Background: Lattices and the Learning-with-Errors problem
Starting Point: Linear Equations

• Easy to solve a linear system of equations

\[
\begin{bmatrix}
A & s \\
\end{bmatrix}
= \begin{bmatrix}
b \\
\end{bmatrix} \quad (mod \ q)
\]

• Given \(A, b \), find \(s \)
• Solved using Gaussian elimination, Cramer rule, etc.

• [Regev 2005] Hard if we add a little noise

\[
\begin{bmatrix}
A & s \\
\end{bmatrix}
+ \begin{bmatrix}
e \\
\end{bmatrix}
= \begin{bmatrix}
b \\
\end{bmatrix} \quad (mod \ q)
\]

• \(e \) is a noise vector, \(|e| \ll q \)
• Given \(A, b \), find \(s \) and/or \(e \)
Learning with Errors (LWE) [R’05]

- **Parameters:**
 - \(q\) (modulus), \(n\) (dimension), \(m>n\) (# of samples)

- **Secret:** uniformly random vector \(s \in \mathbb{Z}_q^n\)

- **Input:** random matrix \(A \in \mathbb{Z}_q^{m \times n}\), vector \(b \in \mathbb{Z}_q^m\)
 - Computed as \(b = A \times s + e \pmod{q}\)
 - \(e\) chosen from some distribution s.t. \(|e| \ll q\) whp
 - \(b\) is close to the columns space of \(A\)

- **Goal:** discover \(s\)
Learning with Errors (LWE) [R’05]

1. Is it really hard to solve LWE?
 - How hard?
 - For what range of parameters?

2. Is it useful?
 - Can we design cryptosystems with security based on the hardness of LWE

- We’ll do #2 first, then #1
Using LWE in Cryptography
The Decision-LWE Problem

- A more useful variant of LWE:
- Same parameters q, n, m
- Input: same and A
 - A is still a uniform random matrix in $Z_q^{m \times n}$
 - Either $b = A \times s + e \pmod{q}$, or b is uniform in $Z_q^{m \times n}$
- Goal: distinguish $A \times s + e$ from uniform
 - I.e., given A, b, decide if b is “unusually close” to the column space of A
Search vs. Decision LWE

- Clearly, if we can solve the search problem then we can also solve the decision problem
 - Try to solve the search problem on \(A, b \)
 - If successful then \(b \) is close to the column space of \(A \), otherwise \(b \) is random

- More interesting: If we can solve decision, then we can also solve the search problem
 - But the complexity grows by a factor of \(q \cdot n \)
 - So this reduction only works for small (polynomial) \(q \)
Assume that we have a distinguisher D that can tell if $b = As + e \ (mod \ q)$ or b is random.

Say for now that D succeeds with probability close to 1.

We construct a solver S that finds s.

For every index $i \in \{1..n\}$ and every value $v \in \mathbb{Z}_q$, S will use D to determine if $s_i = v$.
Reducing Search to Decision LWE

Given A and $b = As + e$, test if $s_i = \nu$:

- Choose $r = (r_1, r_2, ..., r_m) \in \mathbb{Z}_q^m$ uniformly at random
- Add r to the i'th column of A, this gives a matrix A'
 - A' is uniformly random because A is
 $$A' = A + \begin{bmatrix} 0 & \ldots & r_1 \ldots & 0 \\ 0 & \ldots & r_2 \ldots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \ldots & r_m \ldots & 0 \end{bmatrix}$$
- Note that $A's = As + s_i \cdot r$
Reducing Search to Decision LWE

Given A and $b = As + e$, test if $s_i = \nu$:

- Choose $r = (r_1, r_2, \ldots, r_m) \in \mathbb{Z}_q^m$ uniformly at random
- Add r to the i’th column of A, this gives a matrix A'
 - A' is uniformly random because A is
- Add $\nu \cdot r$ to b, this gives the vector b'

\[
\begin{align*}
b' &= b + \nu \cdot (r_1, r_2, \ldots, r_m)
\end{align*}
\]
Reducing Search to Decision LWE

Given A and $b = As + e$, test if $s_i = v$:

- Choose $r = (r_1, r_2, ..., r_m) \in \mathbb{Z}_q^m$ uniformly at random.
- Add r to the i’th column of A, this gives a matrix A'
 - A' is uniformly random because A is.
- Add $v \cdot r$ to b, this gives the vector b'

$$b' = b + v \cdot r$$
$$= As + e + v \cdot r = (A's - s_i \cdot r) + e + v \cdot r$$
$$= A's + e + (v - s_i) \cdot r$$
Reducing Search to Decision LWE

Given A and $b = As + e$, test if $s_i = v$:

- Choose random r, compute A', b'
 - Such that $b' = A's + e + (v - s_i) \cdot r$
 - If $s_i = v$ then we get $b' = A's + e$
 - Otherwise b' is uniform (because r is uniform)
- Use the distinguisher $D(A', b')$ to tell which case it is
 - This will tell us if $s_i = v$
Reducing Search to Decision LWE

- The reduction assumes that D is always right
 - Can be extended to distinguisher D with polynomially small advantage

- The reduction works in time linear in $n \cdot q$
 - Can be refined to work in time $n \cdot \sum p_i$
 - The p_i’s are the prime factors of q
 - So the reduction can be efficient even for large q, as long as it is smooth
A Useful Variant of LWE

- Instead of choosing the secret s uniformly, choose it from the same distribution as e
 - So s is small

Theorem [ACPS’09]: Uniform-secret LWE is equivalent to small-secret LWE

- Solving one \leftrightarrow solving the other
Uniform- vs. Small-secret LWE

Easy direction: If we can solve uniform-secret LWE then we can solve small-secret LWE

- We are given A and $b = As + e$
 - s is a small secret
- Choose a uniform random r
- Set $b' = Ar + b = A(r + s) + e \pmod{q}$
 - $s' = r + s$ is uniform (because r is uniform)
- $A, b' = As' + e$ is instance of uniform-secret LWE
- Solving it, we get s' and can compute $s = s' - r$
Uniform- vs. Small-secret LWE

Hard direction: If we can solve small-secret LWE then we can solve uniform-secret LWE

• But the parameter \(m \) changes
• For solving \(m \times n \) uniform-secret LWE, we would need to solve \(m' \times n \) small-secret LWE with \(m' = m - n \)

• We are given \(A \) and \(b = As + e \)
 • \(s \) is a uniform secret

• Find \(n \) linearly-independent rows of \(A \)
 • Such rows exist with high probability
 • Assume that these are the first \(n \) rows
Uniform- vs. Small-secret LWE

- Set \(A' = -A_2A_1^{-1} \) and \(b' = b_2 + A'b_1 \)
 - \(b' = (A_2s + e_2) + A'(A_1s + e_1) \)
 \[= A_2s + A'A_1s + A'e_1 + e_2 = A'e_1 + e_2 \]
 - Because \(A'A_1 = -A_2A_1^{-1}A_1 = -A_2 \)
 - So \((A', b' = A'e_1 + e_2)\) is instance of short-secret LWE
 - The secret is \(e_1 \), drawn from the error distribution

- Solving it we get \(e_1 \)
 - Then compute \(s = A_1^{-1}(b_1 - e_1) \)
Regev’s Cryptosystem [R’05]

Secret key: vector \(s' \)
Public key: Matrix \(A' \), vector \(b = A's' + e \)

- Denote \(A = (b|A') \)
- If decision-LWE is hard then \(A \) is pseudorandom
- Denote \(s = (1, -s') \), then \(As = b - A's' = e \)

Encrypt \(_A(\sigma \in \{0,1\})\)

- Choose a random small vector \(r \in \{0,1\}^m \)
- Output the ciphertext \(c = rA + \frac{q}{2} \cdot (\sigma, 0, ..., 0) \in Z_q^n \)

Decrypt \(_s(c)\)

- Compute the inner product \(y = \langle c, s \rangle \) (mod q)
- Output 0 if \(|y| < q/4\), else output 1
Regev’s Cryptosystem [R’05]

- **Correctness:**

 \[y = \langle c, s \rangle = \left\langle \left(rA + \frac{q}{2} \sigma \right), s \right\rangle = rAs + \frac{q}{2} \langle (\sigma0 \ldots 0), (1, -s') \rangle = \langle r, e \rangle + \frac{q}{2} \cdot \sigma \]

 \[|\langle r, e \rangle| < \frac{q}{4} \text{ (since } r \text{ is 0-1 vector and } |e|_{\infty} < \frac{q}{4} \text{)} \]

 \[\Rightarrow \text{If } \sigma = 0 \text{ then } |y| < \frac{q}{4}, \text{ if } \sigma = 1 \text{ then } |y| > \frac{q}{4} \]

- **Security:**

 - Recall that A is pseudo-random

 - We show that if A was random then \(c \) was statistically close to uniform, regardless of \(\sigma \)
Regev’s Cryptosystem [R’05]

The Leftover Hash Lemma [HILL’99] implies the following corollary:

- If \(m > 3n \log q \) then the two distributions

 \[
 < (A, rA) : A \in_U Z_q^{m \times n}, r \in_U \{0,1\}^m > \\
 < (A, u) : A \in_U Z_q^{m \times n}, u \in_U Z_q^n >
 \]

 are statistically close (upto \(q^{-\Omega(m)} \))

\[\Rightarrow\] For a random \(A \), \(rA \) is close to uniform

- Even conditioned on \(A \)
- And therefore so is \(rA + \frac{q}{2} \hat{\sigma} \)

\[\Rightarrow\] If \(A \) is pseudorandom, so is \(rA + \frac{q}{2} \hat{\sigma} \)
A Useful Variant of the Cryptosystem

Encrypt: \(c = 2rA + \tilde{\sigma} \)
- instead of \(c = rA + \frac{q}{2} \tilde{\sigma} \) from before
- Plaintext encoded in the LSB rather than MSB

Decrypt: \(y = \langle c, s \rangle \pmod{q} \), then \(\sigma = y \mod 2 \)
- \(y = 2\langle r, e \rangle + \sigma \pmod{q} \)
- \(|2\langle r, e \rangle| < q/2\), so no mod-\(q \) reduction
 \[\Rightarrow y \mod 2 = \sigma \]
The Hardness of LWE
A lattice is just an additive subgroup of \mathbb{R}^n.
Lattices

Lattice of rank n = set of all integer linear combinations of n linearly independent basis vectors.
Lattices

- A Lattice has infinitely many bases
 - They are related by unimodular matrices, $B' = BU$
 - U is an integer matrix with $\det(U) = \pm 1$
 - All bases have the same determinant (upto sign)
 - This quantity is the determinant of the lattice

- Given any set of vectors that span the lattice, can compute a canonical basis
 - Hermite normal form (HNF)
Lattices

• A “good basis” has all small vectors
 • “close to orthogonal” to each other
 • Typically the HNF is a “bad” basis

• Minkowsky’s theorems:
 A rank-\(n \) lattice with determinant \(d \) has
 • A non-zero vector of length \(|v| \leq \sqrt{n} \cdot d^{1/n} \)
 • \(n \) linearly independent \(v_i \)’s s.t. \(\prod_{i=1}^{n} |v_i| \leq n^{n/2} \cdot d \)
 • Also a basis of vectors of similar sizes

• Lattice reduction: Given a “bad” basis, find a “good” one for the same lattice
Lattices and Hard Problems

Given some basis of L, may be hard to find good basis of L. Hard to solve the (approx) shortest/closest vector problems.
Hard Problems

Given a basis B for a lattice $L(B)$:

- **Shortest-Vector Problem (SVP)**
 - Find the shortest nonzero vector in $L(B)$
 - Or maybe just compute the size of such vector ($\lambda_1(L)$)

- **Shortest Independent-Set Problem (SIVP)**
 - Find n linearly independent v_1, \ldots, v_n minimize $\max_i |v_i|$
 - Or maybe just the quantity $\lambda_n(L) = \max_{i=1}^n |v_i|$

- Also approximation versions
 - Find v such that $|v| \leq \gamma \cdot$ shortest
 - Find v_i’s such that $\max_i |v_i| \leq \gamma \cdot$ smallest-possible
Hard Problems: What’s Known?

- The [LLL’82] algorithm and its variants can approximate SVP upto $\gamma = 2^{O(n)}$
- NP-hard to approx. SVP upto $\gamma = 2^{\log^{1-\epsilon} n}$
 - $\gamma = \omega(1)$ but $\gamma < n^\epsilon$ for any ϵ
- Roughly: approximate upto $2^{n/k}$ takes time $2^{O(k)}$
 - Practically we can perhaps approximate SVP upto $\gamma = 2^{n/100}$ but not upto $\gamma = 2^{n/200}$
 - At least for moderate n’s (say $n < 500$)
- Similar for SIVP
LWE and Lattices

- Consider the matrix $A = \begin{bmatrix} a_1 & \ldots & a_n \end{bmatrix}$

- The column space mod-q is a rank-m lattice, spanned by the columns of $B = \begin{bmatrix} \ldots \end{bmatrix}$
 - A discrete additive subgroup of \mathbb{R}^m
 - Can compute its HNF basis

- $b = As + e \ (mod\ q)$ is close to this lattice
 - $v = b - e$ is in the lattice, at distance $|e|$ from b
 - We have a bound $\beta \ll q$ on $|e|$ whp (say $\beta = \sqrt{q}$)
 - If we find v, we can solve for s
Bounded Distance Decoding (BDD)

- Input: a basis B, another point x, a bound β
- Goal: find $v \in L(B)$ such that $|x - v| \leq \beta$

- Solving BDD \Rightarrow Solving LWE

Thm [Babai’86,GPV’08]:
- Solving SIVP \Rightarrow Solving BDD
- Given a basis for L with $\max_i |v_i| = \alpha$, can solve BDD upto distance $\beta \approx \alpha \cdot \text{poly}(n)$
Thm [Reg’05, Pei’09]:

- Solving LWE \Rightarrow Solving SIVP, SVP
- LWE-solver with error-bound $\beta < q/O(\sqrt{n})$ implies quantum approximation of SIVP upto a factor poly(n)
- Or a classical algorithm for approximating $\lambda_1(L)$ upto a factor poly(n)
Summary

- Learning with Errors: \(b = As + e \)
- This is a hard problem
 - For some parameters, can be shown to be as hard as some well-known lattice problems
 - Even for other settings, we don’t know how to solve it
- Only known attacks use lattice reduction
 - These only work when \(q/|e| = \exp(n) \)
- LWE is useful for cryptography
 - For example for public-key encryption
 - Decryption formula \(\langle s, c \rangle \mod q \mod 2 \)