Instructor: Shai Halevi

May 5, 2011

Problem Set #4

due May 12

More Learning with Errors

1 The Distribution of the Secret \vec{s}

Prove that the decision problem D-LWE[n, α, q] remains just as hard if the secret is chosen from the error distribution (rounded and reduced mod q), $\vec{s} \leftarrow \left[\Phi_{\alpha q}\right]^n \mod q$, rather than being chosen at random in \mathbb{Z}_q . Namely, prove that an efficient distinguisher of D-LWE[n, α, q] in the case where \vec{s} is chosen as above implies also an efficient distinguisher with the same advantage when \vec{s} is chosen uniformly at random.

Hint. Given *n* samples $(\vec{a_i}, b_i)$, i = 1, ..., n consider a matrix $A \in \mathbb{Z}_q^{n \times n}$ with the $\vec{a_i}$'s as columns, and the corresponding vector \vec{b} with the b_i 's as entries. Namely $\vec{b} = A\vec{s} + \vec{x}$ where $\vec{x} \leftarrow \lceil \Phi_{\alpha q} \rceil^n \mod q$. Assume that A is invertible modulo q. Then for a new sample (\vec{a}, b) , consider the transformation

$$f_{A\vec{b}}(\vec{a}, b) = (-(A^t)^{-1}\vec{a}, \ b - \langle (A^t)^{-1}\vec{a}, \vec{b} \rangle)$$

(where the arithmetic is modulo q).

2 Another Quadratic-Homomorphic Cryptosystem

The GHV cryptosystem [GHV10] that we saw in class is based on the *dual Regev cryptosystem* of Gentry-Peikert-Vaikuntanathan [GPV08]. The goal here is to construct a different quadratic homomorphic scheme from Regev's original LWE-based scheme [Reg09].

Below we have the usual parameters n, α, q and m, such that q = poly(n) (q odd), $\alpha = 1/poly(n) \ll 1/\sqrt{q}$, and $m \ge 3n \log q$. Security of this cryptosystem will be based on the hardness of the decision problem D-LWE[n, α, q].

- The secret key is a short vector $\vec{v} \in \mathbb{Z}_q^{n+1}$ such that the last entry is 1, v[n+1] = 1. The first n entries of \vec{v} are chosen at random in \mathbb{Z}_q^n , namely $\vec{v} = (\vec{s}|1)$ for a random $\vec{s} \in_R \mathbb{Z}_q^n$.
- The public key is an $(n+1) \times m$ matrix $P = (\frac{A}{\vec{b}})$, where A is a uniformly random matrix $A \in_R \mathbb{Z}_q^{n \times m}$ and $\vec{b} = -\vec{s}A + 2\vec{e} \mod q$. Here \vec{s} is the "secret part" of the secret key and \vec{e} is chosen from the error distribution $\vec{e} \leftarrow \lceil \Phi_\alpha \rfloor^m \mod q$. (Note that $\vec{v}P = \vec{s}A + \vec{b} = 2\vec{e} \pmod{q}$.)
- To encrypt a bit $m \in \{0, 1\}$ with public key $P = (\frac{A}{\vec{b}})$, choose a random 0-1 vector $\vec{r} \in_R \{0, 1\}^m$ and the ciphertext is $\vec{c} = P \times \vec{r} + (0, 0, \dots, 0, m) \mod q \in \mathbb{Z}_q^{n+1}$.
- To decrypt a ciphertext \vec{c} using secret key \vec{v} , compute $m = (\langle \vec{v}, \vec{c} \rangle \mod q) \mod 2$.

A. Prove that for some setting of the parameters α , q, m from above, decryption indeed recovers the correct bit m with high probability.

B. Prove that if the decision problem D-LWE $[n, \alpha, q]$ is hard, then this scheme is CPA-secure. (*Hint.* What would have happened if P was a uniformly random matrix in $\mathbb{Z}_q^{(n+1)\times m}$?)

C. Prove that for some setting of the parameters α, q, m from above, and another parameter ℓ , the sum mod q of upto ℓ ciphertext vectors is decrypted to the sum mod 2 of the corresponding plaintext bits with high probability.

D^{*}. Consider two ciphertexts $\vec{c_i} = P \times \vec{r_i} + (0, 0, \dots, 0, m_i) \mod q$, where $\vec{c_i}$ encrypts the bit m_i for i = 1, 2. Denote the tensor (outer) product of these two ciphertext vectors (mod q) by $C = \vec{c_1} \otimes \vec{c_2} \mod q \in \mathbb{Z}_q^{(n+1)\times(n+1)}$. Namely, $C_{i,j} = c_1[i] \cdot c_2[j] \mod q$.

Describe a decryption procedure that uses the secret key \vec{v} to recover the product of the plaintext bits $m_1 \cdot m_2 \mod 2$ from the "product ciphertext" *C*. (*Hint*. Recall that for four vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ of matching dimensions, it holds that $\vec{a} \times (\vec{b} \otimes \vec{c}) \times \vec{d} = \langle \vec{a}, \vec{b} \rangle \cdot \langle \vec{c}, \vec{d} \rangle$.) How would you set the parameters so that this procedure succeeds with high probability?

 \mathbf{E}^{**} . Can you extend this cryptosystem to operate on binary matrices as plaintext, using modq matrices of the same dimensions as ciphertext? (This will reduce the plaintext-to-ciphertext expansion by a factor of m compared to the scheme above.)

Note: I don't know if this is possible, but it will be interesting if it is.

References

- [GHV10] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. A Simple BGN-type Cryptosystem from LWE. In Advances in Cryptology - EUROCRYPT'10, volume 6110 of Lecture Notes in Computer Science, pages 506–522. Springer, 2010. Full version available on-line from http://eprint.iacr.org/2010/145.
- [GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic constructions. In STOC'08, pages 197–206. ACM, 2008.
- [Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. JACM, 56(6), 2009.