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Abstract. We present a very practical string-commitment scheme which
is provably secure based solely on collision-free hashing. Our scheme en-
ables a computationally bounded party to commit strings to an unbounded
one, and is optimal (within a small constant factor) in terms of interac-
tion, communication, and computation.

Our result also proves that constant round statistical zero-knowledge
arguments and constant-round computational zero-knowledge proofs for
NP exist based on the existence of collision-free hash functions.

1 Introduction

String commitment is a fundamental primitive for cryptographic protocols. A
commitment scheme is an electronic way to temporarily hide a value that cannot
be changed. Such a scheme emulates by means of a protocol the following two-
stage process. In Stage 1 (the Commit stage), a party called the Sender locks a
message in a box, and sends the locked box to another party called the receiver.
In Stage 2 (the De-commit stage), the Sender provides the Receiver with the key
to the box, thus enabling him to learn the original message.

Commitment-schemes are very useful building blocks in the design of larger
cryptographic protocols. They are typically used as a mean of flipping fair coins
between two players, and also play a crucial part in some zero-knowledge proofs
and in various types of signature schemes. Commitment schemes can also be
used in scenarios like bidding for a contract, where committing to a bid rather
than sending it in the clear can eliminate the risk of it being “leaked” to the
competitors.

It is easily seen that if both parties have unlimited computational power,
they cannot emulate the above process by just exchanging messages back and
forth. Thus, at least one of the two parties must be computationally bounded, so
that cryptographic technology can be applied. Indeed, many cryptographic im-
plementations of commitment schemes have been suggested in the literature. A
particularly important case of string commitment is when the Sender is computa-
tionally bounded, but the Receiver may have unlimited computational resources.
This is so for at least three good reasons:
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1. Bounded-to-unbounded commitment schemes allow one to use suitable short
security parameters even if the Receiver has a lot of computing power.

2. Bounded-to-unbounded commitment schemes protect the Sender even if the
underlying cryptographic assumption happens to be wrong (say, if the com-
putational difficulty of factoring is assumed, and the Receiver has a revolu-
tionary algorithm for factoring).1

3. There are theoretical applications in which one must use bounded-to-unbounded
commitment schemes to yield the desired result; for instance, to obtain
constant-round computational zero-knowledge proofs for NP (as shown in
[11]), or to obtain statistical zero-knowledge arguments for NP (as shown by
[13, 16]).

1.1 Previous Work

Many commitment schemes in the unbounded-receiver model are known based
on number-theoretic constructions. The first such scheme was suggested by Blum
[3] in the context of flipping coins over the phone. Blum described a commitment
scheme for one bit, which is based on the hardness of factoring. Blum’s scheme
calls for one or two modular multiplications and a k-bit commitment string for
every bit which is being committed to (where k is the size of the composite
modulus). A similar construction with the same efficiency parameters was later
described by Brassard and Crépeau [4].

A more efficient construction, which is also based on the hardness of factor-
ing, was introduced by Goldwasser, Micali and Rivest [12]. Their collision-free
permutation-pairs enables one to commit to long messages using about the same
amount of local computation as in Blum’s scheme, but to send only a k-bit com-
mitment string, regardless of the length of the message being committed to.
Since then, this construction was used in many other works (e.g. [2, 8–10, 14]).
One common problem of all these constructions is that they all rely on composite
numbers of a special form (i.e., product of two primes which are both 3 mod 4).
Thus they require a special initialization procedure in which these special-form
numbers are established. Recently, Halevi [14] described a method which uses
the GMR construction but avoids the need for this initialization step.

Several other constructions in the literature are based on the difficulty of
extracting discrete-logarithms. In particular, Pedersen [18] and Chaum, van-
Heijst and Pfitzmann [8], described a scheme in which the Sender can commit
to a string of length k (where k is the size of the prime modulus) by performing
two modular exponentiations, and sending a k-bit commitment string.

There were also a few implementations of commitment-schemes using more
generic complexity assumptions. Naor [15] presented a commitment scheme in
the bounded receiver (and unbounded sender) model, which can be implemented

1 Moreover, such schemes still protect the Receiver in case the underlying crypto-
graphic assumption is “semi-wrong” and the De-commit stage occurs soon thereafter
the Commit one (e.g., although the Sender knows how to factor, he can not do it in
just one hour).



using any pseudorandom-generator. As opposed to the previous schemes, how-
ever, Naor’s scheme is interactive, and it requires 2 rounds of communication to
commit to a string. The Sender in this scheme generates an O(n)-bit pseudoran-
dom string and sends an O(n)-bits commitment string in order to commit to an
n-bit message. In the unbounded receiver model - Naor, Ostrovki, Venkatesan
and Yung [16] described a construction which is based on any one-way permu-
tation. Their scheme is particularly inefficient, however, in that it calls for 2k
rounds of communication and one application of the one-way permutation for
each bit which is being committed to.

In addition to the above work, Several researchers showed that a commitment
scheme for a single bit can be implemented using “quantum computing devices”.
The first such scheme was the (flawed) scheme by Bennet and Brassard [1].
Better schemes were later suggested by Brassard and Crépeau [5] and Brassard,
Crépeau, Jozsa and Langlois [6].

1.2 Our result

We present a commitment scheme which is provably secure under a standard
assumption in the model in which the Sender is computationally bounded and
the Receiver is all-powerful. Moreover, this scheme is more efficient than many
other schemes discussed in the literature (even ones where both parties are com-
putationally bounded).

The assumption under which we prove the scheme secure is the existence of
collision-free hash functions. These are functions that map strings of arbitrary
length to fixed-length ones, so that it is computationally infeasible to find two
different pre-images of a common output string. Collision-free hash functions
(often referred to as message-digest functions) are widely believed to exist, and
are used extensively in cryptography, including in digital signatures schemes,
authentication schemes, etc.

Efficiency. Let us now elaborate on the efficiency of our scheme. As for any
other protocol, there are three important resources to consider: interaction, com-
munication, and computation.

Interaction. Protocols are typically interactive because their parties commu-
nicate by exchanging messages back and forth. Interaction is, however, very
expensive; because the number of rounds of communication heavily weigh on
the overall running time of a protocol. Notably, our scheme is non-interactive.
That is, in each stages the Sender sends a single message to the Receiver,
who needs not to reply at all.

Communication. Another important resource in a protocol is the number of
bits sent by its parties. In a commitment scheme, this is measured against the
length of the message being committed to (denoted by n), and the security
parameter (denoted by k).2

2 The security parameter may control the success probability of the Sender in changing
her message after having committed to it, as well as the probabilistic advantage the
Receiver may get about the message from its commitment.



It is easy to see that, in any commitment scheme, (1) the number of bits
exchanged during the Commit Stage must be at least k, and (2) that the
number of bits exchanged during the entire protocol must, on the average,
be at least n + k.
Our scheme requires that the Sender transmits O(k) bits in the Commit
Stage and n+O(k) bits in the De-commit Stage (where the constant hidden
in the O(·) notation is at most 9). Thus the overall communication complex-
ity of our scheme is optimal within a constant factor.

Computation. A third crucial resource is the amount of (local) computation
for the parties. Our scheme calls for (1) a single collision-free hashing of the
message; (2) one collision-free hashing of a random O(k)-bit string (typically
k = 128); and (3) one evaluation of a universal hash function on an O(k)-bit
string (typically by multiplying this string by a binary matrix). 3

The efficiency of our scheme is comparable to that of schemes which achieve
much weaker notion of security in weaker models. Indeed, it seems that even
in the bounded-to-bounded model, the most efficient (reasonable) strategy for
committing to a string σ consists of having the Sender transmit to the Receiver
the value F (σ), where F is a “good hash function”. However, such a strategy
is not secure enough. It is clear, for example, that upon receiving F (σ), even a
bounded Receiver may dismiss possible candidate strings σ′ from consideration
by checking that F (σ′) 6= F (σ). It is therefore perhaps surprising that our scheme
succeeds in being almost as efficient as the above “minimal” one, while offering
strong security in a more adversarial model.

We wish, however, to point out that our commitment scheme offers slightly
different security assurances than those offered by prior schemes in the unbounded-
receiver model. In those works, the Receiver had absolutely zero advantage in
guessing what the Sender’s message may be from its commitment. In our case,
instead, the Receiver may obtain some advantage, but this advantage is prov-
ably exponentially small in the security parameter. Overall a small price, and one
worth paying in order to have an efficient commitment scheme with a reasonable
assumption. In Figure 1 we sketch the parameters of some of the schems in the
literature, as compared to the scheme which we suggest in this paper.

Complexity-theoretic implications. Since our scheme works in the unbounded-
receiver model, it also has complexity-theoretic implications. Namely, using our
protocol in the constructions of [13, 16] yields constant round statistical zero-
knowledge arguments for NP, and using it in the construction of [11] yields
constant-round computational zero-knowledge proofs for NP.

Thus our result implies that both of these exist if collision-free hashing exists.
Note that constant-round protocols of both kinds were previously only known
to exist based on number-theoretic assumptions (since the bit-commitment in

3 See Section 2 For a definition and implementation of universal-hashing. We note that
evaluating a universal hash function is typically cheaper than evaluating a collision-
free hash function.



Commiting to an n-bit message with security-parameter k

the scheme works in model complexity assumption
# rounds
for commitment

GMR-based [14] unbounded-receiver factoring Blum-integers 1-round

Pedersen [18] unbounded-receiver discrete-log 1-round

Naor [15] bounded-receiver pseudorandom-generator 2-rounds

NOVY [16] unbounded-receiver one-way permutation 2k-rounds

This paper unbounded-receiver collision-free hashing 1-round

the scheme
length of
commit-string

local computations typical k =

GMR-based O(k) n modular multiplications 1024

Pedersen O(max(k, n)) O(max(k, n)) modular multiplications 1024

Naor O(max(k, n))
generating O(n) pseudorandom bits.
error-correction encoding of message

64 (?)

NOVY O(n · k)
n applications of one-way permutation
n · k2 XOR operations

≥ 64 ?

This paper O(k)
1 collision-free hashing of n-bit message.
1 collision-free hashing of O(k)-bit string.
1 universal-hashing of O(k)-bit string.

128

Fig. 1. Comparison between commitment-schemes

[16] uses many rounds). Hence this work proves that these protocols too can be
shown to exist based on generic complexity assumption.

1.3 A False Solution

Before presenting our scheme, it is useful to point out why simpler constructions
based on collision-free hashing do NOT work. For the purpose of the discussion
below we still rely on an intuitive understanding of what a commitment scheme
is and when it does or does not work. The reader is referred to Section 2 for a
more formal description.

Let MD (for Message-Digest) be a collision-free hash function. One example
of a false solution is provided by the “minimal” strategy discussed above (i.e.,
having the Sender commit to a message M simply by sending C = MD(M) to
the Receiver, and de-commit by simply sending M .)

In an effort to fix the flaw in this simple scheme, one may try to have the
Sender first pad the message M with a sufficiently-long random string R, and
then sends C = MD(M ◦ R) (where M ◦ R is the concatenation of M and R).
Unfortunately, this construction may not work either (even when the Receiver
is bounded). Indeed, it may be that MD, though collision-free, leaks some of
the bits of M . In addition, in our more difficult model, the unbounded Receiver
may get a good probabilistic advantage in guessing which of two messages M
and M ′ is more likely to be the committed one. For instance, he can compute



the size of the pre-image of C when the message is M , compare it to the size of
the pre-image of C when the message is M ′, and guess accordingly.

Of course, the latter attack can be prevented if MD has additional properties
besides being collision-free (e.g., if MD is “regular”). However, we do NOT
want to assume these additional properties in our construction, since the more
assumptions we make, the less likely it is that these assumptions are true. Yet
we wish to have an efficient commitment scheme whose security against an
unbounded Receiver is PROVABLE.

1.4 Our Construction in a Nutshell

Our solution is similar in spirit to the second construction above, but “adds
random bits” to the message in a more sophisticated way, thus enabling a proof
of correctness against an unbounded Receiver without ANY additional assump-
tions.

For clarity of presentation we present the construction in two steps. At first
we present a simple scheme in which the commitment string is of length O(n+k),
and then we show how to modify it so as to get an O(k)-bit commitment.

The first scheme. The first scheme uses universal hashing as a tool for
“adding randomness” to the message. Universal hashing was introduced by
Carter and Wegman [7] and it plays a very important role in many areas of
computer-science. Intuitively, a family of hash functions H = {h : A → B} is
universal if picking a function at random from H “has the same effect” as picking
a totaly random function from A to B. See Section 2 for a formal definition and
a construction of universal hash functions.

To commit to an n-bit message M , the Sender picks at random a string x
of length O(n + k) and a universal hash function h : {0, 1}O(n+k) → {0, 1}n so
that h(x) = M . Then she applies the collision-free hash function MD to the
random string x to get y = MD(x) and sends C = 〈y, h〉 to the Receiver. See
Figure 2 for an illustration of this scheme. Since there are known constructions
of universal hash functions in which it only takes O(n + k) bits to describe any
function in the family, then the length of the commitment string is O(n + k).

Getting an O(k) commitment string. To reduce the size of the commitment
string we observe that instead of applying the above scheme to the message M
itself, we can first apply the collision-free hash function to the message, thus
obtaining a k-bit string s = MD(M), and then have the sender commit to s.
In terms of the commitment-scheme above, this means that we have n = k and
therefore the commitment is of length O(k + k) = O(k) bits. See Figure 3 for an
illustration of the modified scheme.

2 Preliminaries

2.1 Universal Hashing

Universal hashing was introduced by Carter and Wegman [7] and it plays a very
important role in many areas of computer-science. Let S and T be two sets, and



Fig. 2. A simple commitment-scheme. h is a universal
hash-function and MD is a message-digest function.
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let H be a family of functions from S to T . We say that H is a universal family
of hash functions if for any two different elements s1 6= s2 in S and for any two
elements t1, t2 in T we have

Pr
h∈H

[h(s1) = t1 and h(s2) = t2] =
1
|T |2

For an easy example, when S = {0, 1}l and T = {0, 1}n we can have H =
{hA,b : A ∈ {0, 1}n×l, b ∈ {0, 1}n} where we define hA,b(r)

def= Ar + b (all the
operations take place in a linear space over GF (2)). To specify a function from
this family we need n(l+1) bits. A more efficient construction is to restrict A to be
a Toeplitz matrix. That is, A should be fixed on the diagonals, Ai,j = A1+1,j+1.
This way we can describe any function in H using only 2n + l − 1 bits.

2.2 Statistical Difference

Let D1,D2 be two probability distributions over the same base set S. The sta-
tistical difference between D1 and D2, denoted ‖D1 −D2‖, is defined as

‖D1 −D2‖ def=
∑

s∈S

∣∣∣∣Pr
D1

[s]− Pr
D2

[s]
∣∣∣∣

Notice that for any two distributions D1,D2, we always have 0 ≤ ‖D1−D2‖ ≤ 2.

2.3 Negligible Functions

We say that a non-negative function f(n) is negligible if as n gets larger, f(n)
goes to zero faster than any fixed polynomial in 1/n. That is, for any constant
c > 0 there is an integer nc so that for all n > nc, f(n) < 1/nc.

2.4 Feasible Algorithms

We say that a (possibly randomized) algorithm A is feasible, if the running-time
of A on inputs of length n is bounded by some polynomial in n.

2.5 Collision-Free Hashing

In this extended abstract we only provide an informal description of what a
collision-free hash function is. Intuitively, a collision-free hash function is a func-
tion MD : {0, 1}∗ → {0, 1}k (for some integer k) so that it is infeasible to find
two different strings x 6= y so that MD(x) = MD(y). That is, any feasible al-
gorithm can only succeed in finding two such strings with negligible probability
(where the probability is measured against k). For practical purposes, the SHA
algorithm [19] is often considered to be such a function (for k = 160).

From the formal point of view, however, we must have a family of functions
from {0, 1}∗ to {0, 1}k, and the infeasibility requirement is formulated with re-
spect to a function which is chosen at random from that family. Moreover, to
get a meaningful definition we must have infinitely many such families, each is
indexed by a different k.



2.6 Commitment Schemes

In this paper we do not try to give the most general definition possible for a com-
mitment scheme. Instead, we restrict ourself to only talk about non-interactive
schemes, which are the ones that we discuss.

The Syntactic Structure of a Commitment Scheme. A commitment
scheme is a protocol of two phases (the Commit and De-commit phases) between
two parties (the Sender and the Receiver). Both parties share a common input,
which is the security parameter of the system encoded in unary (we denote this by
1k). Besides 1k, the Sender also has another input, m, which is the message string
to which she wants to commit herself. When used inside some other protocol,
the parties may also have other inputs which represent their history at the point
where the commitment scheme is being invoked.

The parties execute the Commit phase first and the De-commit phase at
some later time. Typically, when used in another protocol, there will be some
other parts of that protocol between the Commit and the De-commit phases.

During the Commit phase the Sender sends to the Receiver a commit-string
c and during the De-commit phase the Sender sends to the Receiver a de-commit
string d. From c and d the Receiver computes the message m and then checks
that m is consistent with c and d.

In a non-interactive commitment scheme we can view the Sender as a prob-
abilistic algorithm Send which on input (1k,m) outputs a pair (c, d), and the
Receiver as another algorithm Receive which on input (1k, c, d) outputs either
a string m or the special symbol ⊥ (meaning that the strings c, d are not the
commit/de-commit strings for any message).

The Semantics of a Commitment Scheme. The semantics of a commitment
scheme should ensure that after the Commit phase the Receiver does not know
anything about the message yet, but the Sender can not change it anymore, and
that after the De-commit phase the Receiver is able to learn the message.

The definition of what it means for the Receiver “not to know anything about
m”, and for the Sender “not to be able to alter m” depends on the computational
power of the parties. In the context of this paper, the Sender is bounded to
probabilistic polynomial-time and the Receiver has unbounded computational
power. Thus, we require the following properties

Meaningfulness: If both the Sender and the Receiver follow their parts in the
protocol, then the message m which the Receiver computes from (c, d) after
the De-commit phase is equal to the Sender’s input message. That is,

∀k ∈ N ,m ∈ {0, 1}∗, Receive(1k,Send(1k,m)) = m

Secrecy: For any string m ∈ {0, 1}∗, let Ck(m) denote the distribution over
the commit-strings for m. That is, Ck(m) is the distribution on the first coor-
dinate of the pair which is obtained by running the algorithm Send(1k,m).
We require that

∀m1,m2 ∈ {0, 1}∗, ‖Ck(m1)− Ck(m2)‖ = O(2−k)



Non-Ambiguity: It is computationally infeasible to generate a commit-string
c and two de-commit strings d, d′ such that the Receiver would compute one
message m from (c, d) and a different message from (c, d′).
This means that for any feasible algorithm Send′, we have that

Pr


(c, d, d′) ← Send′(1k);

Receive(1k, c, d) 6=⊥,
Receive(1k, c, d′) 6=⊥,
Receive(1k, c, d) 6= Receive(1k, c, d′)


 = negligible(k)

where the probability is taken over the random coin-tosses of Send’ (and of
Receive if it happens to be probabilistic).

Remark 1. In the above definition we chose to control both the statistical
advantage that the Receiver gets from the Commit phase and the probability
that the Sender can cheat in the De-commit phase by a single security parameter
k. It is possible to have two different parameters controlling these two aspects.
The generalization of the scheme we suggest below for that case is trivial.

Remark 2. In the first scheme we present, the Secrecy property only holds
for messages of the same length. That is, the Receiver does learn the length of
the message from the commitment string. However, in the final construction this
does not matter, since we only use the first scheme to commit to messages of
some fixed length.

3 The First Scheme

In this section we present a commitment scheme in which the length of the
commitment string is O(n + k), where n is the length of the message being
committed to and k is the security parameter. Later, in Section 4 we show how
this can be improved to get an O(k) commitment string.

For the rest of this section, fix the message length n and the security param-
eter k and set L = 4k + 2n + 4. Let MD : {0, 1}L → {0, 1}k be a collision-free
hash function. That is, we assume that the Sender can not find x 6= y ∈ {0, 1}L

so that MD(x) = MD(y). Also, let H be a universal family of hash functions
from {0, 1}L to {0, 1}n.

The Commitment Scheme To commit to a message m ∈ {0, 1}n, the Sender
first picks a random r ∈ {0, 1}L and computes y = MD(r) and then picks a
random function4 h ∈ H for which h(r) = m.

The commit-string is c = 〈h, y〉, and the de-commit string is d = r. To de-
commit m the Sender sends r to the Receiver, who verifies that y = MD(r) and
computes m = h(r). See Figure 2 for an illustration of that scheme.

This scheme is indeed non-interactive and requires very little local computa-
tion. If we use the construction of universal hashing which we present in Section 2
4 In the construction of universal hashing which we describe in Section 2, this can be

done by picking A at random and computing b = m−Ax.



then the size of the commitment-string is |h|+ |y| = (L + 2k) + k = 7k + 2n =
O(k + n) as promised. The only thing left to do is to prove that this is indeed a
commitment scheme.

3.1 Analysis of the Scheme

The analysis if the scheme is fairly straightforward (though a little technical):
The non-ambiguity part is obvious, as it is clear that being able to open the
commitment in two different ways implies that the Sender can find a collision in
MD.

The less obvious part is to prove that the Receiver gets almost no statistical
advantage about m from the commit string. To show this, we need to show that
for any two messages m1,m2, the distributions Ck(m1), Ck(m2) are statistically
close (up to 2−k).

Theorem 1. For all k ∈ N and m1,m2 ∈ {0, 1}n, ‖Ck(m1)−Ck(m2)‖ < 2−k.

Proof. Before starting the proof, let us first set some notations: In the scheme
above, we denote by “Ck(m) = 〈h, y〉” the event that on input (1k,m), the
Sender sends 〈h, y〉 as the commitment string. For any y ∈ {0, 1}k we denote by
S(y) the size of the pre-image of y under MD. That is,

S(y) def= |MD−1(y)| = ∣∣{r ∈ {0, 1}L : MD(r) = y}∣∣

Also, for any y ∈ {0, 1}k,m ∈ {0, 1}n, h ∈ H we let T (y, h,m) denote the size of
the intersection between MD−1(y) and h−1(m). That is

T (y, h, m) def= |MD−1(y)∩h−1(m) | =
∣∣{r ∈ {0, 1}L : MD(r) = y & h(r) = m}

∣∣

The following proof is somewhat technical, but still rather straightforward.
For the sake of readability we divide it into four steps: In Step 1 we give an
explicit expression for the probability of the event Ck(m) = 〈h, y〉 it terms of
T (y, h, m). In Step 2 we use it to develop an explicit expression for ‖Ck(m1) −
Ck(m2)‖. In Step 3 we give an upper-bound on a key term of the last expression,
and in Step 4 we plug this upper bound back in the expression to get the final
bound on ‖Ck(m1)− Ck(m2)‖.
Step 1. We start the proof by looking at any y0 ∈ {0, 1}k,m0 ∈ {0, 1}n, h0 ∈ H
and evaluating the probability of the event Ck(m0) = 〈h0, y0〉. To do that, we
first consider some string r0 ∈ {0, 1}L and evaluate the probability of the event
Ck(m0) = 〈h0, y0〉 given that r0 was chosen by the Sender during the Commit
phase. We denote this probability by Pr[Ck(m0) = 〈h0, y0〉 | r0].

Clearly, if r0 /∈ MD−1(y0) or r0 /∈ h−1
0 (m0) then picking r0 rules out the pos-

sibility of outputting 〈h0, y0〉 as the commitment string. So it is left to consider
only those r’s that are in MD−1(y0) ∩ h−1

0 (m0).
For r0 ∈ MD−1(y0)∩h−1

0 (m0), after picking r0 it is guaranteed that y0 is part
of the commitment string. As for h0, in order for it to be in the commitment



string we need to “hit it” when we pick a function at random from the set
{h ∈ H : h(r0) = m0}. Since H is a uniform hash-family, we know that for all
r0,m0 the size of that set is exactly |H|/2n, so the probability of picking h0 from
it is exactly 2n/|H|. Thus we get for all m0, r0, h0, y0

Pr[Ck(m0) = 〈h0, y0〉 | r0] =
{

2n

|H| if r0 ∈ MD−1(y0) ∩ h−1
0 (m0)

0 otherwise
(1)

Now we can compute the probability that Ck(m0) = 〈h0, y0〉 as

Pr[Ck(m0) = 〈h0, y0〉]

=
∑

r∈{0,1}L

Pr[r] · Pr[Ck(m0) = 〈h0, y0〉 | r]

=
∑

r∈MD−1(y0)∩h−1
0 (m0)

2−L · 2n

|H|

=
2n

2L|H| ·
∣∣MD−1(y0) ∩ h−1

0 (m0)
∣∣ =

2nT (y0, h0,m0)
2L|H|

(2)

Step 2. For the rest of the prove, fix any m1,m2 ∈ {0, 1}n, and we try to give
an upper-bound on the statistical difference ‖Ck(m1)− Ck(m2)‖. By definition
of statistical difference, and using Equation 2, we have

‖Ck(m1)− Ck(m2)‖

=
∑

y,h

| Pr[Ck(m1) = 〈h, y〉]− Pr[Ck(m2) = 〈h, y〉] |

=
∑

y,h

2n

2L|H| | T (y, h, m1)− T (y, h, m2) |

= 2n−L
∑

y

1
|H|

∑

h

| T (y, h, m1)− T (y, h,m2) |

(3)

Step 3. In this step we prove an upper-bound on the expression

Ey
def=

1
|H|

∑

h

| T (y, h,m1)− T (y, h,m2) |

Notice that for any y ∈ {0, 1}k, Ey is the expected value of the quantity
|T (y, h, m1)− T (y, h, m2)| when h is chosen at random from H.

So fix any y0 ∈ {0, 1}k and consider its pre-image MD−1(y0). For any vector
r ∈ MD−1(y0) we define a random variable (over the random choice of h)

ρr =





1 h(r) = m1

−1 h(r) = m2

0 otherwise



Then for any given h we have by definition T (y, h, m1)− T (y, h,m2) =
∑

r ρr.
Now notice that for any r we have Eh[ρr] = 0 and Eh[ρ2

r] = 2
2n . Further-

more, since H is a universal-hash family then the ρr’s are pairwise independent.
Applying Chebyshev’s inequality we get for any δ > 0

Pr
h

[|T (y0, h,m1)− T (y0, h,m2)| > δ]

= Pr
h




∣∣∣∣∣∣
∑

r∈MD−1(y0)

ρr

∣∣∣∣∣∣
> δ


 <

2|MD−1(y0)|
δ2 · 2n

=
S(y0)

δ2 · 2n−1

(4)

In particular, if we substitute δ = (S(y0)2/2n−1)1/3 in Equation 4 we get

Pr
h

[∣∣∣T (y0, h, m1) T (y0, h,m2)
∣∣∣ >

(
S(y0)2

2n−1

)1/3
]

<
S(y0)
2n−1

·
(

2n−1

S(y0)2

)2/3

=
(
S(y0) · 2n−1

)−1/3

(5)

Using Equation 5 and the fact that |T (y0, h, m1)− T (y0, h, m2)| ≤ S(y0) for all
h, we can bound Ey0 by

Ey0 = Eh[|T (y0, h, m1)− T (y0, h, m2)|]

≤ S(y0) · Pr
h

[∣∣∣T (y0, h, m1) T (y0, h,m2)
∣∣∣ >

(
S(y0)2

2n−1

)1/3
]

+
(

S(y0)2

2n−1

)1/3

· Pr
h

[∣∣∣T (y0, h, m1) T (y0, h, m2)
∣∣∣ ≤

(
S(y0)2

2n−1

)1/3
]

≤ S(y0) ·
(
S(y0) · 2n−1

)−1/3
+

(
S(y0)2

2n−1

)1/3

= 2
(

S(y0)2

2n−1

)1/3

(6)

Step 4. We are now ready to give an upper bound on the statistical differ-
ence ‖Ck(m1) − Ck(m2)‖. We substitute the bound from Equation 6 into the
expression of Equation 3 to get

‖Ck(m1)−Ck(m2)‖ ≤ 2n−L
∑

y

2
(

S(y)2

2n−1

)1/3

= 2(2n+4)/3−L
∑

y

S(y)2/3 (7)

Recall that
∑

y S(y) = 2L (because every r ∈ {0, 1}k is in the pre-image of some
y). Since the function f(x) = x2/3 is concave then the expression

∑
y S(y)2/3

is maximized when all the S(y)’s are equal (i.e., when S(y) = 2L−k for all y).
Hence ∑

y

S(y)2/3 ≤ 2k · (2L−k
)2/3

= 2(k+2L)/3



Substituting this last bound in Equation 7, and using the fact that L = 2n+4k+4
we get

‖Ck(m1)− Ck(m2)‖ ≤ 2(2n+4)/3−L · 2(k+2L)/3 = 2(2n+k+4−L)/3 = 2−k (8)

4 Getting an O(k)-Bit Commitment String

In this section we describe briefly how to modify the above scheme so as to get
an O(k)-bit commitment scheme. On a message m, the Sender first computes
the k-bit string s = MD(m), and then apply the above commitment string to
the string s. To de-commit m the Sender sends both the message m and the
de-commit message of the first scheme. The Receiver checks that s is the string
being committed to in the first message and that MD(m) = s.

Since we execute the first scheme on a message of length k, then the commitment-
string is of length 7k + 2k = 9k, regardless of the message length.

It is immediate to prove that if MD is a collision-free hash function then
this scheme too is a commitment scheme. We omit this proof from this extended
abstract.

5 Open Problems

An interesting open problem is to reduce the assumptions needed for a com-
mitment scheme. In particular, it is not known whether universal one-way hash
functions (in the sense of Naor and Yung [17]) are sufficient for commitment
schemes in the unbounded receiver model. 5

Another open problem is to design efficient commitment schemes which have
nice homomorphism properties. In particular, in some scenarios it is desirable to
be able to compute a commitment for a + b (or a · b) from the commitments to
a and to b.
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tee members for their useful comments.

References

[1] C.H. Bennett and G. Brassard Quantum Cryptography: Public Key Distribution
and Coin Tossing. In Proc. of IEEE International Conf. on Computers, Systems,
and Signal Processing, IEEE, 1984, pages 175-179.

[2] G. Bleumer, B. Pfitzmann and M. Waidner. A Remark on a Signature Scheme
where Forgery can be Proved. In I.B. Damg̊ard, editor, Proc. of Eurocrypt’90,
Lecture Notes in Computer Science, volume 473, Springer-Verlag, 1990. pages 441–
445.

5 It is easy to show, however, that the collision-freeness assumption is necessary for
non-interactive commitment schemes in the unbounded receiver model, in which the
commitment string is shorter than the message itself.



[3] M. Blum. Coin flipping by telephone. In Proc. IEEE Spring COMPCOM, pages
133–137. IEEE, 1982.
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