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Abstract

We describe the design and implementation of a software library that implements the
Brakerski-Gentry-Vaikuntanathan (BGV) homomorphic encryption scheme, along with many
optimizations to make homomorphic evaluation runs faster, focusing mostly on effective use of
the Smart-Vercauteren ciphertext packing techniques. Our library is written in C++ and uses
the NTL mathematical library. It is distributed under the terms of the GNU General Public
License (GPL).

Partially supported by DARPA under agreement number FA8750-11-C-0096. The U.S. Government
is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government. Distribution Statement “A” (Approved
for Public Release, Distribution Unlimited).

Also partially supported by the Intelligence Advanced Research Projects Activity (EARP) via
Department of Interior National Business Center (DoI/NBC) contract number D11PC20202. The
U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. Disclaimer: The views and conclusions con-
tained herein are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the U.S.
Government.

1



Contents

1 The BGV Homomorphic Encryption Scheme 1
1.1 Plaintext Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Our Modulus Chain and Double-CRT Representation . . . . . . . . . . . . . . . . . 3
1.3 Modules in our Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Math Layers 3
2.1 The timing module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 NumbTh: Miscellaneous Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 bluestein and Cmodulus: Polynomials in FFT Representation . . . . . . . . . . . . . . 4
2.4 PAlgebra: The Structure of Z∗m and Z∗m/ 〈2〉 . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 PAlgebraMod: Plaintext Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 IndexSet and IndexMap: Sets and Indexes . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6.1 The IndexSet class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6.2 The IndexMap class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 FHEcontext: Keeping the parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8 DoubleCRT: Efficient Polynomial Arithmetic . . . . . . . . . . . . . . . . . . . . . . . 12

3 The Crypto Layer 15
3.1 The Ctxt module: Ciphertexts and homomorphic operations . . . . . . . . . . . . . . 15

3.1.1 The SKHandle class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 The CtxtPart class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.3 The Ctxt class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.4 Noise estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.5 Modulus-switching operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.6 Key-switching/re-linearization . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.7 Native arithmetic operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.8 More Ctxt methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 The FHE module: Keys and key-switching matrices . . . . . . . . . . . . . . . . . . . 26
3.2.1 The KeySwitch class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 The FHEPubKey class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 The FHESecKey class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 The KeySwitching module: What matrices to generate . . . . . . . . . . . . . . . . . 30

4 The Data-Movement Layer 31
4.1 The class EncryptedArray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 The class PlaintextArray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Using the Library 36
5.1 Encrypted Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

A Proof of noise-estimate 41



Organization of This Report

We begin in Section 1 with a brief high-level overview of the BGV cryptosystem and some important
features of the variant that we implemented and our choice of representation, as well as an overview
of the structure of our library. Then in Sections 2, 3,4 we give a bottom-up detailed description of
all the modules in the library. We conclude in Section 5 with some examples of using this library.

1 The BGV Homomorphic Encryption Scheme

A homomorphic encryption scheme [8, 3] allows processing of encrypted data even without knowing
the secret decryption key. In this report we describe the design and implementation of a software
library that implements the Brakerski-Gentry-Vaikuntanathan (BGV) homomorphic encryption
scheme [2]. We begin by a high-level description of the the BGV variant that we implemented,
followed by a detailed description of the various software components in our implementation. The
description in this section is mostly taken from the full version of [5].

Below we denote by [·]q the reduction-mod-q function, namely mapping an integer z ∈ Z to the
unique representative of its equivalence class modulo q in the interval (−q/2, q/2]. We use the same
notation for modular reduction of vectors, matrices, etc.

Our BGV variant is defined over polynomial rings of the form A = Z[X]/Φm(X) where m
is a parameter and Φm(X) is the m’th cyclotomic polynomial. The “native” plaintext space for
this scheme is usually the ring A2 = A/2A, namely binary polynomials modulo Φm(X). (Our
implementation supports other plaintext spaces as well, but in this report we mainly describe the
case of plaintext space A2. See some more details in Section 2.4.) We use the Smart-Vercauteren
CRT-based encoding technique [10] to “pack” a vector of bits in a binary polynomial, so that
polynomial arithmetic in A2 translates to entry-wise arithmetic on the packed bits.

The ciphertext space for this scheme consists of vectors over Aq = A/qA, where q is an odd
modulus that evolves with the homomorphic evaluation. Specifically, the system is parametrized
by a “chain” of moduli of decreasing size, q0 < q1 < · · · < qL and freshly encrypted ciphertexts are
defined over RqL . During homomorphic evaluation we keep switching to smaller and smaller moduli
until we get ciphertexts over Aq0 , on which we cannot compute anymore. We call ciphertexts that
are defined over Aqi “level-i ciphertexts”. These level-i ciphertexts are 2-element vectors over Rqi ,
i.e., ~c = (c0, c1) ∈ (Aqi)2.

Secret keys are polynomials s ∈ A with “small” coefficients, and we view s as the second element
of the 2-vector ~s = (1, s). A level-i ciphertext ~c = (c0, c1) encrypts a plaintext polynomial m ∈ A2

with respect to ~s = (1, s) if we have the equality over A, [〈~c,~s〉]qi = [c0 + s · c1]qi ≡ m (mod 2), and
moreover the polynomial [c0 +s ·c1]qi is “small”, i.e. all its coefficients are considerably smaller than
qi. Roughly, that polynomial is considered the “noise” in the ciphertext, and its coefficients grow
as homomorphic operations are performed. We note that the crux of the noise-control technique
from [2] is that a level-i ciphertext can be publicly converted into a level-(i + 1) ciphertext (with
respect to the same secret key), and that this transformation reduces the noise in the ciphertext
roughly by a factor of qi+1/qi.

Following [7, 4, 5], we think of the “size” of a polynomial a ∈ A as the norm of its canonical
embedding. Recall that the canonical embedding of a ∈ A into Cφ(m) is the φ(m)-vector of complex
numbers σ(a) = (a(τ jm))j where τm is a complex primitive m-th root of unity (τm = e2πi/m) and
the indexes j range over all of Z∗m. We denote the l2-norm of the canonical embedding of a by
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‖a‖canon
2 .
The basic operations that we have in this scheme are the usual key-generation, encryption, and

decryption, the homomorphic evaluation routines for addition, multiplication and automorphism
(and also addition-of-constant and multiplication-by-constant), and the “ciphertext maintenance”
operations of key-switching and modulus-switching. These are described in the rest of this report,
but first we describe our plaintext encoding conventions and our Double-CRT representation of
polynomials.

1.1 Plaintext Slots

The native plaintext space of our variant of BGV are elements of A2, and the polynomial Φm(X)
factors modulo 2 into ` irreducible factors, Φm(X) = F1(X) ·F2(X) · · ·F`(X) (mod 2), all of degree
d = φ(m)/`. Just as in [2, 4, 10] each factor corresponds to a “plaintext slot”. That is, we can
view a polynomial a ∈ A2 as representing an `-vector (a mod Fi)

`
i=1.

More specifically, for the purpose of packing we think of a polynomial a ∈ A2 not as a binary
polynomial but as a polynomial over the extension field F2d (with some specific representation
of that field), and the plaintext values that are encoded in a are its evaluations at ` specific
primitive m-th roots of unity in F2d . In other words, if ρ ∈ F2d is a particular fixed primitive m-th
root of unity, and our distinguished evaluation points are ρt1 , ρt2 , . . . , ρt` (for some set of indexes
T = {t1, . . . , t`}), then the vector of plaintext values encoded in a is:(

a(ρtj ) : tj ∈ T
)
.

See Section 2.4 for a discussion of the choice of representation of F2d and the evaluation points.
It is a standard fact that (for an abstract primitive m-th root of unity ζm), the Galois group

Gal = Gal(Q(ζm)/Q) consists of the mappings κk : a(X) 7→ a(Xk) mod Φm(X) for all k co-prime
with m, and that it is isomorphic to Z∗m. As noted in [4], for each i, j ∈ {1, 2, . . . , `} there is an
element κk ∈ Gal which sends an element in slot i to an element in slot j. Indeed if we set k = t−1

j ·ti
(mod m) and b = κk(a) then we have

b(ρtj ) = a(ρtjk) = a(ρtj ·t
−1
j ti) = a(ρti),

so the element in the j’th slot of b is the same as that in the i’th slot of a. In addition to these “data-
movement maps”, Gal contains also the Frobenius maps, X −→ X2i , which also act as Frobenius
on the individual slots.

We note that the values that are encoded in the slots do not have to be individual bits, in
general they can be elements of the extension field F2d (or any sub-field of it). For example, for the
AES application we may want to pack elements of F28 in the slots, so we choose the parameters so
that F28 is a sub-field of F2d (which means that d is divisible by 8).

More generally, we allow plaintext spaces of the form Apr , rather than just A2, where p is
an arbitrary prime (which does not divide m) and r is a small positive integer. In this setting,
Φm(X) factors as

∏`
i=1 Fi modulo Zpr , where each Fi is irreducible modulo pr of the same degree

d. Note that in the case r > 1, the factorization of Φm(X) is determined by Hensel lifting. The ith
plaintext slot is isomorphic as a Zpr -algebra to Zpr/(Fi). It turns out that all these different rings
are isomorphic — in the case where r = 1, they are isomorphic to the finite field Fpd .
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1.2 Our Modulus Chain and Double-CRT Representation

We define the chain of moduli by choosing L+1 “small primes” p0, p1, . . . , pL and the l’th modulus
in our chain is defined as ql =

∏l
j=0 pj . The primes pi’s are chosen so that for all i, Z/piZ

contains a primitive m-th root of unity (call it ζi) so Φm(X) factors modulo pi to linear terms
Φm(X) =

∏
j∈Z∗m(X − ζji ) (mod pi).

A key feature of our implementation is that we represent an element a ∈ Aql via double-CRT
representation, with respect to both the integer factors of ql and the polynomial factors of Φm(X)
mod ql. A polynomial a ∈ Aq is represented as the (l + 1) × φ(m) matrix of its evaluation at the
roots of Φm(X) modulo pi for i = 0, . . . , l:

DoubleCRTl(a) =
(
a(ζji ) mod pi

)
0≤i≤l, j∈Z∗m

.

Addition and multiplication in Aq can be computed as component-wise addition and multipli-
cation of the entries in the two tables (modulo the appropriate primes pi),

DoubleCRTl(a+ b) = DoubleCRTl(a) + DoubleCRTl(b),

DoubleCRTl(a · b) = DoubleCRTl(a) · DoubleCRTl(b).

Also, for an element of the Galois group κ ∈ Gal, mapping a(X) ∈ A to a(Xk) mod Φm(X), we can
evaluate κ(a) on the double-CRT representation of a just by permuting the columns in the matrix,
sending each column j to column j · k mod m.

1.3 Modules in our Library

Very roughly, our HE library consists of four layers: in the bottom layer we have modules for
implementing mathematical structures and various other utilities, the second layer implements our
Double-CRT representation of polynomials, the third layer implements the cryptosystem itself (with
the “native” plaintext space of binary polynomials), and the top layer provides interfaces for using
the cryptosystem to operate on arrays of plaintext values (using the plaintext slots as described in
Section 1.1). We think of the bottom two layers as the “math layers”, and the top two layers as
the “crypto layers”, and describe then in detail in Sections 2 and 3, respectively. A block-diagram
description of the library is given in Figure 1. Roughly, the modules NumbTh, timing, bluestein,
PAlgebra, PAlgebraMod, Cmodulus, IndexSet and IndexMap belong to the bottom layer, FHEcontext,
SingleCRT and DoubleCRT belong to the second layer, FHE, Ctxt and KeySwitching are in the third
layer, and EncryptedArray is in the top layer.

2 The Math Layers

2.1 The timing module

This module contains some utility functions for measuring the time that various methods take
to execute. To use it, we insert the macro FHE TIMER START at the beginning of the method(s)
that we want to time and FHE TIMER STOP at the end, then the main program needs to call the
function setTimersOn() to activate the timers and setTimersOff() to pause them. We can have
at most one timer per method/function, and the timer is called by the same name as the function
itself (using the built-in macro func ). To obtain the value of a given timer (in seconds), the

3



PAlgebra 
Structure of Zm*, §2.4 

PAlgebraMod 
plaintext-slot algebra, §2.5 

NumbTh 
miscellaneous 
utilities, §2.2 

CModulus 
polynomials mod p, §2.3 M

at
h

 

DoubleCRT 
polynomial arithmetic, §2.8 

FHE 
KeyGen/Enc/Dec, §3.2 

Ctxt 
Ciphertext operations, §3.1 

C
ry

p
to

 

EncryptedArray 
Routing plaintext slots, §4.1 

IndexSet/IndexMap 
Indexing utilities, §2.6 

FH
Ec

o
n

te
xt

 
p

ar
am

et
e

rs
, 

§2
.7

 

bluestein 
FFT/IFFT, §2.3 

timing 
§2.1 

KeySwitching 
Matrices for key-switching, §3.3 

Figure 1: A block diagram of the Homomorphic-Encryption library

application can use the function double getTime4func(const char *fncName), and the function
printAllTimers() prints the values of all timers to the standard output.

2.2 NumbTh: Miscellaneous Utilities

This module started out as an implementation of some number-theoretic algorithms (hence the
name), but since then it grew to include many different little utility functions. For example, CRT-
reconstruction of polynomials in coefficient representation, conversion functions between different
types, procedures to sample at random from various distributions, etc.

2.3 bluestein and Cmodulus: Polynomials in FFT Representation

The bluestein module implements a non-power-of-two FFT over a prime field Zp, using the Bluestein
FFT algorithm [1]. We use modulo-p polynomials to encode the FFTs inputs and outputs. Specif-
ically this module builds on Shoup’s NTL library [9], and contains both a bigint version with types
ZZ p and ZZ pX, and a smallint version with types zz p and zz pX. We have the following functions:

void BluesteinFFT(ZZ_pX& x, long n,

const ZZ_p& root, ZZ_pX& powers,

Vec<mulmod_precon_t>& powers_aux,

FFTRep& Rb, fftrep_aux& Rb_aux, FFTRep& Ra);

void BluesteinFFT(zz_pX& x, long n,

const zz_p& root, zz_pX& powers,

Vec<mulmod_precon_t>& powers_aux,

fftRep& Rb, fftrep_aux& Rb_aux, fftRep& Ra);

4



These functions compute length-n FFT of the coefficient-vector of x and put the result back in
x. If the degree of x is less than n then it treats the top coefficients as 0, and if the degree is
more than n then the extra coefficients are ignored. Similarly, if the top entries in the result x

are zeros then x will have degree smaller than n. The argument root needs to be a 2n-th root
of unity in Zp. The inverse-FFT is obtained just by calling BluesteinFFT(...,root−1,...),
but this procedure is NOT SCALED. Hence calling BluesteinFFT(x,a,n,root,...) and then
BluesteinFFT(b,x,n,root−1,...) will result in having b = n× a.

In addition to the size-n FFT of a which is returned in x, this procedure also returns the
powers of root in the powers argument, powers =

(
1, root, root4, root9, . . . , root(n−1)2

)
. In the

Rb argument it returns the size-N FFT representation of the negative powers, for some N ≥ 2n−1,
N a power of two:

Rb = FFTN
(
0, . . . , 0, root−(n−1)2 , . . . , root−4, root−1, 1, root−1, root−4, . . . , root−(n−1)20, . . . , 0

)
.

On subsequent calls with the same powers and Rb, these arrays are not computed again but taken
from the pre-computed arguments. If the powers and Rb arguments are initialized, then it is
assumed that they were computed correctly from root. The behavior is undefined when calling
with initialized powers and Rb but a different root. (In particular, to compute the inverse-FFT
using root−1, one must provide different powers and Rb arguments than those that were given
when computing in the forward direction using root.)

The parameters powers aux and Rb aux are just used to store precomputed results depending
on powers and Rb, respectively, from one call to the next: the caller should make sure that the
same objects are consistently passed. The parameter Ra is just used for temporary storage, to
minimize memory allocations.

The classes Cmodulus and CModulus. These classes provide an interface layer for the FFT
routines above, relative to a single prime (where Cmodulus is used for smallint primes and CModulus

for bigint primes). They keep the NTL “current modulus” structure for that prime, as well as the
auxiliary structures powers, Rb, powers aux, Rb aux, and Ra arrays for FFT and inverse-FFT under
that prime. They are constructed with the constructors

Cmodulus(const PAlgebra& ZmStar, const long& q, const long& root);

CModulus(const PAlgebra& ZmStar, const ZZ& q, const ZZ& root);

where ZmStar described the structure of Z∗m (see Section 2.4), q is the prime modulus and root

is a primitive 2m−’th root of unity modulo q. (If the constructor is called with root = 0 then it
computes a 2m-th root of unity by itself.) Once an object of one of these classes is constructed, it
provides an FFT interfaces via

void Cmodulus::FFT(vec long& y, const ZZX& x) const; // y = FFT(x)

void Cmodulus::iFFT(ZZX& x, const vec long& y) const; // x = FFT−1(y)

(And similarly for CModulus using vec ZZ instead of vec long). These method are inverses of each
other.

2.4 PAlgebra: The Structure of Z∗m and Z∗m/ 〈2〉

The class PAlgebra is the base class containing the structure of Z∗m, as well as the quotient group
Z∗m/ 〈2〉. We represent Z∗m as Z∗m = 〈2〉 × 〈g1, g2, . . .〉 × 〈h1, h2, . . .〉, where each gi has the same
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order in Z∗m as in Z∗m/ 〈2, g1, . . . , gi−1〉, and the hi’s generate the group Z∗m/ 〈2, g1, g2, . . .〉 (and they
do not have the same order in Z∗m as in Z∗m/ 〈2, g1, . . .〉).

We compute this representation in a manner similar (but not identical) to the proof of the fun-
damental theorem of finitely generated abelian groups. Namely we keep the elements in equivalence
classes of the “quotient group so far”, and each class has a representative element (called a pivot),
which in our case we just choose to be the smallest element in the class. Initially each element
is in its own class. At every step, we choose the highest order element g in the current quotient
group and add it as a new generator, then unify classes if their members are a factor of g from each
other, repeating this process until no further unification is possible. Since we are interested in the
quotient group Z∗m/ 〈2〉, we always choose 2 as the first generator.

One twist in this routine is that initially we only choose an element as a new generator if its
order in the current quotient group is the same as in the original group Z∗m. Only after no such
elements are available, do we begin to use generators that do not have the same order as in Z∗m.

Once we chose all the generators (and for each generator we compute its order in the quotient
group where it was chosen), we compute a set of “slot representatives” as follows: Putting all the
gi’s and hi’s in one list, let us denote the generators of Z∗m/ 〈2〉 by {f1, f2, . . . , fn}, and let ord(fi)
be the order of fi in the quotient group at the time that it was added to the list of generators. The
the slot-index representative set is

T
def
=

{
n∏
i=1

feii mod m : ∀i, ei ∈ {0, 1, . . . , ord(fi)− 1}

}
.

Clearly, we have T ⊂ Z∗m, and moreover T contains exactly one representative from each equivalence
class of Z∗m/ 〈2〉. Recall that we use these representatives in our encoding of plaintext slots, where
a polynomial a ∈ A2 is viewed as encoding the vector of F2d elements

(
a(ρt) ∈ F2d : t ∈ T

)
, where

ρ is some fixed primitive m-th root of unity in F2d .
In addition to defining the sets of generators and representatives, the class PAlgebra also provides

translation methods between representations, specifically:

int ith rep(unsigned i) const;

Returns ti, i.e., the i’th representative from T .

int indexOfRep(unsigned t) const;

Returns the index i such that ith rep(i) = t.

int exponentiate(const vector<unsigned>& exps,

bool onlySameOrd=false) const;

Takes a vector of exponents, (e1, . . . , en) and returns t =
∏n
i=1 f

ei
i ∈ T .

const int* dLog(unsigned t) const;

On input some t ∈ T , returns the discrete-logarithm of t with the fi’s are bases. Namely, a
vector exps= (e1, . . . , en) such that exponentiate(exps)= t, and moreover 0 ≤ ei ≤ ord(fi)
for all i.

In fact, our implementation is slightly more general. The special generator 2 map be replaced
with an arbitrary prime p. The constructor for the class PAlgebra is:

PAlgebra(unsigned m, unsigned p = 2);

Thus, a PAlgebra object is completely determined by m and p, where p defaults to p = 2.
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2.5 PAlgebraMod: Plaintext Slots

This class implements the structure of the plaintext spaces, which is of the form Apr = A/prA, for a
small value of r. Recall that A = Z[X]/(Φm(X)) and Apr = A/(pr) = Z[X]/(Φm(X), pr). Typically,
r = 1 for ordinary homomorphic computation, while we expect to use r > 1 for bootstrapping, as
described in [6]. Also note that while, typically, p = 2 (the default value for p when constructing a
PAlgebra object), an arbitrary prime p is allowed.

For the case r = 1, the plaintext slots are determined by the factorization of Φm(X) modulo
p into ` degree-d polynomials. Once we have this factorization, Φm(X) =

∏
j Fj(X) (mod p), we

choose an arbitrary factor as the “first factor”, denote it F1(X), and this corresponds to the first
input slot (whose representative is 1 ∈ T ).1 With each representative t ∈ T we then associate
the factor GCD(F1(Xt),Φm(X)), with polynomial-GCD computed modulo p. Note that fixing a
representation of the field K = Zp[X]/(F1(X)) ∼= Fpd and letting ρ be a root of F1 in K, we get

that the factor associated with the representative t is the minimal polynomial of ρ1/t. Yet another
way of saying the same thing, if the roots of F1 in K are

ρ, ρp, ρp
2
, . . . , ρp

d−1
,

then the roots of the factor associated to t are

ρ1/t, ρp/t, ρp
2/t, . . . , ρp

d−1/t,

where the arithmetic in the exponent is modulo m.
For the case r > 1, we start with a factorization of Φm(X) modulo p as above, and then use

Hensel lifting to obtain a factorization of Φm(X) modulo pr. Note that even in the case where
r > 1 and we set K = Zpr [X]/(F1), the very same correspondence among roots as noted in the
previous paragraph still holds in this setting. Among other things, this correspondence guarantees
that the various plaintext slot rings Zpr [X]/(Fi) are all isomorphic.

After computing the factors of Φm(X) modulo pr and the correspondence between these factors
and the representatives from T , the class PAlgebraMod provides encoding/decoding methods to pack
elements in polynomials and unpack them back. This is really the main functionality provided by
this class, and we shall proceed to describe the interface in some detail.

An object alMod of type PAlgebraMod holds the integer r, along with a PAlgebra object zMStar,
which determines p and m. The object alMod also provides support for encoding and decoding
plaintext slots, with respect to a specified plaintext slot subring as determined by a polynomial
G(X). If r = 1, then G(X) may be any irreducible polynomial over Zp whose degree divides d. (For
example, for homomorphic AES we can use and d divisible by 8, and G will be the AES polynomial
G(X) = X8 +X4 +X3 +X + 1.)

For r > 1, our current implementation is more restrictive, requiring that either degG(X) = 1
or G(X) = F1. With these constraints, we are ensured that the Zpr [X]/(G) corresponds to a
subring of each of the plaintext slot rings Zpr [X]/(Fi) via an efficiently computable Zpr -algebra
isomorphism.

The PAlgebraMod object alMod stores various tables of objects in the polynomial ring Zpr [X]. To
do this most efficiently, if p = 2 and r = 1, then these polynomials are represented as NTL objects
of type GF2X, and otherwise of type zz_pX. Thus, the types of these objects are not determined
until run time. As such, we use a class hierarchy, as follows.

1In the current implementation, a natural lexicographic order is imposed on polynomials modulo p, and the smallest
such factor with respect to this order is chosen as F1. This ensures interoperability across different platforms.
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• PAlgebraModBase is a virtual base class

• PAlegbraModDerived<type> is a derived template class, where type is either PA_GF2 or
PA_zz_p.

These latter two classes define various types representing polynomials, vectors, and other
objects related to the choice of underlying representation, all defined via typedef’s.

• The class PAlgebraMod itself is a simple wrapper around a smart pointer to a
PAlgebraModBase object: copying a PAlgebraMod object results is a “deep copy” of the
underlying object of the derived class.

The slot encoding/decoding operations cannot be performed directly using a PAlgebraMod ob-
ject, but rather, they must be performed using objects of the derived class. So, given an object
of type PAlgebraMod, which contains a pointer to an object of type PAlgebraModBase, one must
first “downcast” this pointer to a pointer of type PAlgebraModDerived<type>. For convenience,
the class PAlgebraMod provides a special “downcast” method to simplify the notation.

As discussed above, slot encoding and decoding is done with respect to a slot subring defined
by a polynomial G ∈ Zpr [X]. A call to the following method of PAlgebraModDerived<type> will
precompute relevant data determined by G:

void mapToSlots(MappingData<type>& mappingData, const RX& G) const;

The precomputed data is stored in the parameter mappingData, which is a template type, param-
eterized in the same way as PAlgebraModDerived. Also, RX is a typedef that is defined as either
GF2X or zz_pX, depending on the class parameter type.

A call to the the following method of PAlegbraModDerived<type> will create a plaintext (which
is a polynomial modulo pr) by embedding a vector of polynomials (moduloG) into the corresponding
slots:

void embedInSlots(RX& H, const vector<RX>& alphas,

const MappingData<type>& mappingData) const;

Here, mappingData holds the precomputed data obtained from mapToSlots, alphas is the vector
of slot values, and the resulting plaintext is stored in H.

The following method of PAlegbraModDerived<type> does the same thing, but embeds the
same value alpha in each slot:

void embedInAllSlots(RX& H, const RX& alpha,

const MappingData<type>& mappingData) const;

The following method of PAlegbraModDerived<type> reverses the process, unpacking the slots
of a given plaintext ptxt into a vector alphas:

void decodePlaintext(vector<RX>& alphas, const RX& ptxt,

const MappingData<type>& mappingData) const;

Usage of the PAlgebraMod classes is similar to the higher-level EncryptedArray classes, as
illustrated in Section 5.1.

8



Other functionality

Besides slot encoding/decoding, the class PAlgebraMod provides some other functionality as well.
First, a PAlgebraMod object stores some “mask tables” which is used by the class

EncryptedArray — these tables help facilitate rotating the slots of encrypted data.
Second, a PAlgebraMod object may be used to to calculate the “linearized polynomial” as-

sociated to a Zpr -linear map over Zpr [X]/(G). The interface here is similar to the slot encod-
ing/decoding interface, in that the operations are performed using a PAlgebraModDerived object
and a MappingData object defined by G. The following PAlgebraModDerived-method

void buildLinPolyCoeffs(vector<RX>& C, const vector<RX>& L,

const MappingData<type>& mappingData) const;

will compute the coefficient vector C corresponding to a linear map M described using L by its
action on the power basis for Zpr [X]/(G); that is, M(xj mod G) = (L[j] mod G), for j = 0 . . . d−1.
The result is a coefficient vector C for the linearized polynomial representing M : for h ∈ Zpr [X] of

degree < d, M(h(X) mod G) =
∑d−1

i=0 (C[j] mod G) · (h(Xpj ) mod G).
Note that in the case where r = 1, such linearized polynomials are guaranteed to exist, ac-

cording to the standard theory of finite fields. One can also show that such linearized polynomials
exist also in the case r > 1, since C is the solution to a linear system of equations, and so it
exists and be computed by Hensel lifting from a solution modulo p. (We remark that the method
buildLinPolyCoeffs is used by EncryptedArray class, that that class also provides a higher-level
interface.)

2.6 IndexSet and IndexMap: Sets and Indexes

In our implementation, all the polynomials are represented in double-CRT format, relative to some
subset of the small primes in our list (cf. Section 1.2). The subset itself keeps changing throughout
the computation, and so we can have the same polynomial represented at one point relative to
many primes, then a small number of primes, then many primes again, etc. (For example see the
implementation of key-switching in Section 3.1.6.) To provide flexibility with these transformations,
the IndexSet class implements an arbitrary subset of nonnegative integers, and the IndexMap class
implements a collection of data items that are indexed by such a subset.

2.6.1 The IndexSet class

The IndexSet class implements all the standard interfaces of the abstract data-type of a set, along
with just a few extra interfaces that are specialized to sets of nonnegative integers. It uses the
standard C++ container vector<bool> to keep the actual set, and provides the following methods:

Constructors. The constructors IndexSet(), IndexSet(long j), and IndexSet(long low,

long high), initialize an empty set, a singleton, and an interval, respectively.

Empty sets and cardinality. The static method IndexSet::emptySet() provides a read-only ac-
cess to an empty set, and the method s.clear() removes all the elements in s, which is
equivalent to s=IndexSet::emptySet().

The method s.card() returns the number of elements in s.
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Traversing a set. The methods s.first() and s.last() return the smallest and largest element
in the set, respectively. For an empty set s, s.first() returns 0 and s.last() returns −1.

The method s.next(j) return the next element after j, if any; otherwise j + 1. Similarly
s.prev(j) return the previous element before j, if any; otherwise j−1. With these methods,
we can iterate through a set s using one of:

for (long i = s.first(); i <= s.last(); i = s.next(i)) ...

for (long i = s.last(); i >= s.first(); i = s.prev(i)) ...

Comparison and membership methods. operator== and operator!= are provided to test
for equality, whereas s1.disjointFrom(s2) and its synonym disjoint(s1,s2) test if the
two sets are disjoint. Also, s.contains(j) returns true if s contains the element j,
s.contains(other) returns true if s is a superset of other. For convenience, the oper-
ators <=, <, >= and > are also provided for testing the subset relation between sets.

Set operations. The method s.insert(j) inserts the integer j if it is not in s, and s.remove(j)

removes it if it is there.

Similarly s1.insert(s2) returns in s1 the union of the two sets, and s1.remove(s2) returns
in s1 the set difference s1 \ s2. Also, s1.retain(s2) returns in s1 the intersection of the
two sets. For convenience we also provide the operators s1|s2 (union), s1&s2 (intersection),
s1^s2 (symmetric difference, aka xor), and s1/s2 (set difference).

2.6.2 The IndexMap class

The class template IndexMap<T> implements a map of elements of type T, indexed by a dynamic
IndexSet. Additionally, it allows new elements of the map to be initialized in a flexible manner,
by providing an initialization function which is called whenever a new element (indexed by a new
index j) is added to the map.

Specifically, we have a helper class template IndexMapInit<T> that stores a pointer to an
initialization function, and possibly also other parameters that the initialization function needs.
We then provide a constructor

IndexMap(IndexMapInit<T>* initObject=NULL)

that associates the given initialization object with the new IndexMap object. Thereafter, when a
new index j is added to the index set, an object t of type T is created using the default constructor
for T, after which the function initObject->init(t) is called.

In our library, we use an IndexMap to store the rows of the matrix of a Double-CRT object.
For these objects we have an initialization object that stores the value of φ(m), and the initializa-
tion function, which is called whenever we add a new row, ensures that all the rows have length
exactly φ(m).

After initialization, an IndexMap object provides the operator map[i] to access the type-T object
indexed by i (if i currently belongs to the IndexSet), as well as the methods map.insert(i) and
map.remove(i) to insert or delete a single data item indexed by i, and also map.insert(s) and
map.remove(s) to insert or delete a collection of data items indexed by the IndexSet s.
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2.7 FHEcontext: Keeping the parameters

Objects in higher layers of our library are defined relative to some parameters, such as the integer
parameter m (that defines the groups Z∗m and Z∗m/ 〈p〉 and the ring A = Z[X]/Φm(X)) and the
sequence of small primes that determine our modulus-chain. To allow convenient access to these
parameters, we define the class FHEcontext that keeps them all and provides access methods and
some utility functions.

One thing that’s included in FHEcontext is a vector of Cmodulus objects, holding the small
primes that define our modulus chain:

vector<Cmodulus> moduli; // Cmodulus objects for the different primes

We provide access to the Cmodulus objects via context.ithModulus(i) (that returns a ref-
erence of type const Cmodulus&), and to the small primes themselves via context.ithPrime(i)

(that returns a long). The FHEcontext includes also the various algebraic structures for plaintext
arithmetic, specifically we have the three data members:

PAlgebra zMstar; // The structure of Z∗m/〈p〉
PAlgebraMod alMod; // The structure of Z[X]/(Φm(X), pr)

In addition to the above, the FHEcontext contains a few IndexSet objects, describing various
partitions of the index-set in the vector of moduli. These partitions are used when generating the
key-switching matrices in the public key, and when using them to actually perform key-switching
on ciphertexts.

One such partition is “ciphertext” vs. “special” primes: Freshly encrypted ciphertexts are
encrypted relative to a subset of the small primes, called the ciphertext primes. All other primes
are only used during key-switching, these are called the special primes. The ciphertext primes, in
turn, are sometimes partitioned further into a number of “digits”, corresponding to the columns in
our key-switching matrices. (See the explanation of this partition in Section 3.1.6.) These subsets
are stored in the following data members:

IndexSet ctxtPrimes; // the ciphertext primes

IndexSet specialPrimes; // the "special" primes

vector<IndexSet> digits; // digits of ctxt/columns of key-switching matrix

The FHEcontext class provides also some convenience functions for computing the product of a
subset of small primes, as well as the “size” of that product (i.e., its logarithm), via the methods:

ZZ productOfPrimes(const IndexSet& s) const;

void productOfPrimes(ZZ& p, const IndexSet& s) const;

double logOfPrime(unsigned i) const; // = log(ithPrime(i))

double logOfProduct(const IndexSet& s) const;

Finally, the FHEcontext module includes some utility functions for choosing parameters and
adding moduli to the chain. The method addPrime(long p, bool isSpecial) adds a single
prime p (either “special” or not), after checking that p has 2m’th roots of unity and it is not
already in the list. Then we have three higher-level functions:
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double AddPrimesBySize(FHEcontext& c, double size, bool special=false);

Adds to the chain primes whose product is at least exp(size), returns the natural logarithm
of the product of all added primes.

double AddPrimesByNumber(FHEcontext& c, long n, long atLeast=1, bool special=false);

Adds n primes to the chain, all at least as large as the atLeast argument, returns the
natural logarithm of the product of all added primes.

void buildModChain(FHEcontext& c, long d, long t=3);

Build modulus chain for a circuit of depth d, using t digits in key-switching. This function
puts d ciphertext primes in the moduli vector, and then as many “special” primes as needed
to mod-switch fresh ciphertexts (see Section 3.1.6).

We also have a helper function that uses some pre-computed table to help select the values for the
parameter m (defining the m’th cyclotomic ring):

long FindM(long k, long L, long c, long p, long d, long s, long chosen m, bool

verbose=false);

In this method, k is the security parameter, L is the number of ciphertext-primes that we want to
support, c is the number of columns in our key-switching matrices. The arguments p, d determine
the plaintext space Fpd , the argument s bounds from below the number of plaintext slots that we
want to support, and chosen m gives the ability to specify a particular m parameter and test if it
satisfies all our constraints.

2.8 DoubleCRT: Efficient Polynomial Arithmetic

The heart of our library is the DoubleCRT class that manipulates polynomials in Double-CRT
representation. A DoubleCRT object is tied to a specific FHEcontext, and at any given time it is
defined relative to a subset of small primes from our list, S ⊆ [0, . . . , context.moduli.size()− 1].
Denoting the product of these small primes by q =

∏
i∈S pi, a DoubleCRT object represents a

polynomial a ∈ Aq by a matrix with φ(m) columns and one row for each small prime pi (with i ∈ S).

The i’th row contains the FFT representation of a modulo pi, i.e., the evaluations {[a(ζ j
i )]pi : j ∈

Z∗m}, where ζi is some primitive m-th root of unity modulo pi.
Although the FHEcontext must remain fixed throughout, the set S of primes can change dy-

namically, and so the matrix can lose some rows and add other ones as we go. We thus keep these
rows in a dynamic IndexMap data member, and the current set of indexes S is available via the
method getIndexSet(). We provide the following methods for changing the set of primes:

void addPrimes(const IndexSet& s);

Expand the index set by s. It is assumed that s is disjoint from the current index set. This is
an expensive operation, as it needs to convert to coefficient representation and back, in order
to determine the values in the added rows.

double addPrimesAndScale(const IndexSet& S);

Expand the index set by S, and multiply by qdiff =
∏
i∈S pi. The set S is assumed to be

disjoint from the current index set. Returns log(qdiff). This operation is typically much faster
than addPrimes, since we can fill the added rows with zeros.
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void removePrimes(const IndexSet& s);

Remove the primes pi with i ∈ s from the current index set.

void scaleDownToSet(const IndexSet& s, long ptxtSpace);

This is a modulus-switching operation. Let ∆ be the set of primes that are removed,
∆ = getIndexSet() \ s, and qdiff =

∏
i∈∆ pi. This operation removes the primes pi, i ∈ ∆,

scales down the polynomial by a factor of qdiff , and rounds so as to keep a mod ptxtSpace

unchanged.

We provide some conversion routines to convert polynomials from coefficient-representation
(NTL’s ZZX format) to DoubleCRT and back, using the constructor

DoubleCRT(const ZZX&, const FHEcontext&, const IndexSet&);

and the conversion function ZZX to ZZX(const DoubleCRT&).
We support the usual set of arithmetic operations on DoubleCRT objects (e.g., addition, multi-

plication, etc.), always working in Aq for some modulus q. We only implemented the “destructive”
two-argument version of these operations, where one of the input arguments is modified to return
the result. These arithmetic operations can only be applied to DoubleCRT objects relative to the
same FHEcontext, else an error is raised.

The DoubleCRT class supports operations between objects with different IndexSet’s, offering two
options to resolve the differences: our arithmetic operations take a boolean flag matchIndexSets;
when the flag is set to true (which is the default), the index-set of the result is the union of the
index-sets of the two arguments. When matchIndexSets=false then the index-set of the result
is the same as the index-set of *this, i.e., the argument that will contain the result when the
operation ends. The option matchIndexSets=true is slower, since it may require adding primes to
the two arguments. Below is a list of the arithmetic routines that we implemented:

DoubleCRT& Negate(const DoubleCRT& other); // *this = -other

DoubleCRT& Negate(); // *this = -*this;

DoubleCRT& operator+=(const DoubleCRT &other); // Addition

DoubleCRT& operator+=(const ZZX &poly); // expensive

DoubleCRT& operator+=(const ZZ &num);

DoubleCRT& operator+=(long num);

DoubleCRT& operator-=(const DoubleCRT &other); // Subtraction

DoubleCRT& operator-=(const ZZX &poly); // expensive

DoubleCRT& operator-=(const ZZ &num);

DoubleCRT& operator-=(long num);

// These are the prefix versions, ++dcrt and --dcrt.

DoubleCRT& operator++();

DoubleCRT& operator--();

// Postfix versions (return type is void, it is offered just for style)

void operator++(int);

void operator--(int);
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DoubleCRT& operator*=(const DoubleCRT &other); // Multiplication

DoubleCRT& operator*=(const ZZX &poly); // expensive

DoubleCRT& operator*=(const ZZ &num);

DoubleCRT& operator*=(long num);

// Procedural equivalents, providing also the matchIndexSets flag

void Add(const DoubleCRT &other, bool matchIndexSets=true);

void Sub(const DoubleCRT &other, bool matchIndexSets=true);

void Mul(const DoubleCRT &other, bool matchIndexSets=true);

DoubleCRT& operator/=(const ZZ &num); // Division by constant

DoubleCRT& operator/=(long num);

void Exp(long k); // Small-exponent polynomial exponentiation

// Automorphism F(X) --> F(X^k) (with gcd(k,m)==1)

void automorph(long k);

DoubleCRT& operator>>=(long k);

We also provide methods for choosing at random polynomials in DoubleCRT format, as follows:

void randomize(const ZZ* seed=NULL);

Fills each row i ∈ getIndexSet() with random integers modulo pi. This procedure uses the
NTL PRG, setting the seed to the seed argument if it is non-NULL, and using the current
PRG state of NTL otherwise.

void sampleSmall();

Draws a random polynomial in coefficient representation, and converts it to DoubleCRT for-
mat. Each coefficient is chosen as 0 with probability 1/2, and as ±1 with probability 1/4
each.

void sampleHWt(long weight);

Draws a random polynomial with coefficients −1, 0, 1, and converts it to DoubleCRT format.
The polynomial is chosen at random subject to the condition that all but weight of its
coefficients are zero, and the non-zero coefficients are random in ±1.

void sampleGaussian(double stdev=3.2);

Draws a random polynomial with coefficients −1, 0, 1, and converts it to DoubleCRT format.
Each coefficient is chosen at random from a Gaussian distribution with zero mean and variance
stdev2, rounded to an integer.

In addition to the above, we also provide the following methods:

DoubleCRT& SetZero(); // set to the constant zero

DoubleCRT& SetOne(); // set to the constant one

const FHEcontext& getContext() const; // access to context
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const IndexSet& getIndexSet() const; // the current set of primes

void breakIntoDigits(vector<DoubleCRT>&, long) const;

// used in key-switching

The method breakIntoDigits above is described in Section 3.1.6, where we discuss key-switching.

The SingleCRT class. SingleCRT is a helper class, used to gain some efficiency in expensive
DoubleCRT operations. A SingleCRT object is also defined relative to a fixed FHEcontext and a
dynamic subset S of the small primes. This SingleCRT object holds an IndexMap of polynomials
(in NTL’s ZZX format), where the i’th polynomial contains the coefficients modulo the ith small
prime in our list.

Although SingleCRT and DoubleCRT objects can interact in principle, translation back and
forth are expensive since they involve FFT (or inverse FFT) modulo each of the primes. Hence
support for interaction between them is limited to explicit conversions.

3 The Crypto Layer

The third layer of our library contains the implementation of the actual BGV homomorphic cryp-
tosystem, supporting homomorphic operations on the “native plaintext space” Apr . We partitioned
this layer (somewhat arbitrarily) into the Ctxt module that implements ciphertexts and ciphertext
arithmetic, the FHE module that implements the public and secret keys, and the key-switching
matrices, and a helper KeySwitching module that implements some common strategies for decid-
ing what key-switching matrices to generate. Two high-level design choices that we made in this
layer were to implement ciphertexts as arbitrary-length vectors of polynomials, and to allow more
than one secret-key per instance of the system. These two choices are described in more detail in
Sections 3.1 and 3.2 below, respectively.

3.1 The Ctxt module: Ciphertexts and homomorphic operations

Recall that in the BGV cryptosystem, a “canonical” ciphertext relative to secret key s ∈ A is a
pair polynomials (c0, c1) ∈ Aq × Aq (for the “current modulus” q), such that m = [c0 + c1s]q is
a polynomial with small coefficients, and the plaintext that is encrypted by this ciphertext is the
polynomial [m]pr ∈ Apr . However the library has to deal also with “non-canonical” ciphertexts: for
example when multiplying two ciphertexts as above we get a vector of three polynomials (c0, c1, c2),
which is decrypted by setting m = [c0+c1s+c2s

2]q and outputting [m]pr . Also, after a homomorphic
automorphism operation we get a two-polynomial ciphertext (c0, c1) but relative to the key s′ = κ(s)
(where κ is the same automorphism that we applied to the ciphertext, namely s′(X) = s(Xt) for
some t ∈ Z∗m).

To support all of these options, a ciphertext in our library consists of an arbitrary-length vector
of “ciphertext parts”, where each part is a polynomial, along with a “handle” that points to
the secret-key that should multiply this part at decryption. Handles, parts, and ciphertexts are
implemented using the classes SKHandle, CtxtPart, and Ctxt, respectively.
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3.1.1 The SKHandle class

An object of the SKHandle class “points” to one particular secret-key polynomial, that should
multiply one ciphertext-part upon decryption. Recall that we allow multiple secret keys per instance
of the cryptosystem, and that we may need to reference powers of these secret keys (e.g. s2 after
multiplication) or polynomials of the form s(Xt) (after automorphism). The general form of these
secret-key polynomials is therefore sri (X

t), where si is one of the secret keys associated with this
instance, r is the power of that secret key, and t is the automorphism that we applied to it. To
uniquely identify a single secret-key polynomial that should be used during decryption, we should
therefore keep the three integers (i, r, t).

Accordingly, a SKHandle object has three integer data members, powerOfS, powerOfX, and
secretKeyID. It is considered a reference to the constant polynomial 1 whenever powerOfS= 0,
irrespective of the other two values. Also, we say that a SKHandle object points to a base secret
key if it has powerOfS = powerOfX = 1.

Observe that when multiplying two ciphertext parts, we get a new ciphertext part that should
be multiplied upon decryption by the product of the two secret-key polynomials. This gives
us the following set of rules for multiplying SKHandle objects (i.e., computing the handle of
the resulting ciphertext-part after multiplication). Let {powerOfS, powerOfX, secretKeyID} and
{powerOfS′, powerOfX′, secretKeyID′} be two handles to be multiplied, then we have the following
rules:

• If one of the SKHandle objects points to the constant 1, then the result is equal to the other
one.

• If neither points to one, then we must have secretKeyID = secretKeyID′ and powerOfX =
powerOfX′, otherwise we cannot multiply. If we do have these two equalities, then the result
will also have the same t = powerOfX and i = secretKeyID, and it will have r = powerOfS+
powerOfS′.

The methods provided by the SKHandle class are the following:

SKHandle(long powerS=0, long powerX=1, long sKeyID=0); // constructor

long getPowerOfS() const; // returns powerOfS;

long getPowerOfX() const; // returns powerOfX;

long getSecretKeyID() const; // return secretKeyID;

void setBase(); // set to point to a base secret key

void setOne(); // set to point to the constant 1

bool isBase() const; // does it point to base?

bool isOne() const; // does it point to 1?

bool operator==(const SKHandle& other) const;

bool operator!=(const SKHandle& other) const;

bool mul(const SKHandle& a, const SKHandle& b); // multiply the handles

// result returned in *this, returns true if handles can be multiplied
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3.1.2 The CtxtPart class

A ciphertext-part is a polynomial with a handle (that “points” to a secret-key polynomial). Ac-
cordingly, the class CtxtPart is derived from DoubleCRT, and includes an additional data member of
type SKHandle. This class does not provide any methods beyond the ones that are provided by the
base class DoubleCRT, except for access to the secret-key handle (and constructors that initialize
it).

3.1.3 The Ctxt class

A Ctxt object is always defined relative to a fixed public key and context, both must be supplied
to the constructor and are fixed thereafter. As described above, a ciphertext contains a vector of
parts, each part with its own handle. This type of representation is quite flexible, for example you
can in principle add ciphertexts that are defined with respect to different keys, as follows:

• For parts of the two ciphertexts that point to the same secret-key polynomial (i.e., have the
same handle), you just add the two DoubleCRT polynomials.

• Parts in one ciphertext that do not have a counterpart in the other ciphertext will just be
included in the result intact.

For example, suppose that you wanted to add the following two ciphertexts. one “canonical” and
the other after an automorphism X 7→ X3:

~c = (c0[i = 0, r = 0, t = 0], c1[i = 0, r = 1, t = 1])

and ~c ′ = (c′0[i = 0, r = 0, t = 0], c′3[i = 0, r = 1, t = 3]).

Adding these ciphertexts, we obtain a three-part ciphertext,

~c+ ~c ′ = ((c0 + c′0)[i = 0, r = 0, t = 0], c1[i = 0, r = 1, t = 1], c′3[i = 0, r = 1, t = 3]).

Similarly, we also have flexibility in multiplying ciphertexts using a tensor product, as long as all
the pairwise handles of all the parts can be multiplied according to the rules from Section 3.1.1
above.

The Ctxt class therefore contains a data member vector<CtxtPart> parts that keeps all of
the ciphertext-parts. By convention, the first part, parts[0], always has a handle pointing to
the constant polynomial 1. Also, we maintain the invariant that all the DoubleCRT objects in the
parts of a ciphertext are defined relative to the same subset of primes, and the IndexSet for this
subset is accessible as ctxt.getPrimeSet(). (The current BGV modulus for this ciphertext can
be computed as q = ctxt.getContext().productOfPrimes(ctxt.getPrimeSet()).)

A Ctxt object also contains a data member ptxtSpace that holds the plaintext-modulus for
this ciphertext (i.e. the integer p such that the native plaintext space is Ap, note that p is either a
prime or a prime power). For reasons that will be discussed when we describe modulus-switching
in Section 3.1.5, we maintain the invariant that a ciphertext relative to current modulus q and
plaintext space p has an extra factor of q mod p. Namely, when we decrypt the ciphertext vector ~c
using the secret-key vector ~s, we compute m = [〈~s,~c〉]p and then output the plaintext m = [q−1 ·m]p
(rather than just m = [m]p). Note that this has no effect when the plaintext space is p = 2, since
q−1 mod p = 1 in this case.
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The basic operations that we can apply to ciphertexts (beyond encryption and decryption) are
addition, multiplication, addition and multiplication by constants, automorphism, key-switching
and modulus switching. These operations are described in more detail later in this section.

3.1.4 Noise estimate

In addition to the vector of parts, a ciphertext contains also a heuristic estimate of the “noise
variance”, kept in the noiseVar data member: Consider the polynomial m = [〈~c,~s〉]q that we
obtain during decryption (before the reduction modulo 2). Thinking of the ciphertext ~c and the
secret key ~s as random variables, this makes also m a random variable. The data member noiseVar
is intended as an estimate of the second moment of the random variable m(τm), where τm = e2πi/m

is the principal complex primitive m-th root of unity. Namely, we have noiseVar ≈ E[|m(τm)|2] =
E[m(τm) ·m(τm)], with m(τm) the complex conjugate of m(τm).

The reason that we keep an estimate of this second moment, is that it gives a convenient handle
on the l2 canonical embedding norm of m, which is how we measure the noise magnitude in the
ciphertext. Heuristically, the random variables m(τ jm) for all j ∈ Z∗m behave as if they are identically
distributed, hence the expected squared l2 norm of the canonical embedding of m is

E
[
(‖m‖canon

2 )2
]

=
∑
j∈Z∗m

E
[∣∣m(τ jm)

∣∣2] ≈ φ(m) · E
[
|m(τm)|2

]
≈ φ(m) · noiseVar.

As the l2 norm of the canonical embedding of m is larger by a
√
φ(m) factor than the l2 norm of

its coefficient vector, we therefore use the condition
√
noiseVar ≥ q/2 (with q the current BGV

modulus) as our decryption-error condition. The library itself never checks this condition during
the computation, but it provides a method ctxt.isCorrect() that the application can use to
check for it. The library does use the noise estimate when deciding what primes to add/remove
during modulus switching, see description of the MultiplyBy method below.

Recalling that the j’th ciphertext part has a handle pointing to some s
rj
j (Xtj ), we have that

m = [〈~c,~s〉]q = [
∑

j cjs
rj
j ]q. A valid ciphertext vector in the BGV cryptosystem can always be

written as ~c = ~r + ~e such that ~r is some masking vector satisfying [〈~r,~s〉]q = 0 and ~e = (e1, e2, . . .)
is such that ‖ej · s

rj
j (Xtj )‖ � q. We therefore have m = [〈~c,~s〉]q =

∑
j ejs

rj
j , and under the

heuristic assumption that the “error terms” ej are independent of the keys we get E[|m(τm)|2] =∑
j E[|ej(τm)|2] · E[|sj(τ

tj
m )rj |2] ≈

∑
j E[|ej(τm)|2] · E[|sj(τm)rj |2]. The terms E[|ej(τm)|2] depend on

the the particular error polynomials that arise during the computation, and will be described when
we discuss the specific operations. For the secret-key terms we use the estimate

E
[
|s(τm)r|2

]
≈ r! ·Hr,

where H is the Hamming-weight of the secret-key polynomial s. For r = 1, it is easy to see that
E[|s(τm)|2] = H: indeed, for every particular choice of the H nonzero coefficients of s, the random
variable s(τm) (defined over the choice of each of these coefficients as ±1) is a zero-mean complex
random variable with variance exactly H (since it is a sum of exactly H random variables, each
obtained by multiplying a uniform ±1 by a complex constant of magnitude 1). For r > 1, it is clear
that E[|s(τm)r|2] ≥ E[|s(τm)|2]r = Hr, but the factor of r! may not be clear. We first observed that
factor experimentally, and then validated it analytically for the case r � min(

√
H, logm) (which

is what we use in our library). See details in the appendix. The rules that we use for computing
and updating the data member noiseVar during the computation, as described below.
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Encryption. For a fresh ciphertext, encrypted using the public encryption key, we have
noiseVar = σ2(1 + φ(m)2/2 + φ(m)(H + 1)), where σ2 is the variance in our RLWE in-
stances, and H is the Hamming weight of the first secret key.

When the plaintext space modulus is p > 2, that quantity is larger by a factor of p2. See
Section 3.2.2 for the reason for these expressions.

Modulus-switching. The noise magnitude in the ciphertexts scales up as we add primes to the
prime-set, while modulus-switching down involves both scaling down and adding a term
(corresponding to the rounding errors for modulus-switching).

Namely, when adding more primes to the prime-set we scale up the noise estimate as
noiseVar′ = noiseVar · ∆2, with ∆ the product of the added primes. When removing
primes from the prime-set we scale down and add an extra term, setting noiseVar′ =
noiseVar/∆2 +addedNoise, where the added-noise term is computed as follows: We go over
all the parts in the ciphertext, and consider their handles. For any part j with a handle that
points to s

rj
j (Xtj ), where sj is a secret-key polynomial whose coefficient vector has Hamming-

weight Hj , we add a term (p2/12) ·φ(m) · (rj)! ·H
rj
j . Namely, when modulus-switching down

we set

noiseVar′ = noiseVar/∆2 +
∑
j

p2

12
· φ(m) · (rj)! ·H

rj
j .

See Section 3.1.5 for the reason for this expression.

Re-linearization/key-switching. When key-switching a ciphertext, we modulus-switch down to
remove all the “special primes” from the prime-set of the ciphertext if needed (cf. Section 2.7).
Then, the key-switching operation itself has the side-effect of adding these “special primes”
back. These two modulus-switching operations have the effect of scaling the noise down, then
back up, with the added noise term as above. Then add yet another noise term as follows:

The key-switching operation involves breaking the ciphertext into some number n′ of “digits”
(see Section 3.1.6). For each digit i of size Di and every ciphertext-part that we need to
switch (i.e., one that does not already point to 1 or a base secret key), we add a noise-term
φ(m)σ2 · p2 ·D2

i /4, where σ2 is the variance in our RLWE instances. Namely, if we need to
switch k parts and if noiseVar′ is the noise estimate after the modulus-switching down and
up as above, then our final noise estimate after key-switching is

noiseVar′′ = noiseVar′ + k · φ(m)σ2 · p2 ·
n′∑
i=1

D2
i /4

where Di is the size of the i’th digit. See Section 3.1.6 for more details.

addConstant. We roughly add the size of the constant to our noise estimate. The calling
application can either specify the size of the constant, or else we use the default value
sz = φ(m) · (p/2)2. Recalling that when current modulus is q we need to scale up the
constant by q mod p, we therefore set noiseVar′ = noiseVar + (q mod p)2 · sz.

multByConstant. We multiply our noise estimate by the size of the constant. Again, the calling
application can either specify the size of the constant, or else we use the default value sz =
φ(m) · (p/2)2. Then we set noiseVar′ = noiseVar · sz.
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Addition. We first add primes to the prime-set of the two arguments until they are both defined
relative to the same prime-set (i.e. the union of the prime-sets of both arguments). Then
we just add the noise estimates of the two arguments, namely noiseVar′ = noiseVar +
other.noiseVar.

Multiplication. We first remove primes from the prime-set of the two arguments until they are
both defined relative to the same prime-set (i.e. the intersection of the prime-sets of both
arguments). Then the noise estimate is set to the product of the noise estimates of the two
arguments, multiplied by an additional factor which is computed as follows: Let r1 be the
highest power of s (i.e., the powerOfS value) in all the handles in the first ciphertext, and
similarly let r2 be the highest power of s in all the handles in the second ciphertext, then the
extra factor is

(
r1+r2
r1

)
. Namely, we have noiseVar′ = noiseVar · other.noiseVar ·

(
r1+r2
r1

)
.

(In particular if the two arguments are canonical ciphertexts then the extra factor is
(

2
1

)
= 2.)

See Section 3.1.7 for more details.

Automorphism. The noise estimate does not change by an automorphism operation.

3.1.5 Modulus-switching operations

Our library supports modulus-switching operations, both adding and removing small primes from
the current prime-set of a ciphertext. In fact, our decision to include an extra factor of (q mod p)
in a ciphertext relative to current modulus q and plaintext-space modulus p, is mainly intended to
somewhat simplify these operations.

To add primes, we just apply the operation addPrimesAndScale to all the ciphertext parts
(which are polynomials in Double-CRT format). This has the effect of multiplying the ciphertext
by the product of the added primes, which we denote here by ∆, and we recall that this operation
is relatively cheap (as it involves no FFTs or CRTs, cf. Section 2.8). Denote the current modulus
before the modulus-UP transformation by q, and the current modulus after the transformation by
q′ = q · ∆. If before the transformation we have [〈~c,~s〉]q = m, then after this transformation we
have 〈~c′, ~s〉 = 〈∆ · ~c,~s〉 = ∆ · 〈~c,~s〉, and therefore [〈~c′, ~s〉]q·∆ = ∆ ·m. This means that if before the
transformation we had by our invariant [〈~c,~s〉]q = m ≡ q ·m (mod p), then after the transformation
we have [〈~c,~s〉]q′ = ∆ ·m ≡ q′ ·m (mod p), as needed.

For a modulus-DOWN operation (i.e., removing primes) from the current modulus q to the
smaller modulus q′, we need to scale the ciphertext ~c down by a factor of ∆ = q/q′ (thus getting
a fractional ciphertext), then round appropriately to get back an integer ciphertext. Using our
invariant about the extra factor of (q mod p) in a ciphertext relative to modulus q (and plaintext
space modulus p), we need to convert ~c into another ciphertext vector ~c′ satisfying

(a) (q′)−1~c′ ≡ q−1~c (mod p), and

(b) the “rounding error term” ε
def
= ~c′ − (q′/q)~c is small.

As described in [5], we apply the following optimized procedure:

1. Let ~δ = ~c mod ∆,

2. Add or subtract multiples of ∆ from the coefficients in ~δ until it is divisible by p,

3. Set ~c∗ = ~c− ~δ, // ~c∗ divisible by ∆, and ~c∗ ≡ ~c (mod p)
4. Output ~c′ = ~c/∆.
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An argument similar to the proof of [2, Lemma 4] shows that if before the transformation we
had m = [〈~c,~s〉]q ≡ q ·m (mod p), then after the transformation we have m′ = [〈~c′, ~s〉]q′ ≡ q′ ·m
(mod p), as needed. (The difference from [2, Lemma 4] is that we do not assume that q, q′ ≡ 1
(mod p).)

Considering the noise magnitude, we can write ~c′ = ~c/∆ +~ε where ~ε is the rounding error (i.e.,
the terms that are added in Step 2 above, divided by ∆). The noise polynomial is thus scaled down

by a ∆ factor, then increased by the additive term a
def
= 〈~ε, ~s〉 =

∑
j εj(X) · s rjj (Xtj ) (with a ∈ A).

We make the heuristic assumption that the coefficients in all the εj ’s behave as if they are chosen
uniformly in the interval −[p/2, p/2). Under this assumption, we have

E
[
|εj(τm)|2

]
= φ(m) · p2/12,

since the variance of a uniform random variable in −[p/2, p/2) is p2/12, and εj(τm) is a sum of
φ(m) such variables, scaled by different magnitude-1 complex constants. Assuming heuristically
that the εj ’s are independent of the public key, we have

E
[
|a(τm)|2

]
=
∑
j

E
[
|εj(ρm)|2

]
· E
[∣∣∣s rjj (Xtj )

∣∣∣2] ≈∑
j

(φ(m) · p2/12) · (rj)! ·H
rj
j ,

where p is the plaintext-space modulus, Hj is the Hamming weight of the secret key for the j’th
part, and rj is the power of that secret key.

3.1.6 Key-switching/re-linearization

The re-linearization operation ensures that all the ciphertext parts have handles that point to either
the constant 1 or a base secret-key: Any ciphertext part j with a handle pointing to s

rj
j (Xtj ) with

either rj > 1 or rj = 1 and tj > 1, is replace by two adding two parts, one that points to 1 and
the other than points to sj(X), using some key-switching matrices from the public key. Also, a
side-effect of re-linearization is that we add all the “special primes” to the prime-set of the resulting
ciphertext.

To explain the re-linearization procedure, we begin by recalling that the “ciphertext primes”
that define our moduli-chain are partitioned into some number n ≥ 1 of “digits”, of roughly equal
size. (For example, say that we have 15 small primes in the chain and we partition them to three
digits, then we may take the first five primes to be the first digit, the next five primes to be the
second, and the last five primes to be the third.) The size of a digit is the product of all the primes
that are associated with it, and below we denote by Di the size of the i’th digit.

When key-switching a ciphertext ~c using n > 1 digits, we begin by breaking ~c into a collection
of (at most) n lower-norm ciphertexts ~ci. First we remove all the special primes from the prime-set
of the ciphertext by modulus-DOWN, if needed. Then we determine the smallest n′ such that the
product of of the first n′ digits exceeds the current modulus q, and then we set

1. ~d1 := ~c
2. For i = 1 to n′ do:

3. ~ci := ~di mod Di // |~ci| < Di/2

4. ~di+1 := (~di − ~ci)/Di // (~di − ~ci) divisible by Di
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Note that ~c =
∑n′

i=1 ~ci ·
∏
j<iDi, and also since ‖~c‖∞ ≤ q/2 ≤ (

∏
iDi)/2, then it follows that

‖~ci‖∞ ≤ Di/2 for all i. Below we assume that the current modulus q is equal to the product of the
first n′ digits. (The case where q <

∏
iDi is very similar, but requires somewhat more complicated

notations, in that case we just remove primes from the last digit until the product is equal to q.)
Consider now one particular ciphertext-part cj in ~c, with a handle that points to some s′j(X) =

s
rj
j (Xtj ), with either rj > 1 or rj = 1 and tj > 1. Let us denote by ci,j the digit of cj in the

low-norm ciphertext ~ci from the procedure above. That is, we have cj =
∑n′

i=1 ci,j ·
∏
j<iDi, and

also ‖ci,j‖∞ ≤ Di/2 for all i. Moreover we need to have in the public-key a key-switching matrix
for that handle, W = W [s′j ⇒ sj ]. This W is a 2×n matrix of polynomials in Double-CRT format,
defined relative to the product of all the small primes in our chain (special or otherwise). Below
we denote the product of all these small primes by Q. The i’th column in the matrix encrypts the
“plaintext polynomial” s′j ·

∏
j<iDi under the key sj , namely a vector (ai, bi)

T ∈ A 2
Q such that

[bi + aisj ]Q = (
∏
j<iDi) · s′j + p · ei, for a small polynomial ei (and the plaintext-space modulus p).

Moreover, as long as (
∏
j<iDi)·s′j+p·ei is short enough, the same equality holds also modulo smaller

moduli that divide Q. In particular, denoting the product of the “special primes” by Q∗ and the
product of the n′ digits that we use by q, then for all i ≤ n′ we have ‖(

∏
j<iDi)·s′j+p·ei‖∞ < qQ∗/2,

and therefore [
bi + aisj

]
qQ∗

= (
∏
j<i

Di) · s′j + p · ei.

We therefore reduce the key-switching matrix modulo qQ∗, and add the small primes corresponding
to qQ∗ to all the ci,j ’s. We replace cj by ciphertext-parts that point to 1 and base, by multiplying
the n′-vector c̃j = (c1,j , . . . , cn′,j)

T by (the first n′ columns of) the key-switching matrix W , setting

(c′′j , c
′
j)
T :=

[
W [1 : n′]× c̃j

]
qQ∗

= [
n′∑
i=1

(ai, bi)
T · ci,j ]qQ∗ .

It is not hard to see that for these two new ciphertext-parts we have:

c′′j + c′jsj =
n′∑
i=1

(bi + aisj) · ci,j =
n′∑
i=1

(
(
∏
j<i

Di) · s′j + p · ei
)
· ci,j

=

 n′∑
i=1

(
∏
j<i

Di)ci,j

 s′j + p ·
n′∑
i=1

eici,j = cjs
′
j + p

n′∑
i=1

eici,j (mod qQ∗)

Replacing all the parts cj by pairs (c′′j , c
′
j)
T as above (and adding up all the parts that point to 1,

as well as all the parts that point to the base sj), we thus get a canonical ciphertext ~c′ = (c̃2, c̃1)T ,
with c̃2 = [

∑
j c
′′
j ]qQ∗ and c̃1 = [

∑
j c
′
j ]qQ∗ , and we have

c̃2 + c̃1sj =

∑
j

cjs
′
j

+ p
(∑
i,j

eici,j
)

= m + p
(∑
i,j

eici,j
)

(mod qQ∗).

Hence, as long as the additive term p(
∑

i,j eici,j) is small enough, decrypting the new ciphertext
yields the same plaintext value modulo p as decrypting the original ciphertext ~c.
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In terms of noise magnitude, we first scale up the noise by a factor of Q∗ when adding all the
special primes, and then add the extra noise term p ·

∑
i,j eici,j . Since the ci,j ’s have coefficients of

magnitude at most Di/2 and the polynomials ei are RLWE error terms with zero-mean coefficients
and variance σ2, then the second moment of ei(τm) · ci,j(τm) is no more than φ(m)σ2 ·D2

i /4. Thus
for every ciphertext part that we need to switch (i.e. that has a handle that points to something
other than 1 or base), we add a term of φ(m)σ2 · p2 ·D2

i /4. Therefore, if our noise estimate after
the scale-up is noiseVar′ and we need to switch k

noiseVar′′ = noiseVar′ + k · φ(m)σ2 · p2 ·
n′∑
i=1

D2
i /4

3.1.7 Native arithmetic operations

The native arithmetic operations that can be performed on ciphertexts are negation, addition,
subtraction, multiplication, addition of constants, multiplication by constant, and automorphism.
In our library we expose to the application both the operations in their “raw form” without any
additional modulus- or key-switching, as well as some higher-level interfaces for multiplication and
automorphisms that include also modulus- and key-switching.

Negation. The method Ctxt::negate() transforms an encryption of a polynomial m ∈ Ap to
an encryption of [−m]p, simply by negating all the ciphertext parts modulo the current modulus.
(Of course this has an effect on the plaintext only when p > 2.) The noise estimate is unaffected.

Addition/subtraction. Both of these operations are implemented by the single method
void Ctxt::addCtxt(const Ctxt& other, bool negative=false);

depending on the negative boolean flag. For convenience, we provide the methods
Ctxt::operator+= and Ctxt::operator-= that call addCtxt with the appropriate flag. A side
effect of this operation is that the prime-set of *this is set to the union of the prime sets of both
ciphertexts. After this scaling (if needed), every ciphertext-part in other that has a matching part
in *this (i.e. a part with the same handle) is added to this matching part, and any part in other

without a match is just appended to *this. We also add the noise estimate of both ciphertexts.

Constant addition. Implemented by the methods
void Ctxt::addConstant(const ZZX& poly, double size=0.0);

void Ctxt::addConstant(const DoubleCRT& poly, double size=0.0);

The constant is scaled by a factor f = (q mod p), with q the current modulus and p the ciphertext
modulus (to maintain our invariant that a ciphertext relative to q has this extra factor), then added
to the part of *this that points to 1. The calling application can specify the size of the added
constant (i.e. |poly(τm)|2), or else we use the default value size = φ(m) · (p/2)2, and this value
(times f2) is added to our noise estimate.

Multiplication by constant. Implemented by the methods
void Ctxt::multByConstant(const ZZX& poly, double size=0.0);

void Ctxt::multByConstant(const DoubleCRT& poly, double size=0.0);
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All the parts of *this are multiplied by the constant, and the noise estimate is multiplied by the
size of the constant. As before, the application can specify the size, or else we use the default value
size = φ(m) · (p/2)2.

Multiplication. “Raw” multiplication is implemented by
Ctxt& Ctxt::operator*=(const Ctxt& other);

If needed, we modulus-switch down to the intersection of the prime-sets of both arguments, then
compute the tensor product of the two, namely the collection of all pairwise products of parts from
*this and other.

The noise estimate of the result is the product of the noise estimates of the two arguments, times
a factor which is computed as follows: Let r1 be the highest power of s (i.e., the powerOfS value)
in all the handles in *this, and similarly let r2 be the highest power of s in all the handles other.
The extra factor is then set as

(
r1+r2
r1

)
. Namely, noiseVar′ = noiseVar · other.noiseVar ·

(
r1+r2
r1

)
.

The reason for the
(
r1+r2
r1

)
factor is that the ciphertext part in the result, obtained by multiplying

the two parts with the highest powerOfS value, will have powerOfS value of the sum, r = r1 + r2.
Recall from Section 3.1.4 that we estimate E[|s(τm)r|2] ≈ r! ·Hr, where H is the Hamming weight
of the coefficient-vector of s. Thus our noise estimate for the relevant part in *this is r1! ·Hr1 and
the estimate for the part in other is r2! ·Hr2 . To obtain the desired estimate of (r1 + r2)! ·Hr1+r2 ,

we need to multiply the product of the estimates by the extra factor (r1+r2)!
r1!·r2! =

(
r1+r2
r1

)
. 2

Higher-level multiplication. We also provide the higher-level methods
void Ctxt::multiplyBy(const Ctxt& other);

void Ctxt::multiplyBy(const Ctxt& other1, const Ctxt& other2);

The first method multiplies two ciphertexts, it begins by removing primes from the two arguments
down to a level where the rounding-error from modulus-switching is the dominating noise term (see
findBaseSet below), then it calls the low-level routine to compute the tensor product, and finally
it calls the reLinearize method to get back a canonical ciphertext.

The second method that multiplies three ciphertexts also begins by removing primes from the
two arguments down to a level where the rounding-error from modulus-switching is the dominating
noise term. Based on the prime-sets of the three ciphertexts it chooses an order to multiply them
(so that ciphertexts at higher levels are multiplied first). Then it calls the tensor-product routine
to multiply the three arguments in order, and then re-linearizes the result.

We also provide the two convenience methods square and cube that call the above two-argument
and three-argument multiplication routines, respectively.

Automorphism. “Raw” automorphism is implemented in the method
void Ctxt::automorph(long k);

For convenience we also provide Ctxt& operator>>=(long k); that does the same thing. These
methods just apply the automorphism X 7→ Xk to every part of the current ciphertext, without
changing the noise estimate, and multiply by k (modulo m) the powerOfX value in the handles of
all these parts.

2Although products of other pairs of parts may need a smaller factor, the parts with highest powerOfS value
represent the largest contribution to the overall noise, hence we use this largest factor for everything.
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“Smart” Automorphism. Higher-level automorphism is implemented in the method
void Ctxt::smartAutomorph(long k);

The difference between automorph and smartAutomorph is that the latter ensures that the result
can be re-linearized using key-switching matrices from the public key. Specifically, smartAutomorph
breaks the automorphism X 7→ Xk into some number t ≥ 1 of steps, X 7→ Xki for i = 1, 2, . . . t,
such that the public key contains key-switching matrices for re-linearizing all these steps (i.e.
W = W [s(Xki) ⇒ s(X)]), and at the same time we have

∏t
i=1 ki = k (mod m). The method

smartAutomorph begins by re-linearizing its argument, then in every step it performs one of the
automorphisms X 7→ Xki followed by re-linearization.

The decision of how to break each exponent k into a sequence of ki’s as above is done off line
during key-generation, as described in Section 3.2.2. After this off-line computation, the public key
contains a table that for each k ∈ Z∗m indicates what is the first step to take when implementing the
automorphism X 7→ Xk. The smartAutomorph looks up the first step k1 in that table, performs
the automorphism X 7→ Xk1 , then compute k′ = k/k1 mod m and does another lookup in the table
for the first step relative to k′, and so on.

3.1.8 More Ctxt methods

The Ctxt class also provides the following utility methods:

void clear(); Removes all the parts and sets the noise estimate to zero.

xdouble modSwitchAddedNoiseVar() const; computes the added-noise from modulus-
switching, namely it returns

∑
j(φ(m) · p2/12) · (rj)! ·H

rj
j where Hj and rj are respectively

the Hamming weight of the secret key that the j’th ciphertext-part points to, and the power
of that secret key (i.e., the powerOfS value in the relevant handle).

void findBaseSet(IndexSet& s) const; Returns in s the largest prime-set such that modulus-
switching to s would make ctxt.modSwitchAddedNoiseVar the most significant noise term.
In other words, modulus-switching to s results in a significantly smaller noise than to any
larger prime-set, but modulus-switching further down would not reduce the noise by much.
When multiplying ciphertexts using the multiplyBy “high-level” methods, the ciphertexts
are reduced to (the intersection of) their “base sets” levels before multiplying.

long getLevel() const; Returns the number of primes in the result of findBaseSet.

bool inCanonicalForm(long keyID=0) const; Returns true if this is a canonical ciphertexts,
with only two parts: one that points to 1 and the other that points to the “base” secret key
si(X), (where i = keyId is specified by the caller).

double log of ratio() const; Returns log(noiseVar)/2− log(q).

bool isCorrect() const; The method isCorrect() compares the noise estimate to the current
modulus, and returns true if the noise estimate is less than half the modulus size. Specifically,
if
√
noiseVar < q/2.
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Access methods. Read-only access the data members of a Ctxt object:

const FHEcontext& getContext() const;

const FHEPubKey& getPubKey() const;

const IndexSet& getPrimeSet() const;

const xdouble& getNoiseVar() const;

const long getPtxtSpace() const; // the plaintext-space modulus

const long getKeyID() const; // key-ID of the first part not pointing to 1

3.2 The FHE module: Keys and key-switching matrices

Recall that we made the high-level design choices to allow instances of the cryptosystem to have
multiple secret keys. This decision was made to allow a leveled encryption system that does not
rely on circular security, as well as to support switching to a different key for different purposes
(which may be needed for bootstrapping, for example). However, we still view using just a single
secret-key per instance (and relying on circular security) as the primary mode of using our library,
and hence provided more facilities to support this mode than for the mode of using multiple keys.
Regardless of how many secret keys we have per instance, there is always just a single public
encryption key, for encryption relative to the first secret key. (The public key in our variant of
the BGV cryptosystem is just a ciphertext, encrypting the constant 0.) In addition to this public
encryption key, the public-key contains also key-switching matrices and some tables to help finding
the right matrices to use in different settings. Ciphertexts relative to secret keys other than the
first (if any), can only be generated using the key-switching matrices in the public key.

3.2.1 The KeySwitch class

This class implements key-switching matrices. As we described in Section 3.1.6, a key-switching
matrix from s′ to s, denoted W [s′ ⇒ s], is a 2× n matrix of polynomials from AQ, where Q is the
product of all the small primes in our chain (both ciphertext-primes and special-primes). Recall
that the ciphertext primes are partitioned into n digits, where we denote the product of primes
corresponding the i’th digit by Di. Then the i’th column of the matrix W [s′ ⇒ s] is a pair of
elements (ai, bi) ∈ A 2

Q that satisfy

[bi + ai · s]Q = (
∏
j<i

Dj) · s′ + p · ei,

for a low-norm polynomial ei ∈ AQ. In more detail, we choose a low-norm polynomial ei ∈ AQ,
where each coefficient of ei is chosen from a discrete Gaussian over the integers with variance σ2

(with σ a parameter, by default σ = 3.2). Then we choose a random polynomial ai ∈R AQ and set

bi :=
[
(
∏
j<iDi) · s′ + p · ei − ai · s

]
Q

.

The matrix W is stored in a KeySwitch object in a space-efficient manner: instead of storing the
random polynomials ai themselves, we only store a seed for a pseudorandom-generator, from which
all the ai’s are derived. The bi’s are stored explicitly, however. We note that this space-efficient
representation requires that we assume hardness of our ring-LWE instances even when the seed for
generating the random elements is known, but this seems like a reasonable assumption.

In our library, the source secret key s′ is of the form s′ = s ri′ (X
t) (for some index i′ and

exponents r, t), but the target s must be a “base” secret-key, i.e. s = si(X) for some index i. The
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KeySwitch object stores in addition to the matrix W also a secret-key handle (r, t, i′) that identifies
the source secret key, as well as the index i of the target secret key.

The KeySwitch class provides a method NumCols() that returns the number of columns in the
matrix W . We maintain the invariant that all the key-switching matrices that are defined relative
to some context have the same number of columns, which is also equal to the number of digits that
are specified in the context.

3.2.2 The FHEPubKey class

An FHEPubKey object is defined relative to a fixed FHEcontext, which must be supplied to the
constructor and cannot be changed later. An FHEPubKey includes the public encryption key
(which is a ciphertext of type Ctxt), a vector of key-switching matrices (of type KeySwitch), and
another data structure (called keySwitchMap) that is meant to help finding the right key-switching
matrices to use for automorphisms (see a more detailed description below). In addition, for every
secret key in this instance, the FHEPubKey object stores the Hamming weight of that key, i.e., the
number of non-zero coefficients of the secret-key polynomial. (This last piece of information is used
to compute the estimated noise in a ciphertext.) The FHEPubKey class provides an encryption
method, and various methods to find and access key-switching matrices.

long Encrypt(Ctxt& ciphertxt, const ZZX& plaintxt, long ptxtSpace=0) const; This
method returns in ciphertxt an encryption of the plaintext polynomial plaintxt, relative to the
plaintext-space modulus given in ptxtSpace. If the ptxtSpace parameter is not specified then
we use the plaintext-space modulus from the public encryption key in this FHEPubKey object. If
ptxtSpace is specified then we use the greater common divisor (GCD) of the specified value and
the one from the public encryption key. The current-modulus in the new fresh ciphertext is the
product of all the ciphertext-primes in the context, which is the same as the current modulus in
the public encryption key in this FHEPubKey object.

Let the public encryption key in the FHEPubKey object be denoted ~c∗ = (c∗0, c
∗
1), let Qct be

the product of all the ciphertext primes in the context, and let p be the plaintext-space modulus
(namely the GCD of the parameter ptxtSpace and the plaintext-space modulus from the public
encryption key). The Encrypt method chooses a random low-norm polynomial r ∈ AQct with
−1/0/1 coefficients, and low-norm error polynomials e0, e1 ∈ AQ, where each coefficient of ei’s is
chosen from a discrete Gaussian over the integers with variance σ2 (with σ a parameter, by default
σ = 3.2). We then compute and return the canonical ciphertext

~c = (c0, c1) := r · (c∗0, c∗1) + p · (e0, e1) + plaintxt.

Note that since the public encryption key satisfies [c∗0 + s · c∗1]Qct = p · e∗ for some low-norm poly-
nomial e∗, then we have

[c0 + s · c1]Qct = [r · (c∗0 + s · c∗1) + p · (e0 + s · e1) + plaintxt]Qct
= p · (e0 + s · e1 + r · e∗) + plaintxt.

For the noise estimate in the new ciphertext, we multiply the noise estimate in the public encryption
key by the size of the low-norm r, and add another term for the expression a = p · (e0 + s · e1) +
plaintxt. Specifically, the noise estimate in the public encryption key is pubEncrKey.noiseVar =
φ(m)σ2p2, the second moment of r(τm) is φ(m)/2, and the second moment of a(τm) is no more than
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p2(1 + σ2φ(m)(H + 1)) with H the Hamming weight of the secret key s. Hence the noise estimate
in a freshly encrypted ciphertext is

noiseVar = p2 ·
(
1 + σ2φ(m) ·

(
φ(m)/2 +H + 1

))
.

The key-switching matrices. An FHEPubKey object keeps a list of all the key-switching
matrices that were generated during key-generation in the data member keySwitching of type
vector<KeySwitch>. As explained above, each key-switching matrix is of the form W [s;r

i (Xt) ⇒
sj(X)], and is identified by a SKHandle object that specifies (r, t, i) and another integer that spec-
ifies the target key-ID j. The basic facility provided to find a key-switching matrix are the two
equivalent methods

const KeySwitch& getKeySWmatrix(const SKHandle& from, long toID=0) const;

const KeySwitch& getKeySWmatrix(long fromSPower, long fromXPower,

long fromID=0, long toID=0) const;

These methods return either a read-only reference to the requested matrix if it exists, or oth-
erwise a reference to a dummy KeySwitch object that has toKeyID = −1. For convenience we also
provide the methods bool haveKeySWmatrix that only test for existence, but do not return the
actual matrix. Another variant is the method

const KeySwitch& getAnyKeySWmatrix(const SKHandle& from) const;

(and its counterpart bool haveAnyKeySWmatrix) that look for a matrix with the given source
(r, t, i) and any target. All these methods first try to find the requested matrix using the
keySwitchMap table (which is described below), and failing that they resort to linear search through
the entire list of matrices.

The keySwitchMap table. Although our library supports key-switching matrices of the general
form W [s ri (Xt) ⇒ sj(X)], we provide more facilities for finding matrices to re-linearize after
automorphism (i.e., matrices of the form W [si(X

ti)⇒ si(X)]) than for other types of matrices.
For every secret key si in the current instance we consider a graph Gi over the vertex set Z∗m,

where we have an edge j → k if and only if we have a key-switching matrix W [si(X
jk−1

)⇒ si(X)])
(where jk−1 is computed modulo m). We observe that if the graph Gi has a path t  1 then we
can apply the automorphism X 7→ Xt with re-linearization to a canonical ciphertext relative to si
as follows: Denote the path from t to 1 in the graph by

t = k1 → k2 · · · kn = 1.

We follow the path one step at a time, for each step j applying the automorphism X 7→ Xkjk
−1
j+1

and then re-linearizing the result using the matrix W [si(X
kjk
−1
j+1)⇒ si(X)] from the public key.

The data member vector< vector<long> > keySwitchMap encodes all these graphs Gi in
a way that makes it easy to find the sequence of operation needed to implement any given
automorphism. For every i, keySwitchMap[i] is a vector of indexes that stores information
about the graph Gi. Specifically, keySwitchMap[i][t] is an index into the vector of key-
switching matrices, pointing out the first step in the shortest path t  1 in Gi (if any). In
other words, if 1 is reachable from t in Gi, then keySwitchMap[i][t] is an index k such that
keySwitching[k] = W [si(X

ts−1
)⇒ si(X)] where s is one step closer to 1 in Gi than t. In particu-

lar, if we have in the public key a matrix W [si(X
t) ⇒ si(X)] then keySwitchMap[i][t] contains

the index of that matrix. If 1 is not reachable from t in Gi, then keySwitchMap[i][t] = −1.
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The maps in keySwitchMap are built using a breadth-first search on the graph Gi, by calling the
method void setKeySwitchMap(long keyId=0); This method should be called after all the key-
switching matrices are added to the public key. If more matrices are generated later, then it should
be called again. Once keySwitchMap is initialized, it is used by the method Ctxt::smartAutomorph

as follows: to implement X 7→ Xt on a canonical ciphertext relative to secret key si, we do the
following:

1. while t 6= 1
2. set j = pubKey.keySwitchMap[i][t] // matrix index
3. set matrix = pubKey.keySwitch[j] // the matrix itself
4. set k = matrix.fromKey.getPowerOfX() // the next step
5. perform automorphism X 7→ Xk, then re-linearize
6. t = t · k−1 mod m // Now we are one step closer to 1

The operations in steps 2,3 above are combined in the method
const KeySwitch& FHEPubKey::getNextKSWmatrix(long t, long i);

That is, on input t, i it returns the matrix whose index in the list is j = keySwitchMap[i][t]. Also,
the convenience method bool FHEPubKey::isReachable(long t, long keyID=0) const check
if keySwitchMap[keyID][t] is defined, or it is −1 (meaning that 1 is not reachable from t in the
graph GkeyID).

3.2.3 The FHESecKey class

The FHESecKey class is derived from FHEPubKey, and contains an additional data member with the
secret key(s), vector<DoubleCRT> sKeys. It also provides methods for key-generation, decryption,
and generation of key-switching matrices, as described next.

Key-generation. The FHESecKey class provides methods for either generating a new secret-key
polynomial with a specified Hamming weight, or importing a new secret key that was generated by
the calling application. That is, we have the methods:

long ImportSecKey(const DoubleCRT& sKey, long hwt, long ptxtSpace=0);

long GenSecKey(long hwt, long ptxtSpace=0);

For both these methods, if the plaintext-space modulus is unspecified then it is taken to be the
default 2r from the context. The first of these methods takes a secret key that was generated by
the application and insert it into the list of secret keys, keeping track of the Hamming weight of
the key and the plaintext space modulus which is supposed to be used with this key. The second
method chooses a random secret key polynomial with coefficients −1/0/1 where exactly hwt of
them are non-zero, then it calls ImportSecKey to insert the newly generated key into the list. Both
of these methods return the key-ID, i.e., index of the new secret key in the list of secret keys.
Also, with every new secret-key polynomial si, we generate and store also a key-switching matrix
W [s 2

i (X)⇒ si(X)] for re-linearizing ciphertexts after multiplication.
The first time that ImportSecKey is called for a specific instance, it also generates a public

encryption key relative to this first secret key. Namely, for the first secret key s it chooses at random
a polynomial c∗1 ∈R AQct (where Qct is the product of all the ciphertext primes) as well as a low-norm
error polynomial e∗ ∈ AQct (with Gaussian coefficients), then sets c∗0 := [ptxtSpace · e∗ − s · c∗1]Qct .

Clearly the resulting pair (c∗0, c
∗
1) satisfies m∗

def
= [c∗0 + s · c∗1]Qct = ptxtSpace · e∗, and the noise

estimate for this public encryption key is noiseVar∗ = E[|m∗(τm)|2] = p2σ2 · φ(m).
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Decryption. The decryption process is rather straightforward. We go over all the ciphertext
parts in the given ciphertext, multiply each part by the secret key that this part points to, and sum
the result modulo the current BGV modulus. Then we reduce the result modulo the plaintext-space
modulus, which gives us the plaintext. This is implemented in the method

void Decrypt(ZZX& plaintxt, const Ctxt &ciphertxt) const;

that returns the result in the plaintxt argument. For debugging purposes, we also provide the
method void Decrypt(ZZX& plaintxt, const Ctxt &ciphertxt, ZZX& f) const, that returns
also the polynomial before reduction modulo the plaintext space modulus. We stress that it would
be insecure to use this method in a production system, it is provided only for testing and debugging
purposes.

Generating key-switching matrices. We also provide an interface for generating key-switching
matrices, using the method:

void GenKeySWmatrix(long fromSPower, long fromXPower, long fromKeyIdx=0,

long toKeyIdx=0, long ptxtSpace=0);

This method checks if the relevant key-switching matrix already exists, and if not then it generates
it (as described in Section 3.2.1) and inserts into the list keySwitching. If left unspecified, the
plaintext space defaults to 2r, as defined by context.mod2r.

Secret-key encryption. We also provide a secret-key encryption method, that produces cipher-
texts with a slightly smaller noise than the public-key encryption method. Namely we have the
method

long FHESecKey::Encrypt(Ctxt &c, const ZZX& ptxt, long ptxtSpace, long skIdx)

const;

that encrypts the polynomial ptxt relative to plaintext-space modulus ptxtSpace, and the secret
key whose index is skIdx. Similarly to the choice of the public encryption key, the Encrypt

method chooses at random a polynomial c1 ∈R AQct (where Qct is the product of all the ciphertext
primes) as well as a low-norm error polynomial e ∈ AQct (with Gaussian coefficients), then sets

c0 := [ptxtSpace · e + ptxt − s · c1]Qct . Clearly the resulting pair (c0, c1) satisfies m
def
= [c0 + s ·

c1]Qct = ptxtSpace · e + ptxt, and the noise estimate for this public encryption key is noiseVar ≈
E[|m(τm)|2] = p2σ2 · φ(m).

3.3 The KeySwitching module: What matrices to generate

This module implements a few useful strategies for deciding what key-switching matrices for auto-
morphism to choose during key-generation. Specifically we have the following methods:

void addAllMatrices(FHESecKey& sKey, long keyID=0);

For i = keyID, generate key-switching matrices W [si(X
t)⇒ si(X)] for all t ∈ Z∗m.

void add1DMatrices(FHESecKey& sKey, long keyID=0);

For i = keyID, generate key-switching matrices W [si(X
ge)⇒ si(X)] for every generator g of

Z∗m/ 〈p〉 with order ord(g), and every exponent 0 < e < ord(g). Also if the order of g in Z∗m is
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not the same as its order in Z∗m/ 〈p, . . .〉, then generate also the matrices W [si(X
g−e

)⇒ si(X)]
(cf. Section 2.4).

We note that since every t ∈ Z∗m can be expressed as a product t =
∏
i g
ei
i mod m, then these

matrices suffice to implement every automorphism X 7→ Xt. In particular they are enough
to implement all the automorphisms that are needed for the data-movement routines from
Section 4.

void addSome1DMatrices(FHESecKey& sKey, long bound=100,long keyID=0);

For i = keyID, we generate just a subset of the matrices that are generated by add1DMatrices,
so that each of the automorphisms X 7→ Xge can be implemented by at most two steps (and
similarly for X 7→ Xg−e

for generators whose orders in Z∗m and Z∗m/ 〈p, . . .〉 are different). In
other words, we ensure that the graph Gi (cf. Section 3.2.2) has a path of length at most 2
from ge to 1 (and also from g−e to 1 for g’s of different orders).

In more detail, if ord(g) ≤ bound then we generate all the matrices W [si(X
ge) ⇒ si(X)]

(or W [si(X
g−e

) ⇒ si(X)]) just like in add1DMatrices. When ord(g) > bound, however, we
generate only O(

√
ord(g)) matrices for this generator: Denoting Bg = d

√
ord(g)e, for every

0 < e < Bg let e′ = e · Bg mod m, then we generate the matrices W [si(X
ge) ⇒ si(X)] and

W [si(X
ge
′
) ⇒ si(X)]. In addition, if g has a different order in Z∗m and Z∗m/ 〈p, . . .〉 then we

generate also W
[
si(X

g−e′
)⇒ si(X)

]
.

void addFrbMatrices(FHESecKey& sKey, long keyID=0);

For i = keyID, generate key-switching matrices W [si(X
pe)⇒ si(X)] for 0 < e < d where d is

the order of p in Z∗m. (Recall that p is the plaintext-space prime.)

4 The Data-Movement Layer

At the top level of our library, we provide some interfaces that allow the application to manipulate
arrays of plaintext values homomorphically. The arrays are translated to plaintext polynomials us-
ing the encoding/decoding routines provided by PAlgebraMod (cf. Section 2.5), and then encrypted
and manipulated homomorphically using the lower-level interfaces from the crypto layer.

4.1 The class EncryptedArray

This class presents the plaintext values to the application as either a linear array (with as many
entries as there are elements in Z∗m/ 〈p〉), or as a multi-dimensional array corresponding to the
structure of the group Z∗m/ 〈p〉.

The definition of this class has a similar structure to that of PAlgebraMod:

• EncryptedArrayBase is a virtual base class

• EncryptedArrayDerived<type> is a derived template class, where type is either PA_GF2 or
PA_zz_p.

• The class EncryptedArray itself is a simple wrapper around a smart pointer to a
EncryptedArrayBase object: copying a EncryptedArray object results is a “deep copy”
of the underlying object of the derived class.
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For EncryptedArray we have the constructor

EncryptedArray(const FHEcontext& context, const ZZX& G = ZZX(1, 1));

taking as input the context (that specifies m, p, and r, among other things), and a polynomial
G that defines the slot subring Zpr [X]/(G). The default value for the polynomial is G(X) = X,
resulting in plaintext values in the base ring Zpr .

The multi-dimensional array view. This view arranges the plaintext slots in a multi-
dimensional array, corresponding to the structure of Z∗m/ 〈p〉. The number of dimensions is the
number of generators of Z∗m/ 〈p〉, and the size along the i’th dimension is the order of the i’th
generator.

Recall from Section 2.4 that each plaintext slot is represented by some t ∈ Z∗m, such that the set
of representatives T ⊂ Z∗m has exactly one element from each conjugacy class of Z∗m/ 〈p〉. Moreover,
if f1, . . . , fn ∈ T are the generators of Z∗m/ 〈p〉 (with fi having order ord(fi)), then every t ∈ T can
be written uniquely as t = [

∏
i f

ei
i ]m with each exponent ei taken from the range 0 ≤ ei < ord(fi).

The generators are roughly arranged by their order (i.e., ord(fi) ≥ ord(fi+1)), except that we put
all the generators gi that have the same order in Z∗m and Z∗m/ 〈p, g1, . . . , gi−1〉 before all the other
generators.

Hence the multi-dimensional-array view of the plaintext slots will have them arranged in a n-
dimensional hypercube, with the size of the i’th side being ord(fi). Every entry in this hypercube
is indexed by some ~e = (e1, e2, . . . , en), and it contains the plaintext slot associated with the
representative t = [

∏
i f

ei
i ]m ∈ T . (Note that the lexicographic order on the vectors ~e of indexes

induces a linear ordering on the plaintext slots, which is what we use in our linear-array view
described below.) The multi-dimensional-array view provides the following interfaces:

long dimension() const; returns the dimensionality (i.e., the number of generators in Z∗m/ 〈p〉).

long sizeOfDimension(long i); returns the size along the i’th dimension (i.e., ord(fi)).

long coordinate(long i, long k) const; return the i’th entry of the k’th vector in lexico-
graphic order.

void rotate1D(Ctxt& ctxt, long i, long k) const;

This method rotates the hypercube by k positions along the i’th dimension, moving the
content of the slot indexed by (e1 . . . , ei, . . . en) to the slot indexed by (e1 . . . , ei + k, . . . en),
addition modulo ord(fi). Note that the argument k above can be either positive or negative,
and rotating by −k is the same as rotating by ord(fi)− k.

The rotate1D operation is closely related to the “native” automorphism operation of the
lower-level Ctxt class. Indeed, if fi has the same order in Z∗m as in Z∗m/ 〈p, . . .〉 then we just

apply the automorphism X 7→ Xfki on the input ciphertext using ctxt.smartAutomorph(fki ).
If fi has different orders in Z∗m and Z∗m/ 〈p, . . .〉 then we need to apply the two automorphisms

X 7→ Xfki and X 7→ Xf
k−ord(fi)
i and then “mix and match” the two resulting ciphertexts to

pick from each of them the plaintext slots that did not undergo wraparound (see description
of the select method below).
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void shift1D(Ctxt& ctxt, long i, long k) const;

This is similar to rotate1D, except it implements a non-cyclic shift with zero fill. Namely,
for a positive k > 0, the content of any slot indexed by (e1 . . . , ei, . . . en) with ei < ord(fi)− k
is moved to the slot indexed by (e1 . . . , ei + k, . . . en), and all the other slots are filled with
zeros. For a negative k < 0, the content of any slot indexed by (e1 . . . , ei, . . . en) with ei ≥ |k|
is moved to the slot indexed by (e1 . . . , ei + k, . . . en), and all the other slots are filled with
zeros.

The operation is implemented by applying the corresponding automorphism(s), and then
zero-ing out the wraparound slots by multiplying the result by a constant polynomial that
has zero in these slots.

The linear array view. This view arranges the plaintext slots in a linear array, with as many
entries as there are plaintext slots (i.e., |Z∗m/ 〈p〉 |). These entries are ordered according to the
lexicographic order on the vectors of indexes from the multi-dimensional array view above. In other
words, we obtain a linear array simply by “opening up” the hypercube from above in lexicographic
order. The linear-array view provides the following interfaces:

long size() const; returns the number of entries in the array, i.e., the number of plaintext slots.

void rotate(Ctxt& ctxt, long k) const;

Cyclically rotate the linear array by k positions, moving the content of the j’th slot (by the
lexicographic order) to slot j+k, addition modulo the number of slots. (Below we denote the
number of slots by N .) Rotation by a negative number −N < k < 0 is the same as rotation
by the positive amount k +N .

The procedure for implementing this cyclic rotation is roughly a concurrent version of the
grade-school addition-with-carry procedure, building on the multidimensional rotations from
above. What we need to do is to add k (modulo N) to the index of each plaintext slot, all
in parallel. To that end, we think of the indexes (and the rotation amount k) as they are
represented in the lexicographic order above. Namely, we identify k with the k’th vector

in the lexicographic order, denoted ~e(k) = (e
(k)
1 , . . . , e

(k)
n ). (Similarly, we identify each index

j with the j’th vector in that order). We can now think of rotation by k as adding the
multi-precision vector ~e(k) to all the vectors ~e(j), j = 0, 1, . . . , N − 1 in parallel.

Beginning with the least-significant digit in these vector, we use rotate-by-e
(k)
n along the n’th

dimension to implement the operation of e
(j)
n = e

(j)
n + e

(k)
n mod ord(fn) for all j at once.

Moving to the next digit, we now have to add to each e
(j)
n−1 either e

(k)
n−1 or 1+e

(k)
n−1, depending

on whether or not there was a carry from the previous position. To do that, we compute

two rotation amount along the (n− 1)’th dimension, by e
(k)
n−1 and 1 + e

(k)
n−1, then use a MUX

operation to choose the right rotation amount for every slot. Namely, indexes j for which

e
(j)
n ≥ ord(fi)−e(k)

n (so we have a carry) are taken from the copy that was rotated by 1+e
(k)
n−1,

while other indexes j are taken from the copy that was rotated by e
(k)
n−1.

The MUX operation is implemented by preparing a constant polynomial that has 1’s in the

slots corresponding to indexes (e1, . . . , en) with en ≥ ord(fi) − e(k)
n and 0’s in all the other

slots (call this polynomial mask), then computing ~c′ = ~c1 · mask+~c2 · (1− mask), where ~c1,~c2
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are the two ciphertexts generated by rotation along dimension n − 1 by 1 + e
(k)
n−1 and e

(k)
n−1,

respectively.

We then move to the next digit, preparing a mask for those j’s for which we have a carry into

that position, then rotating by 1+e
(k)
n−2 and e

(k)
n−2 along the (n−2)’nd dimension and using the

mask to do the MUX between these two ciphertexts. We proceed in a similar manner until
the most significant digit. To complete the description of the algorithm, note that the mask
for processing the i’th digit is computed as follows: For each index j, which is represented

by the vector (e
(j)
1 . . . , e

(j)
i , . . . e

(j)
n ), we have maski[j] = 1 if either e

(j)
i ≥ ord(fi) − e(k)

i , or

if e
(j)
i = ord(fi) − e(k)

i − 1 and maski−1[j] = 1 (i.e. we had a carry from position i − 1 to
position i). Hence the rotation procedure works as follows:

Rotate(~c, k):

0. Let (e
(k)
1 , . . . , e

(k)
n ) be the k’th vector in lexicographic order.

1. Mn := all-1 mask // Mn is a polynomial with 1 in all the slots

2. Rotate ~c by e
(k)
n along the n’th dimension

3. For i = n− 1 down to 1

4. M ′i := 1 in the slots j with e
(j)
i+1 ≥ ord(fi+1)− e(k)

i+1, 0 in all the other slots

5. M ′′i := 1 in the slots j with e
(j)
i+1 = ord(fi+1)− e(k)

i+1 − 1, 0 in all the outer slots
6. Mi := M ′i +M ′′i ·Mi+1 // The i’th mask

7. ~c ′ := rotate ~c by e
(k)
i along the i’th dimension

8. ~c ′′ := rotate ~c by 1 + e
(k)
i along the i’th dimension

9. ~c := ~c ′′ ·Mi + ~c ′ · (1−Mi)
10. Return ~c.

Note that the mask polynomials are precomputed and stored in the corresponding
PAlgebraMod object (as they are independent of G and hence may be used for different
G’s).

void shift(Ctxt& ctxt, long k) const; Non-cyclic shift of the linear array by k positions,
with zero-fill. For a positive k > 0, then every slot j ≥ k gets the content of slot j − k, and
every slot j < k gets zero. For a negative k < 0, every slot j < N − |k| gets the content of
slot j + |k|, and every slot j ≥ N − |k| gets zero (with N the number of slots).

For k > 0, this procedure is implemented very similarly to the rotate procedure above, except
that in the last iteration (processing the most-significant digit) we replace the operation of

rotate-by-e
(k)
1 along the 1’st dimension by shift-by-e

(k)
1 along the 1’st dimension (and similarly

use shift-by-(1 + e
(k)
1 ) rather than rotate-by-(1 + e

(k)
1 )). For a negative amount −N < k < 0,

we use the same procedure upto the last iteration with amount N + k, and in the last
iteration use shift-by-e′ and shift-by-(1+e′) along the 1st dimension, for the negative number

e′ = e
(k)
1 − ord(fi).

Other operations. In addition to the following rotation methods, the class EncryptedArray also
provides convenience methods that handle both encoding and homomorphic operations in one shot.

Some of the methods that are provided are described below. The class PlaintextArray is a
convenience class discussed further below.
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// Encode the given array in a polynomial

void encode(ZZX& ptxt, const vector<long>& array) const;

void encode(ZZX& ptxt, const vector<ZZX>& array) const;

void encode(ZZX& ptxt, const PlaintextArray& array) const;

// Decode the given polynomial into an array of plaintext values

void decode(vector< long >& array, const ZZX& ptxt) const;

void decode(vector< ZZX >& array, const ZZX& ptxt) const;

void decode(PlaintextArray& array, const ZZX& ptxt) const;

// Encode the array in a polynomial, then encrypt it in the ciphertext c

void encrypt(Ctxt& ctxt, const FHEPubKey& pKey,

const vector< long >& ptxt) const;

void encrypt(Ctxt& ctxt, const FHEPubKey& pKey,

const vector< ZZX >& ptxt) const;

void encrypt(Ctxt& ctxt, const FHEPubKey& pKey,

const PlaintextArray& ptxt) const;

// Decrypt the ciphertext c, then decode the result into the array

void decrypt(const Ctxt& ctxt, const FHESecKey& sKey,

vector< long >& ptxt) const;

void decrypt(const Ctxt& ctxt, const FHESecKey& sKey,

vector< ZZX >& ptxt) const;

void decrypt(const Ctxt& ctxt, const FHESecKey& sKey,

PlaintextArray& ptxt) const;

// compute coefficients of a linear polynomial of a given linear map

void buildLinPolyCoeffs(vector<ZZX>& C, const vector<ZZX>& L) const;

// MUX: for p=encode(selector), set c1 = c1*p + c2*(1-p)

void select(Ctxt& ctxt1, const Ctxt& ctxt2,

const vector< long >& selector) const;

void select(Ctxt& ctxt1, const Ctxt& ctxt2,

const vector< ZZX >& selector) const;

void select(Ctxt& ctxt1, const Ctxt& ctxt2,

const PlaintextArray& selector) const;

4.2 The class PlaintextArray

This is a convenience class provided to simplify testing. It has a structure that mirrors that of
PAlgebraMod and EncryptedArray. Essentially, an object of type PlaintextArray is a vector of
polynomials over Zpr [X] modulo G, and is associated with a particular EncryptedArray object
(which, among other things, defined p, r, and G). These polynomials are represented as objects
of type GF2X or zz_pX, depending on the values p and r, in a way that is compatible with the
representation used in the corresponding PAlgebraMod and EncryptedArray objects. The length
of a PlaintextArray vector is equal to the number of slots.
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A PlaintextArray object is created using a constructor that specifies the corresponding
EncryptedArray object, which remains bound to the constructed PlaintextArray object through-
out its lifetime. The following methods are provided (bear in mind that all arithmetic is polynomial
arithmetic modulo pr and G):

// rotate and shift

void rotate(long k);

void shift(long k);

// encoding

void encode(const vector< long >& array);

void encode(const vector< ZZX >& array);

// decoding

void decode(vector< long >& array);

void decode(vector< ZZX >& array)’

// encode the same value in each slot

void encode(long val) { rep->encode(val); }

void encode(const ZZX& val) { rep->encode(val); }

// replicate the value in slot i in all other slots

void replicate(long i);

// generate a random array

void random();

// equality testing

bool equals(const PlaintextArray& other) const;

bool equals(const vector<long>& other) const;

bool equals(const vector<ZZX>& other) const;

// slot-wise arithmetic

void add(const PlaintextArray& other);

void sub(const PlaintextArray& other);

void mul(const PlaintextArray& other);

void negate();

5 Using the Library

The following code illustrates how the library can be used to homomorphically evaluate a simple
circuit. This code depends on several parameters:

• m, p, r — the native plaintext space is Z[X]/(Φm(X), pr),
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• L — the number “levels,” i.e. the number of ciphertext primes (cf. Section 2.7),

• c — number of columns in key switching matrix (recommended c = 2 or c = 3),

• w — the Hamming weight of a secret key (w = 64 recommended),

• G (of type ZZX) — a monic polynomial, irreducible over Zp.
If r = 1, we only require that the degree of G divides the degree of the irreducible factors of
Φm(X) modulo p.

If r > 1, G must either have degree 1, or be equal to the first factor of Φm(X) mod-
ulo pr (as computed by the library). That factor is accessible in the code below as
context.alMod.getFactorsOverZZ()[0].

/*************** Basic usage of the HElib library ***************/

{ long m, p, r, L, c, w; // parameters

ZZX G; // defines the plaintext space

// Some code here to choose all the parameters, perhaps

// using the fucntion FindM(...) in the FHEContext module

FHEcontext context(m, p, r);

// initialize context

buildModChain(context, L, c);

// modify the context, adding primes to the modulus chain

FHESecKey secretKey(context);

// construct a secret key structure associated with the context

const FHEPubKey& publicKey = secretKey;

// an "upcast": FHESecKey is a subclass of FHEPubKey

secretKey.GenSecKey(w);

// actually generate a secret key with Hamming weight w

addSome1DMatrices(secretKey);

// compute key-switching matrices that we need

EncryptedArray ea(context, G);

// constuct an Encrypted array object ea that is

// associated with the given context and the polynomial G

long nslots = ea.size();

// number of plaintext slots

PlaintextArray p0(ea);

PlaintextArray p1(ea);

PlaintextArray p2(ea);

PlaintextArray p3(ea);

// PlaintextArray objects associated with the given EncryptedArray ea
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p0.random();

p1.random();

p2.random();

p3.random();

// generate random plaintexts: slots initalized with random elements of Z[X]/(G,p^r)

Ctxt c0(publicKey), c1(publicKey), c2(publicKey), c3(publicKey);

// construct ciphertexts associated with the given public key

ea.encrypt(c0, publicKey, p0);

ea.encrypt(c1, publicKey, p1);

ea.encrypt(c2, publicKey, p2);

ea.encrypt(c3, publicKey, p3);

// encrypt each PlaintextArray

long shamt = RandomBnd(2*(nslots/2) + 1) - (nslots/2);

// shift-amount: random number in [-nslots/2..nslots/2]

long rotamt = RandomBnd(2*nslots - 1) - (nslots - 1);

// rotation-amount: random number in [-(nslots-1)..nslots-1]

PlaintextArray const1(ea);

PlaintextArray const2(ea);

const1.random();

const2.random();

// two random constants

// Perform some simple computations directly on the plaintext arrays:

p1.mul(p0); // p1 = p1 * p0 (slot-wise modulo G)

p0.add(const1); // p0 = p0 + const1

p2.mul(const2); // p2 = p2 * const2

PlaintextArray tmp_p(p1); // tmp = p1

tmp_p.shift(shamt); // shift tmp_p by shamt

p2.add(tmp_p); // p2 = p2 + tmp_p

p2.rotate(rotamt); // rotate p2 by rotamt

p1.negate(); // p1 = - p1

p3.mul(p2); // p3 = p3 * p2

p0.sub(p3); // p0 = p0 - p3

// Perform the same operations on the ciphertexts

ZZX const1_poly, const2_poly;

ea.encode(const1_poly, const1);

ea.encode(const2_poly, const2);

// encode const1 and const2 as plaintext polynomials

c1.multiplyBy(c0); // c1 = c1 * c0

c0.addConstant(const1_poly); // c0 = c0 + const1

c2.multByConstant(const2_poly); // c2 = c2 * const2
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Ctxt tmp(c1); // tmp = c1

ea.shift(tmp, shamt); // shift tmp by shamt

c2 += tmp; // c2 = c2 + tmp

ea.rotate(c2, rotamt); // rotate c2 by shamt

c1.negate(); // c1 = - c1

c3.multiplyBy(c2); // c3 = c3 * c2

c0 -= c3; // c0 = c0 - c3

// Decrypt the ciphertexts and compare

PlaintextArray pp0(ea);

PlaintextArray pp1(ea);

PlaintextArray pp2(ea);

PlaintextArray pp3(ea);

ea.decrypt(c0, secretKey, pp0);

ea.decrypt(c1, secretKey, pp1);

ea.decrypt(c2, secretKey, pp2);

ea.decrypt(c3, secretKey, pp3);

if (!pp0.equals(p0)) cerr << "oops 0\n";

if (!pp1.equals(p1)) cerr << "oops 1\n";

if (!pp2.equals(p2)) cerr << "oops 2\n";

if (!pp3.equals(p3)) cerr << "oops 3\n";

}

5.1 Encrypted Arrays

The code fragment in Figure 2 illustrates some of the finer points of using the classes PAlgebraMod,
EncryptedArray, and PlaintextArray. These classes share the same design structure: the class
itself is implemented as a smart pointer to a virtual class, and for the latter, concrete subclasses are
used which depend on the underlying data types used to represent polynomials and related types.

In line 8, context.alMod is an object of type PAlgebraMod, whose method getTag() returns a
value of the enumeration type PA_tag, which is either PA_GF2_tag or PA_zz_p_tag.

Lines 11 and 17 show how to dynamically “downcast” a PAlgebraMod object to a corresponding
type that is specialized to either GF2 or zz_p. With such a specialized object, one access some lower
level methods that are not directly available to a PAlgebraMod object; in particular, one can access
methods that directly receive or return references to objects of underlying polynomial type, GF2X or
zz_pX, rather than working with more generic polynomials of type ZZX. Lines 13 and 20 illustrate
this by calling the method getFactors(), which returns a reference to a vector of polynomials of
a type appropriate to the underlying polynomial type.

Line 19 illustrates that before accessing or using any polynomials represented by the zz_pX

type, the “global modulus context” for the zz_p type must be restored (this is an artifact of
how NTL implements such moduli). In NTL, the code zz_pBak bak; bak.save(); will save
a “backup” of the current modulus associated with zz_p in the local variable bak. After that,
the code alMod.restoreContext(); will restore the modulus associated with the plaintext space
(which is pr). When the object bak is destroyed at the end of its enclosing scope, as a side effect
of the corresponding destructor, the original modulus associated with zz_p will be restored.

Although there is no type corresponding to zz_pBak for GF2, the class PA_GF2 provides typedef’s
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1 long m, p, r;

2

3 FHEcontext context(m, p, r);

4

5 FHESecKey secretKey(context);

6 const FHEPubKey& publicKey = secretKey;

7

8 switch (context.alMod.getTag()) {

9

10 case PA_GF2_tag: {

11 const PAlgebraModDerived<PA_GF2>& alMod =

12 context.alMod.getDerived(PA_GF2());

13 const vec_GF2X& factors = alMod.getFactors();

14 }

15

16 case PA_zz_p_tag: {

17 const PAlgebraModDerived<PA_zz_p>& alMod =

18 context.alMod.getDerived(PA_zz_p());

19 zz_pBak bak; bak.save(); alMod.restoreContext();

20 const vec_zz_pX& factors = alMod.getFactors();

21 }

22 }

Figure 2: Using the EncryptedArray classes

that help facilitate template programming. Access to the specializations for EncryptedArray and
PlaintextArray is achieved in a similar manner. For more details, please see the documentation
in the header files PAlgebraMod.h and EncryptedArray.h.
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A Proof of noise-estimate

We observed empirically that for a random Hamming-weight-H polynomial s with coefficients
−1/0/1 we have E[|sr(τ)|2r] ≈ r! · Hr, where r is an integer and τ is the principal complex m-th
root of unity, τ = e2πi/m. Below we prove that this is indeed a good approximation when r is small
enough relative to H,m. To simplify the proof, we analyze the case that each coefficient of s is
chosen uniformly at random from −1/0/1, so that the expected Hamming weight is H. Also, we
assume that s is chosen as a degree-(m− 1) polynomial (rather than degree φ(m)− 1).

Theorem 1. Suppose m, r,H are positive integers, with H ≤ m, and let τ = e2πi/m ∈ C. Suppose
that we choose f0, . . . , fm−1 independently, where for i = 0, . . . ,m − 1, fi is ±1 with probability
H/2m each and 0 with probability 1 − H/m. Let f(X) =

∑m−1
i=0 fiX

i. Then for fixed r and
H,m→∞, we have

E[|f(τ)r|2] = E[|f(τ)2r|] ∼ r!Hr.

In particular, for H ≥ 2r2, we have∣∣∣∣E[|f(τ)2r|]
r!Hr

− 1

∣∣∣∣ ≤ 2r2

H
+

2r+1r2

m
.

Before proving Theorem 1, we introduce some notation and prove some technical results that
will be useful. Recall the “falling factorial” notation: for integers n, k with 0 ≤ k ≤ n, we define
nk =

∏k−1
j=0(n− j).

Lemma 1. For n ≥ k2 > 0, we have nk ≥ nk − k2nk−1.

Proof. We have

nk ≥ (n− k)k = nk −
(
k

1

)
knk−1 +

(
k

2

)
k2nk−2 −

(
k

3

)
k3nk−3 +− · · · .

The lemma follows by verifying that when n ≥ k2, in the above binomial expansion, the sum of
every consecutive positive/negative pair of terms in non-negative.
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Lemma 2. For n ≥ 2k2 > 0, we have nk ≥ nk/2.

Proof. This follows immediately from the previous lemma.

Next, we recall the notion of the Stirling number of the second kind, which is the number of
ways to partition a set of ` objects into k non-empty subsets, and is denoted

{
`
k

}
. We use the

following standard result: ∑̀
k=1

{
`

k

}
nk = n`. (1)

Finally, we define M2n to be the number of perfect matchings in the complete graph on 2n
vertexes, and Mn,n to be the number of perfect matchings on the complete bipartite graph on two
sets of n vertexes. The following facts are easy to establish:

Mn,n = n! (2)

and
M2n ≤ 2nn!. (3)

We now turn to the proof of the theorem. We have

|f(τ)2r| = |f(τ)r|2 = f(τ)rf(τ̄)r =
∑

i1,...,i2r

fi1 · · · fi2r · τ i1 · · · τ ir · τ−ir+1 · · · τ−i2r .

We use the usual notion of expected values of complex-valued random variables: if U and V are
real-valued random variables, then E[U+V i] = E[U ]+E[V ]i. The usual rules for sums and products
of expectations work just as for real-valued random variables. By linearity of expectation, we have

E[|f(τ)2r|] =
∑

i1,...,i2r

E[fi1 · · · fi2r ] · τ i1 · · · τ ir · τ−ir+1 · · · τ−i2r . (4)

Here, each index it runs over the set {0, . . . ,m− 1}. In this sum, because of independence and the
fact that any odd power of fi has expected value 0, the only terms that contribute a non-zero value
are those in which each index value occurs an even number of times, in which case, if there are k
distinct values among i1, . . . , i2r, we have

E[fi1 · · · fi2r ] = (H/m)k.

We want to regroup the terms in (4). To this end, we introduce some notation: for an integer
t ∈ {1, . . . , 2r} define w(t) = 1 if t ≤ r, and w(t) = −1 if t > r; for a subset e ⊆ {1, . . . , 2r}, define
w(e) =

∑
t∈ew(t). We call w(e) the “weight” of e. Then we have:

E[|f(τ)2r|] =
∑

P={e1,...,ek}

(H/m)k
∑′

j1,...,jk

τ j1w(e1)+···+jkw(ek). (5)

Here, the outer summation is over all k and all “even” partitions P = {e1, . . . , ek} of the set
{1, . . . , 2r}, where each element of the partition has an even cardinality. The inner summation is
over all sequences of indexes j1, . . . , jk, where each index runs over the set {0, . . . ,m−1}, but where
no value in the sequence is repeated — the special summation notation

∑′
j1,...,jk

emphasizes this
restriction.
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Since |τ | = 1, it is clear that∣∣∣∣E[|f(τ)2r|]−
∑

P={e1,...,ek}

(H/m)k
∑

j1,...,jk

τ j1w(e1)+···+jkw(ek)

∣∣∣∣ ≤ ∑
P={e1,...,ek}

(H/m)k(mk −mk) (6)

Note that in this inequality the inner sum on the left is over all sequences of indexes j1, . . . , jk,
without the restriction that the indexes in the sequence are unique.

Our first task is to bound the sum on the right-hand side of (6). Observe that any even partition
P = {e1, . . . , ek} can be formed by merging the edges of some perfect matching on the complete
graph on vertexes {1, . . . , 2r}. So we have∑

P={e1,...,ek}

(H/m)k(mk −mk) ≤
∑

P={e1,...,ek}

(H/m)kk2mk−1 (by Lemma 1)

≤ r2

m

∑
P={e1,...,ek}

Hk

≤ r2

m
M2r

r∑
k=1

{
r

k

}
Hk (partitions formed from matchings)

≤ r22rr!

m

r∑
k=1

{
r

k

}
Hk (by (3))

≤ r22r+1r!

m

r∑
k=1

{
r

k

}
Hk (by Lemma 2)

=
r22r+1r!

m
Hr (by 1).

Combining this with (6), we have∣∣∣∣E[|f(τ)2r|]−
∑

P={e1,...,ek}

(H/m)k
∑

j1,...,jk

τ j1w(e1)+···+jkw(ek)

∣∣∣∣ ≤ r!Hr · 2r+1r2

m
. (7)

So now consider the inner sum in (7). The weights w(e1), . . . , w(ek) are integers bounded by r
in absolute value, and r is strictly less than m by the assumption 2r2 ≤ H ≤ m. If any weight,
say w(e1), is non-zero, then τw(e1) has multiplicative order dividing m, but not 1, and so the sum∑

j τ
jw(e1) vanishes, and hence∑

j1,...,jk

τ j1w(e1)+···+jkw(ek) =

(∑
j1

τ j1w(e1)

)( ∑
j2,...,jk

τ j2w(e2)+···+jkw(ek)

)
= 0.

Otherwise, if all the weights are w(e1), . . . , w(ek) are zero, then∑
j1,...,jk

τ j1w(e1)+···+jkw(ek) = mk.

We therefore have ∑
P={e1,...,ek}

(H/m)k
∑

j1,...,jk

τ j1w(e1)+···+jkw(ek) =
∑

P={e1,...,ek}
w(e1)=···=w(ek)=0

Hk, (8)
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Observe that any partition P = {e1, . . . , ek} with w(e1) = · · · = w(ek) = 0 can be formed by
merging the edges of some perfect matching on the complete bipartite graph with vertex sets
{1, . . . , r} and {r + 1, . . . , 2r}. The total number of such matchings is r! (see (2)). So we have

r!Hr ≤
∑

P={e1,...,ek}
w(e1)=···=w(ek)=0

Hk ≤ r!Hr + r!
r−1∑
k=1

{
r

k

}
Hk

≤ 2r!
r−1∑
k=1

{
r

k

}
Hk (by Lemma 2)

= 2r!(Hr −Hr) (by (1))

≤ 2r!r2Hr−1 (by Lemma 1)

Combining this with (7) and (8) proves the theorem.
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