 9: CapCam’s User Interface

Then there is a progress bar indicating the progress of the analysis
process. Finally, there are three buttons on the bottom. "Light" and
"Vibrate" are the controls for the flashlight and the vibro-motor,
and the "Start!" button is for starting the analysis process.

After the analysis finishes, the app shows the analysis interface,
which is the UI on the right(Fig. 9b). One sample captured image is
shown on the top half, with the automatically detected estimation
radius highlighted. The histogram of the wavelength is plotted be-
neath the sample image. Finally, the estimate of the surface tension
is printed out at the bottom.

7 EVALUATION

In this section we evaluate the performance of CapCam and its
ability to deliver interesting applications to the user.
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Figure 10: Digital tensiometer with a resolution of 0.1mN/m
for measuring ground truth of surface tension (Model: Dat-
aphysics DCAT 11 [15])

7.1 Ground Truth

In all experiments, the ground truth of the surface tension is ob-
tained by using an advanced digital force tensiometer (Dataphysics
DCAT 11 [15]), shown in Fig. 10. It measures the surface tension
using the Wilhelmy plate method, and can provide a resolution of
0.1mN/m (0.1 millinewton per meter).

7.2 Experiment Setup

We install CapCam on an iPhone X. Unless specified otherwise,
we use a standard paper cup as a testing container, and set the
liquid depth to 45mm. We place the phone on top of the cup, as
shown in Fig. 1. We hold the phone with our hand as shown in the
figure to ensure it stays still while take the images, and does not
move due to vibrations. The cup has a height of 132mm. The camera
on the iPhone is measured to have a resolution of 39.5 pixels per
millimeter at a distance of 87mm, and the vibration frequency of
the iPhone is centered at 144.5Hz. For each measurement, CapCam
continuously takes 200 images. On average, each surface tension
measurement takes 8 seconds. For each liquid sample, we repeat
the measurement 5 times and compute the average and standard
deviation. 2

7.3 Detecting Water Contamination

Water has a relatively high surface tension [39], and when pol-
luted with organic compounds such as petroleum, bacteria, pesti-
cides, oil or its derivatives, water surface tension decreases signif-
icantly [7, 30]. In this section, we empirically evaluate the effec-
tiveness of CapCam at detecting changes in surface tension due to
such contamination. While not all sources of water contamination
change surface tension (e.g., metal contamination), our approach
covers a large and important class of contaminants. Such bacte-
rial and organic contamination is common anywhere unsanitary
conditions are present. Further, people who live downstream from
factories are at greater risk of contamination from petroleum and

2 A demo video of our experiments is available at http://people.csail.mit.edu/scyue/
projects/capcam/
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Figure 11: Water Contamination Detection. Both tap water
and rain water have a surface tension close to deionized wa-
ter. In contrast, pond water and exposed water have lower

surface tension values due to contamination.
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Figure 12: Urine surface tension test with different protein
concentration levels. For a healthy person, protein concen-
tration level in urine should be less than 30mg/L [16], and
the greater the concentration, the higher the risk.

organic waste, and people in farming communities are at risk for
contamination from agriculture waste [26].

We compare 5 different water sources: 1. deionized (i.e., pure)
water, 2. tap water, 3. rain water, 4. pond water from a tree pit, 5.
water left exposed for a week. Fig. 11 plots the surface tension of
the above water sources. The figure reveals two findings. First, by
comparing the blue and red bars in the figure, we see that CapCam’s
measurements of surface tension match those from the tensiometer.
This shows CapCam’s accuracy. Second, the figure shows that both
tap water and rain water have a surface tension similar to deionized
water, which indicates that these sources of water are not polluted.
On the other hand, pond water and exposed water have much
lower surface tension, meaning that they contains chemicals that
can decrease surface tension, which is a sign of contamination.

7.4 Tracking Protein in Urine

People who have diabetes or high blood pressure are vulnerable
to kidney disease. When the kidney is damaged, it starts leaking
substrates into urine that are not supposed to be present. Many of
these substrates reduce urine surface tension. In particular, microal-
buminuria is a complication in diabetic patients, where the kidney
starts leaking albumin into urine [23, 34]. We would like CapCam
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Figure 13: TDR as a function of ethanol concentration. Data
points are obtained from Vazquez et al. [33] and Speight et al.
[29]. We use a polynomial fit to obtain a continuous function
between the concentration level and the TDR.
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Figure 14: Alcohol concentration as measure by CapCam in
blue and ground truth in orange.

to help diabetic patients by providing them with an easy way to
regularly test the level of albumin in urine. If the level increases
beyond a safe threshold, the patient can contact her doctor for more
intensive tests.

We empirically test CapCam’s effectiveness at delivering this
application. We add different levels of egg albumin 3 to a sample
of healthy human urine, and measure urine surface tension for
different albumin concentration.

Fig. 12 shows urine surface tension as a function of albumin con-
centration. Note that a protein level of over 30mg/L is the threshold
at which the patient has microalbuminuria [16]. The results in the
figure indicate that our system can track changes in urine surface
tension with increased albumin concentration in a manner compa-
rable to a professional tensiometer. Further, it can detect when the
protein concentration becomes dangerous. This means a patient can
track the progress of the disease in the home using her smartphone.

7.5

We test the performance of our system on a series of ethanol solu-
tions with different concentration levels. This is a complex scenario
since an ethanol solution is a mixture of two liquids: water and

Measuring Alcohol Concentration Level

3Egg albumin and human serum albumin both belong to albumin, a family of globular
proteins, and sharing similar physical properties [38].
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Figure 15: CapCam’s resolution: differences between true
and measured surface tension show that CapCam has an av-
erage error of 0.75mN /m

ethanol. The density of the mixture p in Equ. 2, depends on the ratio
of ethanol to water in the mixture. Thus, we are facing a chicken-
and-egg problem: we want to measure surface tension to estimate
alcohol concentration; however we need the alcohol concentration
to estimate p, which we need for our measurements of surface
tension.

To address this issue, we leverage the fact that both the surface
tension and the density of the ethanol mixture are functions of its
concentration level. Further, they are known functions available
in data sheets [29, 33]. Given both functions, we can compute for
each given ethanol concentration level, its surface tension and its
density, and take the ratio of the two, denoted as the surface tension
to density ratio (TDR). We plot this ratio in Fig. 13. The curve in this
figure allow us to compute alcohol concentration given the TDR.

We can then re-write Equ. 2, so that we can estimate the TDR,
i.e., y/p, as opposed to surface tension y:

2
ror_ ¥ - @i —gen/h) o
p (2m/2)?

Notice that the left hand side of this equation is the TDR, and we
can compute it by substituting for the vibration frequency, gravity,
and the wavelength of the capillary waves, which we can compute
as before. Therefore we can first measure the TDR of the alcohol
using CapCam, then convert the TDR into the concentration level
based on the relation in Fig. 13.

The measurement result for ethanol concentration level is plotted
in Fig. 14. The absolute error is only 0.51%. This implies that our
system is accurate enough to distinguish German Riesling from
Australian Riesling, and Portuguese Rose from French rosés.

7.6 CapCam’s Resolution

Next we are interested in understanding CapCam’s resolution, i.e.,
the expected error in its measurements of surface tension. To es-
timate this value, we leverage the results from the alcohol con-
centration experiment. Specifically, for any alcohol concentration
level, there are datasheets that report the surface tension and den-
sity [33]. By substituting the density p in the TDR equation above,
we compute CapCam’s estimate of surface tension, y, which we
can compare against the true surface tension in the datasheet. The
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Figure 16: The impact of liquid depth on the quality of the captured image. When the focal length of the waves does not
match the depth of the liquid, the bottom of the container may be out of focus. However, as the results indicates, even when
the mismatch between the depth and the focal length is about 36% to 40% (20mm out of 55mm for oil and 45mm for water),

our system can still measure the surface tension robustly.

measurements are plotted in Fig. 15. On average, CapCam has a
surface tension error of only 0.75mN /m, for surface tension in the
range from 33mN/m to 72mN/m. In comparison, an entry-level
manual tensiometer [21] a resolution of 0.5mN /m, and it still costs
thousands of dollars and requires complicated procedure.

7.7 Impact of Liquid Depth

As explained in Sec. 4, we can capture a pattern of bright and dark
rings because the capillary waves on the surface act like a series of
convex and concave lenses. But every lens has a focal length. When
the focal length of the waves does not match the depth of the liquid,
the bottom of the container (i.e., the ring pattern) will be out of
focus. Thus, in this experiment, we evaluate the sensitivity of our
system to the choice of liquid depth. To do so, we use two types of
liquids that vary significantly in their surface tension: deionized
water (y = 72.2mN/m) and ethanol solution (y = 39.7mN/m).

We generate capillary waves and check when the surface tension
estimated by CapCam matches the correct value. We repeat the
experiment for 5 different depths: 15mm / 25mm / 35mm / 45mm /
55mm. The measurement results are shown in Fig. 16.

The figure shows that when the depth of the water ranges from
25mm to 45mm, our system provides accurate measurements. The
depth suitable for measuring the ethanol solution is larger, and
spans the range from 35mm to 55mm. This is because ethanol has a
lower surface tension than water, hence the capillary wave on its
surface have a smaller amplitude, and focus light at a larger depth.
Overall, the results in the figure show that even when the depth
and the focal length are mismatched by 36% to 40% (20mm out of
55m for oil and 45mm for water), our system can still measure the
surface tension robustly.

The figure also shows that when the depth is far too small or too
large, the ring pattern is out of focus and is too blurred to allow for
accurate measurements. However, our system can indicate to the

user when the pattern is too blurred for accurate measurements.

Such scenarios typically generate an abnormal range for surface
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Figure 17: Measuring surface tension with different con-
tainers. As the figure indicates, CapCam can provide accu-
rate surface tension measurements with different contain-
ers without any modification.

tension values, as well as high variance in the measured wavelength
histogram. Further the images of the captured pattern clearly look
blurred. When this happens the user should increase or decrease
the depth of the liquid until the pattern in the images is not blurred.

7.8 Impact of Different Containers

All above experiments are conducted with a standard paper cup
because it is a common container easy to find in daily life. But
our system is not limited to one container. In Fig. 17, we show
the results of experimenting with different containers. We have
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three containers, with different width, length and height. For each
container, we add deionized water with depth of 30mm. We measure
the surface tension of the water with CapCam, then compare it with
the ground truth measured by the tensiometer, which is 72.2mN /m.
The measurement results show that CapCam provides accurate
surface tension measurements with containers of different sizes
without any modification.

8 DISCUSSION AND LIMITATIONS

(a) Sensitivity: As in past work [11, 35], CapCam measures a par-
ticular liquid property and uses the measurements to make certain
inferences. However, for any of these systems, the inference has
to be taken within the measurement context. For example, since
CapCam measures surface tension, it is sensitive to bacterial and
organic contaminants but cannot sense contamination by heavy
metal because they do not change surface tension. Thus, when it
infers contamination, the water is certainly impure but the inverse
is not necessary true. Similarly, if it detects two liquids to be differ-
ent, then they are different (assuming no measurement error), but
if it cannot differentiate them, they might still be different liquids
that have the same surface tension.

It is interesting to note that since CapCam measures a different
liquid property than past work, there is an opportunity to com-
bine these techniques for improved performance. In particular, past
work measures the liquid electric permittivity, which can be sensed
using radio signals that traverse the liquid of interest. In contrast,
CapCam measures surface tension which refers to the force that
brings the molecules together. These are intrinsically different prop-
erties, which combined in a multi-model system are likely to reveal
complementary information about the liquid of interest.

(b) Container Specification: CapCam has certain requirements
on the container type. First, the container should have a flat bottom.
If the bottom is not flat, there will be artifacts in the ring pattern,
which affect the measurements. Second, the container should be
relatively light so that it vibrates with the vibro-motor. Third, the
current system is designed for circular containers. Waves are ex-
cited by the vibrating wall and propagate from the edge to the
center. Based on the Huygens-Fresnel principle, when the wall is
circular, the resulting waves are also circular, hence creating clear
rings as described earlier. But if the container is not circular, the
wave pattern will be much more complex. Addressing this scenario
requires extending the model to account for interaction between
waves that traveled different distances, which is left to future work.

(c) Liquid Transparency: CapCam assumes that the liquid is trans-
parent and the pattern at the bottom is visible from the surface.
Many liquids are transparent and hence our model directly applies
to them. Even when a liquid is not sufficiently transparent, it can be
diluted with water and the results can be mapped back to undiluted
liquid based on dilution level.

(d) Phone & Camera Requirements: Capillary waves travel quickly.

Hence, when taking images of the waves, it is important to choose a
fast shutter speed. New phone models have an API for configuring
the camera shutter speed and exposure parameters, and hence our
choice of evaluating CapCam on an iPhone X. In our experiments,
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we set the shutter speed so that the exposure time is 1/800 second.
Different phone models may come with different cameras and flash-
lights, and hence require a different choice for the shutter speed.
Note that the automatic exposure configuration will not work be-
cause the phone tends to choose a longer exposure time, which
causes the wave pattern to be fuzzy. One also needs to measure
the resolution of the camera and the vibration frequency of the
vibro-motor. These measurements however can be done once for
each phone model.

9 CONCLUSION

In this paper, we introduce CapCam, the first mobile application
that can measure liquid surface tension. It is based on the rela-
tionship between surface tension and capillary waves, and it is
convenient and accurate. Our evaluation shows that CapCam has
an absolute surface tension error of only 0.75mN/m, and based
on measured surface tension, it can successfully measure alcohol
concentration and detect water contamination. Our experiments
also show that it is capable of accurately tracking the protein level
in urine, a key physiological index used in diabetes and kidney
disease management. We believe this work can serve as a useful
tool, and enables new meaningful applications and interactions.
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