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Abstract. In [4], Bernstein presented a simple proof of security of Cipher Block Chaining
(CBC) Message Authentication Code (MAC) against adversaries querying messages all of
which are of the same length. In this paper we show that Bernstein’s proof can be used to
prove security of CBC MAC against adversaries querying non-empty messages that are not
prefixes of each other. This implies that “length-prepend CBC MAC” presented by Bellare,
Kilian, and Rogaway in [1] is a secure authentication method, handling variable message
lengths.

1 Introduction

CBC MAC is an authentication standard widely used in practice. Two parties, sharing a secret
key α, can authenticate a message x = (x1, x2, ..., xm) by adding the following tag to the message:

f ′α(x) = fα(fα(. . . fα(fα(x1)⊕ x2)⊕ . . .⊕ xm−1)⊕ xm) (1)

The underlying function fα : {0, 1}n → {0, 1}n can be based on any preudo-random function
generator for a fixed length. Bellare, Kilian, and Rogaway were first to prove the security of the
standard CBC MAC applied on messages of fixed length [1]. In particular, they showed that the
advantage of any k-query adversary at distinguishing between CBC MAC, that uses a randomly
chosen underlying function f : {0, 1}n → {0, 1}n, and a randomly chosen function outputting n
bits is m2k2/2n, where m is the number of blocks in each query. In [4], Bernstein achieved the
same results, providing a simpler proof.

It is well known that the standard CBC MAC is only secure against adversaries querying messages
all of which are of the same length and it is not secure against adversaries querying messages of
different lengths. Bellare, Kilian and Rogaway proposed in [1] to encode each message by append-
ing to it its length encoding as the first block and then apply the standard CBC MAC 1. They
called this version of CBC MAC as “length-prepend CBC MAC”. It is easy to see that, given a list
of distinct messages possibly of different lengths, once this encoding it applied, no message can be
a prefix of any other message. In [11], Petrank and Rackoff showed that the standard CBC MAC
is secure when applied on non-empty messages that are not prefixes of each other by extending
the proof provided in [1]. Bellare, Pietrzak and Rogaway improved this results providing stronger
bounds [2]. In particular, they showed that the advantage of any k-query adversary, querying non-
empty messages that are not prefixes of each other, at distinguishing between CBC MAC, that
uses a randomly chosen underlying function f : {0, 1}n → {0, 1}n, and a randomly chosen function
outputting n bits is≤ 20mk2/2n form ≤ 2n/3, wherem is the number of blocks in the longest query.

In this paper we modify Bernstein’s proof [4] to show that the standard CBC MAC is secure against
adversaries querying non-empty messages that are not prefixes of each other. As a conclusion of
our theorem, any k-query adversary querying non-empty messages that are not prefixes of each
other has an advantage of m2k2/2n at distinguishing between CBC MAC, that uses a randomly
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chosen underlying function f : {0, 1}n → {0, 1}n, and a randomly chosen function outputting n
bits. This also implies the security of “length-prepend CBC MAC” presented in [1]. Although we
prove that CBC is a secure MAC, it is also a preudo-random generator. Bernstein’s proof has also
been applied by Nandi in [8] to show security of other constructions handling variable inputs such
as XMAC [3], TMAC [6], OMAC [7] and PMAC [5]. In [9], he generalized the proof to show the
security of a class of CBC MAC algorithms (gcbc), which includes “length-prepend CBC MAC”.
In [10], he achieved better quantitative results (11tk/2n, where t is the total number of blockcipher
computations needed for all k queries) on CBC MAC applied on non-empty messages that are not
prefixes of each other. However, understanding the security of “length-prepend CBC MAC” based
on [9] or [10] requires first understanding of Nandi’s general classes of CBC MAC constructions
and associated proofs.

2 CBC MAC is secure applied on non-empty messages that are not
prefixes of each other

Lemma 1: Let G = {0, 1}n. Let F be a family of functions from G to G. Let f be a function
chosen randomly from F . Define f ′ recursively as follows: f ′(λ) = 0n, where λ is the empty string
and f ′(x̄y) = f(f ′(x̄)⊕ y), where x̄ is a string of length divisible by n and y is an n-bit string.
Let k ≥ 0 and m ≥ 1. Let G′ denote the set of all non-empty strings formed by concatenat-
ing m or fewer strings from G. Let y1, y2, . . . , yk be distinct elements of G′ such that no yi is a
prefix of yj for all i, j and i 6= j. Let z1, z2, . . . , zk be elements of G. Then the probability that

(f ′(y1) = z1, f
′(y2) = z2, . . . , f

′(yk) = zk) is at least (1−ε)
|G|k where ε = mk(mk−1)

2|G| .

Proof of Lemma 1: Define P as the set of non-empty prefixes of y1, y2, . . . , yk whose length
is divisible by n. For all p ∈ P , define chop(p) = everything but the last n-bit block of p, and
last(p) = the last n-bit block of p. Define ϕ : {λ} ∪ P → G as admissible if:

C1. ϕ(λ) = 0n.
C2. ϕ(yi) = zi for all 1 ≤ i ≤ k.
C3. For all p, p′ ∈ P such that p 6= p′, ϕ(chop(p))⊕ last(p) 6= ϕ(chop(p′))⊕ last(p′).

Define an admissible ϕ : {λ} ∪ P → G as compatible with f : G → G if for all p ∈ P ,
f(ϕ(chop(p))⊕ last(p)) = ϕ(p).
The proofs of the next two claims are identical to the proofs presented in Theorem 2.1 of [4] and
we leave them to the reader.

Claim 1: For all admissible functions ϕ, the probability that ϕ is compatible with a randomly
chosen f from F is 1

|G||P | .

Claim 2: Let ϕ be an admissible and a compatible function with f : G → G, then for all
p ∈ {λ} ∪ P , f ′(p) = ϕ(p).

Claim 3: There are at least (1−ε)|G||P |

|G|k admissible functions where ε = mk(mk−1)
2|G| .

Proof of Claim 3: To count the number of admissible functions we look at ϕ : {λ} ∪ P → G
chosen randomly. C1 is satisfied with probability 1

|G| . C2 is satisfied with probability 1
|G|k , since

all yi’s are distinct. Also, since yi’s are not empty, C1 is independent of C2 and so the probability
that both are satisfied is 1

|G|k+1 .

From now on, assume that C1 and C2 hold. We now calculate the probability that C3 fails. Now,
consider p, p′ ∈ P such that p 6= p′. We cannot have that chop(p) = chop(p′) and last(p) = last(p′)
since p 6= p′. If chop(p) = chop(p′) and last(p) 6= last(p′), then ϕ(chop(p))⊕last(p) 6= ϕ(chop(p′))⊕
last(p′). Assume chop(p) 6= chop(p′) (1). Then, either chop(p) or chop(p′) is not equal to λ. As-
sume chop(p) 6= λ (2). Then, ϕ(chop(p)) ⊕ last(p) = ϕ(chop(p′)) ⊕ last(p′) can be rewritten as
ϕ(chop(p)) = ϕ(chop(p′)) ⊕ last(p′) ⊕ last(p). Now, chop(p) is a proper prefix of one of the mes-
sages and no message is a proper prefix of any other. Therefore, chop(p) 6= yi for all 1 ≤ i ≤ k
(3). Therefore, by (1), (2) and (3) ϕ(chop(p)) is chosen randomly and independently. Hence, the



probability that ϕ(chop(p)) = ϕ(chop(p′))⊕ last(p′)⊕ last(p) is 1
|G| . Now, since there are at most(

mk
2

)
such cases in P over all distinct p, p′, the probability that C3 fails is ≤ mk(mk−1)

2|G| = ε.

So, the probability that ϕ : {λ} ∪ P → G is admissible ≥ (1−ε)
|G|k+1 . And since there is a total of

|G||P |+1 functions from {λ}∪P to G, there are at least (1−ε)|G||P |

|G|k admissible functions. This com-

pletes the proof of Claim 3.

Since there are at least (1−ε)|G||P |

|G|k admissible functions, the probability that one of them is com-

patible with a randomly chosen f from F is at least (1−ε)
|G|k where ε = mk(mk−1)

2|G| . This completes

the proof of Lemma 1.

Finally, we can apply Theorem 3.1 from [4], thus proving that CBC MAC is secure applied on
non-empty messages that are not prefixes of each other.
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