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We present the GHV encryption scheme [GHV10]. This scheme, based on the hardness of
learning with errors (LWE), supports homomorphic operations that can be expressed as quadratic
forms (similarly to the BGN cryptosystem [BGNO05]).

1 Background

The decision-LWE problem. The D-LWEIn, «, g] assumption asserts that it is infeasible to
distinguish the distribution LWE; = {(@,c) : @ €g Zy, e < N(0,aq), ¢ = (5,d) + e mod ¢} for a
random s €g Zy from the uniform distribution on Zj x [0, g), even when the distinguisher can get
any (polynomial) number of samples from these distributions that it wants. This implies that it is
also infeasible to distinguish LWEz = {(d@,¢) : @ €r Zy, e < N(0,q), ¢ = (5,@) + [e] mod ¢} from
uniform on ZZL‘H.

In particular, for any polynomial m = m(n), the distribution

LWE[m] = {(A,¢) : AcrZy*™, s €r Ly, €< N(0,aq)™, ¢=5A+ [€] mod g}
(n+1)xm

is indistinguishable from the uniform distribution on Z, . By an easy hybrid argument, we
get that the distribution

LWE[m x m] = {(4,C) : A€rZi*™, S erZ™™, E « N(0,aq)™™, C = SA+[E| mod ¢}

is indistinguishable from the uniform distribution on Z((ln+m)xm

Trapdoors. On the other hand, the trapdoor constructions (e.g., [AP11] or [MP11]) let us gen-
erate a nearly-uniform matrix A € Zy*™ together with a trapdoor T4 such that given T4 we can
invert the function

—\

lwe (5, €) = §A+ €mod ¢

where 5 € Zy, € € Z"™, and €] < q/8m (say).

In particular, the Alwen-Peikert trapdoor from [AP11] is a full-rank integer matrix 7" such that
AT = 0 mod ¢ and all the entries in T" are at most 3 in absolute value. Hence (§SA+¢é&)xT =éx T
(mod ¢q), but [EXT s < |€loe X|T|oo xm < g=x3xm < q/2. This means that ((54+€)xT mod q) =
€ x T over the integers, so

(A+é&)xTmodq) xT™! = (exT)xT ! = &

2 The Gentry-Halevi-Vaikuntanathan Cryptosystem

Key-generation. Run the Alwen-Peikert trapdoor construction to get A € Z¢*™ and the corre-
sponding trapdoor T'4. The public key is A and the secret key is T'4.

Encryptions(B). The plaintext is a binary matrix B € {0, 1}™*"™.
1. Choose at random S €g Zy"*" and E < N(0, ag)™>™;
2. The ciphertext is a matrix over Zy"*™, C'= SA+2[E| + B mod q.
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Decryptiony, (C). Note that each row of C is of the form & = §;A + (2[é] + b;) mod q. Use
the trapdoor T4 to recover the “error vector” z1 = (2 [é;| + b;), then reduce modulo 2 to get b;.

2.1 Correctness

If « < 1/nm (say), then the probability of having any entry in € larger than ¢/17m in absolute value
is bounded by some exp(—n). Therefore the “error-vectors” & = (2[¢&] + b;) satisfy |7;|s0 < q/8m,
and so we can recover it using the trapdoor.

Below we will need also a stronger bound: For any parameters k, m,q and o and any fixed
unit vector 4 € R™, when we choose € < N (0, ag)™, then the probability that (@, )| > aq -k is
bounded by exp(—k?/2).

2.2 Security

We show that when ¢ is odd, then a successful chosen-plaintext attacker A against the scheme
implies a distinguisher D between LWE[m x m] and uniform.

The distinguisher gets (A, C) and it needs to decide if C' = SA + E mod g or C' is uniform in
ZZ”X’”. It runs the attacker A with public key A, and the attacker gives it two matrices By, By. Then
D chooses at random i € {0, 1} and provides the attacker A with the “ciphertext” C* = 2C + B;.
Then A outputs a guess ¢/, if ¢’ = i then D outputs 1 (i.e., it guesses that the input distribution is
LWE[m x m]), and otherwise it outputs 0 (i.e., it guesses that the distribution is uniform).

If (A, C) is taken from the uniform distribution then C* is uniform (since ¢ is odd), regardless
of 4, hence the probability of i’ = i is exactly 1/2.

If (A,C) is taken from LWE[m x m| then C' = SA + FE mod ¢ and therefore C* = 2C' + B; =
(25)A +2FE + B; mod ¢g. Since ¢ is odd and S is uniform over Z, then so is 25 mod ¢, hence C*
is distributed exactly the same as a random encryption of B;. It follows that in this case we have
i’ = i with probability noticeably larger than 1/2.

2.3 Additive Homomorphism

Assume that we set o < 1/mk for some parameter k, and consider a set of ¢ plaintext matrices
Bi, ..., By and their encryption Cy, . .., Cy, where £ < o(k?/+/Togn). We claim that with overwhelm-
ing probability, the matrix Zle C; mod g will be decrypted to the binary sum Ele B; mod 2. This
is because

¢
Y Ci=(5)A+2(3,E)+ (3, B) = SA+2E+ B (mod q)
=1 —— —— N —
s E B
and since each entry in E is a sum of £ independent Gaussians with variance (aq)?, then each such
entry is itself a Gaussian with variance £(aq)?. From o < 1/mk and £ < o(k?/+/logn) it follows that
with overwhelming probability each entry in E is o(¢/m) and in particular smaller than ¢/16m, as
needed for our trapdoor to work.

2.4 Multiplicative Homomorphism

Let C1 = S1A+ 2E; + By mod ¢ and Cy = Ss A+ 2E5 + By mod ¢, and let C = Cy X Cé mod gq.
Then TCT! = T(2E; + By) x (2E> + B)T? (mod q). If « is chosen small enough so that all
the entries in Ei, B are o(y/g/m'5), then all the entries in T(2E; + B;) and T(2E, + Bs) are



smaller than than o(y/q/m), and so all the entries in T(2E; + By) X (2E2 + B)T* are smaller than
m x o(1/q/m) x o(\/q/m) = o(q). Therefore

TCT' mod ¢ = T(2E; + By) x (2Ey + BY)T!
over the integers, and so we get
T-YTCT! mod ¢)(T")" = (2E1 + By) x (2E2 + BY) = B1By (mod 2)
We can therefore multiply two ciphertext matrices, and be able to decrypt the product of the two

plaintext binary matrices from the resulting product ciphertext.
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