
DCAS is not a Silver Bullet for Nonblocking Algorithm
Design

Simon Doherty‡ † David L. Detlefs† Lindsay Groves‡ Christine H. Flood†

Victor Luchangco† Paul A. Martin† Mark Moir† Nir Shavit† Guy L. Steele Jr.†

‡Victoria University of Wellington, PO Box 600, Wellington, New Zealand
†Sun Microsystems Laboratories, 1 Network Drive, Burlington, Massachusetts, USA

ABSTRACT
Despite years of research, the design of efficient nonblocking
algorithms remains difficult. A key reason is that current
shared-memory multiprocessor architectures support only
single-location synchronisation primitives such as compare-
and-swap (CAS) and load-linked/store-conditional (LL/SC).
Recently researchers have investigated the utility of double-
compare-and-swap (DCAS)—a generalisation of CAS that
supports atomic access to two memory locations—in over-
coming these problems. We summarise recent research in
this direction and present a detailed case study concern-
ing a previously published nonblocking DCAS-based double-
ended queue implementation. Our summary and case study
clearly show that DCAS does not provide a silver bullet for
nonblocking synchronisation. That is, it does not make the
design and verification of even mundane nonblocking data
structures with desirable properties easy. Therefore, our po-
sition is that while slightly more powerful synchronisation
primitives can have a profound effect on ease of algorithm
design and verification, DCAS does not provide sufficient
additional power over CAS to justify supporting it in hard-
ware.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming; D.2.4 [Software Engineering]: Software/Program
Verification; E.1 [Data]: Data Structures

General Terms
Algorithms, Design, Theory, Verification

Keywords
Multiprocessors, nonblocking synchronization, concurrent
data structures, linked lists, lock-free, DCAS, double-compare-
and-swap

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’04, June 27-30, 2004, Barcelona, Spain.
Copyright 2004 Sun Microsystems, Inc. All rights reserved.
ACM 1-58113-840-7/04/0006 .

1. INTRODUCTION
The traditional approach to designing concurrent algo-

rithms and data structures is to use locks to protect data
from corruption by concurrent updates. The use of locks en-
ables algorithm designers to develop concurrent algorithms
based closely on their sequential counterparts. However,
several well-known problems are associated with the use of
locks including deadlock, performance degradation in cases
of high contention, and priority inversion [7].

A variety of nonblocking progress conditions can be used
to characterise implementations that avoid the problems as-
sociated with locks [11, 14]. In this paper, we are mostly
concerned with lock-free implementations, though we briefly
discuss alternative conditions in Section 6. A lock-free im-
plementation guarantees that after a finite number of steps
of any operation on the data structure, some operation com-
pletes.

Herlihy [11] showed that it is possible to implement any
shared data structure in a lock-free1 manner using so-called
universal constructions, which transform sequential imple-
mentations into equivalent nonblocking ones. These uni-
versal constructions are based on universal synchronisation
primitives, such as compare-and-swap (CAS) or the load-
linked/store-conditional (LL/SC) pair, which are widely avail-
able in modern shared-memory multiprocessor architectures.
However, the generality offered by universal constructions
comes at a price: data structures implemented using them
are generally too expensive to be considered practical. As a
result, there has been significant interest in direct nonblock-
ing implementations of important data structures.

There have been some isolated successes in designing prac-
tical nonblocking implementations of some simple data struc-
tures using synchronisation primitives widely available in
today’s architectures [2, 25, 29]. However, these results de-
pend on nontrivial insights, and in general the design of
efficient nonblocking data structures remains difficult. As
explained further below, a key reason is that the synchroni-
sation primitives supported by current multiprocessor archi-
tectures (such as CAS and LL/SC) provide access to only a
single location at a time.

A typical way to use CAS is to read the contents of a loca-
tion and to then use CAS to attempt to atomically change
the location from the value read to some new value. If a
concurrent operation changes the contents of the location in

1Herlihy also showed this result for a stronger nonblocking
progress condition called wait-freedom.

216



the meantime, then the CAS fails to modify the location,2

so no harm is done and the operation can be retried. How-
ever, CAS cannot detect changes to locations other than the
one it accesses, so delicate and subtle algorithmic tricks are
often required to prevent processes from observing partial
results of operations that modify more than one location.

With the hope of making nonblocking algorithm design
significantly easier, researchers have recently investigated
the use of synchronisation primitives that access multiple
locations atomically. Much of this work has focussed on the
DCAS primitive, a natural generalisation of the CAS prim-
itive. DCAS allows a thread to atomically compare two
memory locations to respective “old” values and to store re-
spective “new” values to those locations if both comparisons
succeed. DCAS is defined precisely in Figure 1.

In Section 2, we discuss a number of DCAS-based re-
sults which represent significant progress in the design of
nonblocking data structures. However, we also show that,
despite these positive results, many of the DCAS-based al-
gorithms we discuss suffer from important limitations, and
are often complicated and difficult to verify. We therefore
believe that the availability of DCAS would not achieve the
goal of making the design of scalable and efficient nonblock-
ing algorithms easy.

In Sections 3 through 5, we present a detailed case study
that illustrates the difficulties encountered in designing and
verifying efficient nonblocking data structures using DCAS.
We consider a lock-free deque implementation, known as
“Snark” [3]. The Snark algorithm is one of a series of deque
implementations developed to examine the utility of the
DCAS operation. Although it was published with a de-
tailed, semi-formal proof of correctness, an attempt to verify
it more formally using PVS—a semi-automated verification
system—has since shown it to be incorrect [5]. Section 3
describes the Snark algorithm and its bugs, and Section 4
describes a corrected version of the Snark algorithm. The
corrected version has been verified with the help of PVS;
Section 5 provides an overview of the verification effort.
The design, correction, and eventual verification of this al-
gorithm was a substantial undertaking.

In Section 6, we present a very simple lock-free deque
implementation based on 3CAS (a compare-and-swap op-
eration that can access three locations atomically). The
substantial gap in difficulty between the DCAS- and 3CAS-
based algorithms supports our position that the additional
power of DCAS does not ease algorithm design sufficiently
to justify its inclusion in future architectures. Because this
case study addresses only a single example, we do not take
the position that 3CAS is sufficiently powerful. We address
this further and discuss other alternative approaches to sim-
plifying nonblocking algorithm design in Section 6.

We summarise our position and conclude in Section 7.

2. PREVIOUS DCAS-BASED RESULTS
In this section we discuss previous work that investigates

the effect of DCAS on the ease of designing efficient non-
blocking algorithms and data structures. We summarise
some useful advances in nonblocking methods and data struc-
tures. However, we also point out various limitations and

2CAS-based algorithm design is complicated by the fact that
this is not strictly true; see our discussion of the ABA prob-
lem in Section 3.

boolean DCAS(val *addr1, val *addr2,
val old1, val old2,
val new1, val new2) {

atomically {
if ((*addr1 == old1) &&

(*addr2 == old2)) {
*addr1 = new1;
*addr2 = new2;

return true;
} else return false;

}
}

Figure 1: Semantics of the DCAS operation

shortcomings of the results we discuss. Furthermore, as dis-
cussed below, most of these results are complicated and re-
quire subtle correctness proofs. In later sections, we argue
that many of these problems could be overcome using syn-
chronisation support slightly stronger than DCAS.

2.1 Historical overview
In early work in this area, Massalin and Pu constructed

a nonblocking operating system kernel using DCAS [24].
Greenwald and Cheriton built another kernel that uses sev-
eral DCAS-based data structures, and described a way to
support DCAS in hardware [7, 8]. This work stimulated
further investigation into the effect of using DCAS on the
difficulty of nonblocking algorithm design [1, 3, 4, 6, 23].

As discussed below, the use of DCAS in this research
has resulted in a number of interesting advances in tech-
niques for designing nonblocking algorithms and data struc-
tures. The study of DCAS-based algorithms has also led to
practical algorithms that do not depend on DCAS, and are
therefore applicable in current architectures. For example,
Detlefs et al. [4] show how to use DCAS to effect storage
reclamation for nonblocking data structures; this work sub-
sequently led Herlihy et al. to a practical solution that uses
only widely available synchronisation primitives [13].

2.2 Program Transformations Using DCAS
There has been some success in using DCAS to develop

interesting program transformations. We discuss two such
transformations below.

Greenwald [6] presents a technique called
two-handed-emulation, which allows many sequential pro-
grams to be transformed into nonblocking concurrent ver-
sions in a routine (but not mechanical) fashion. Using Green-
wald’s technique, a process wishing to execute an operation
on a data structure first registers a descriptor for that oper-
ation. This descriptor contains a “program counter” that
indicates how much of the operation has been executed.
Any process can help to complete the operation by using
DCAS to modify the data structure while simultaneously
testing and incrementing the program counter, thereby en-
suring that each step of the operation is executed exactly
once.

While many sequential algorithms can be straightforwardly
transformed into nonblocking versions using this technique,
direct application of two-handed emulation has important
drawbacks. First, local variables present a problem: be-
cause different threads may execute different steps of an
operation, local variables set by one step must sometimes
be made available to other threads. Greenwald discusses

217



some techniques for achieving this, but these techniques are
subtle and complicated, which undermines the goal of pro-
viding simple means for achieving nonblocking data struc-
tures. Furthermore, these techniques essentially amount to
converting local variables to shared ones, which introduces
significant overhead.

Second, parallelism can be compromised unless the im-
plementation obtained by applying two-handed emulation is
substantially modified. For example, Greenwald constructs
a basic hash table implementation in which processes regis-
ter operations in the header of the hash table. Thus, every
process wishing to insert an element must first complete any
other active operation before beginning its own, even if the
operations access distinct buckets. Greenwald refines this
basic implementation to one in which processes register de-
scriptors on each bucket (in the same way as a hash table
might be implemented with a separate lock for each bucket).
However, this refinement significantly complicates the resize
operation on hash tables. The resulting algorithm is as com-
plicated as many algorithms developed without two-handed
emulation, and so an effort to formally verify its correctness
would be a significant undertaking.

Detlefs et al. [4] present a storage reclamation technique
called lock-free reference counting (LFRC). LFRC allows un-
used storage to be reclaimed by maintaining reference counts
on each object. The key problem addressed in this work is
that an object may be deallocated after a new pointer to it
has been created, but before the object’s reference count has
been incremented to reflect this creation. LFRC addresses
this problem by using DCAS to confirm that some pointer
to the object exists while incrementing its reference count.

LFRC solves an important problem in nonblocking algo-
rithm design—deciding when objects can be safely deallo-
cated.3 However, LFRC has drawbacks. First, an expensive
DCAS is required for every load of a pointer, and space
must be reserved for reference counts on every object. Sec-
ond, LFRC cannot be applied to programs that use some
pointer operations, such as pointer arithmetic. Finally, be-
cause LFRC is based on reference counts, it does not reclaim
garbage that contains cycles. The authors of [4] suggest that
in many cases, it is possible to modify applications so that
they no longer produce garbage cycles. However, doing so
is not always straightforward, especially when dealing with
nonblocking algorithms (see [23] for a nontrivial example).

2.3 Data Structures Using DCAS
Massalin and Pu [24] presented the earliest collection of

concurrent DCAS-based data structures: LIFO stacks; FIFO
queues; and linked lists. All have significant shortcomings:
the stack implementation is not linearizable4 [8]; the stack
and queue are statically sized (i.e., their maximum size must
be known and fixed in advance); and the queue does not han-
dle boundary conditions in a nonblocking fashion. Later,
Greenwald [8] describes several DCAS-based nonblocking
data structure implementations, including array-based

3In some previous work (e.g. [25]), objects are never truly
deallocated but are instead placed on a special type-specific
free-list, thereby permanently preventing their reuse for
other types.
4Linearizability is the standard correctness condition for
nonblocking data structure implementations [17]. An imple-
mentation is linearizable if each operation appears to take
place atomically at some point between its invocation and
its response.

stacks and double-ended queues (deques), and dynamic-sized
queues and doubly linked lists.
Deques generalise stacks and queues by allowing push and

pop operations at both ends (see [1, 18] for a precise defini-
tion). Deques provide an excellent case study for nonblock-
ing synchronisation because they involve all of the intricacies
of stacks and queues, and offer the additional challenge of co-
ordinating opposite-end pop operations competing to claim
the last element. This task is further complicated by at least
two desirable properties of deque implementations: exploit-
ing the natural parallelism between opposite-end operations
when the deque contains several elements, and supporting
dynamic-sized deques that do not require an a priori bound
on the size of the deque.

Greenwald’s stack and queue implementations are
extremely simple, exploiting the fact that every operation
can be achieved by modifying only two locations (so each
operation can be effected with a single DCAS operation).
However, his deque has the disadvantages that it is stati-
cally sized and that operations at opposite ends of the deque
interfere, even when it contains several elements.

Several DCAS-based deque implementations that improve
on Greenwald’s have been proposed [1, 3, 23], and are dis-
cussed below. Three of these implement dynamic-sized de-
ques: a significant advantage for applications for which it is
impossible or inconvenient to fix in advance the maximum
deque size. In general, dynamic-sized data structures must
reclaim storage that is no longer required; this is particularly
challenging in nonblocking data structures. However, all of
the dynamic-sized deques discussed below rely on garbage
collection (GC) for reclamation. As a result, they are not
universally applicable.5

Agesen et al. [1] present two deque implementations. The
first, an array-based implementation, is very simple and uses
one DCAS for each operation in the absence of contention.
However, like Greenwald’s implementation, it has the disad-
vantage of being statically sized. The second is a dynamic-
sized implementation based on a doubly linked list. How-
ever, it requires two DCAS operations for every pop opera-
tion, and it “steals” a bit from every pointer to be used as
a flag, which limits its applicability.

The Snark algorithm [3] improves on the dynamic-sized
implementation of [1]: it uses only one DCAS for each un-
contended operation and does not need a spare bit in point-
ers. Unfortunately, it is incorrect as published, despite a
detailed manual proof. This demonstrates that the availabil-
ity of DCAS does not immediately admit solutions that are
simple enough to eliminate the significant effort required for
proving the correctness of algorithms based only on single-
location synchronisation primitives such as CAS. We address
the Snark algorithm in a detailed case study in the following
sections, describing bugs in the published algorithm, correc-
tions to the algorithm, and the verification of the corrected
version.

Martin et al. [23] present a dynamic-sized deque imple-
mentation that uses bulk allocation in order to reduce the
overhead associated with allocating a new node for every
push operation. They also present experiments that demon-
strate that this optimisation can improve performance sub-

5As discussed earlier, the recent line of research into DCAS-
based algorithms has led to effective mechanisms for non-
blocking memory management [4, 13]. However, using these
techniques results in additional space and time overhead.

218



stantially. However, while bulk allocation is a natural op-
timisation, integrating it with a nonblocking doubly-linked-
list deque implementation was a significant challenge, and
the resulting algorithm is even more complicated than its
predecessors.

In summary, while the investigation of the utility of DCAS
has resulted in a number of advances in nonblocking algo-
rithms and data structures, each of the results discussed
above has serious drawbacks. We argue in Section 6 that
DCAS is therefore not a silver bullet for making the design
of nonblocking algorithms and data structures easy. We also
argue that different synchronisation support would allow us
to achieve substantially simpler algorithms that overcome
these drawbacks. The case study presented below illustrates
this point in detail.

3. THE SNARK ALGORITHM
This section briefly describes the Snark algorithm [3] and

outlines two bugs in it. The purpose of this section is to show
that implementations of data structures that use DCAS can
suffer the same problems as implementations that use CAS,
even for fairly mundane structures.

The declarations and initial state for the Snark algorithm
are presented in Figure 2. Code for the original published
version is presented in Figures 3 and 4. Only the right-side
operations are presented here; the left-side operations are
symmetric and can be found (with a full discussion of the
algorithm) in [3].

The Snark algorithm uses a doubly linked list in which
each node is connected to its neighbours through its L and R

fields. The V field of a node contains the value represented
by that node.

When the deque is not empty, LeftHat (resp. RightHat)
points to the leftmost (resp. rightmost) node that contains
an unpopped value. Snark uses sentinel nodes on either
end of the deque to allow operations to detect when the
deque is empty (as explained below). Figure 5 illustrates a
deque containing three elements. Observe that the inward
pointers of the sentinels are self pointers. Snark maintains
the following key property, which characterises a state that
represents a nonempty deque:

Property 1: If the deque is not empty, then the following
property holds:

LeftHat→L �= LeftHat and
RightHat→R �= RightHat and
LeftHat→L→R= LeftHat→L and
RightHat→R→L= RightHat→R

Property 1 implies that if LeftHat→L= LeftHat or
RightHat→R= RightHat, then the deque is empty. Thus,
a self pointer in the outward field of a node pointed to by
LeftHat or RightHat can be used to detect when the deque
is empty. In fact, the Snark algorithm guarantees that if one
hat points to a node with such a self pointer, then so does
the other:

Property 2: If the deque is empty, then:

LeftHat→L= LeftHat and
RightHat→R= RightHat

The above implies that the empty deque can be repre-
sented by a variety of different state configurations. Figure

struct Node {valtype V; Node *L; Node *R}

Node *Dummy, *LeftHat, *RightHat;

initially
Dummy != null and
Dummy->L == Dummy and Dummy->R == Dummy and
LeftHat == Dummy and RightHat == Dummy

Figure 2: State variables and initialisation for the
Snark algorithm.

1 pushRight(val v) {
2 nd = new Node();
3 if (nd == null) return "full";
4 nd->R = Dummy;
5 nd->V = v;
6 while (true) {
7 rh = RightHat;
8 rhR = rh->R;
9 if (rhR == rh) {
10 nd->L = Dummy;
11 lh = LeftHat;
12 if (DCAS(&RightHat, &LeftHat,
13 rh, lh, nd, nd))
14 return "ok";
15 } else {
16 nd->L = rh;
17 if (DCAS(&RightHat, &rh->R,
18 rh, rhR, nd, nd))
19 return "ok";
20 }
21 }
22 }

Figure 3: Original pushRight operation [3].

1 val popRight() {
2 while (true) {
3 rh = RightHat;
4 lh = LeftHat;
5 if (rh->R == rh) return "empty";
6 if (rh == lh) {
7 if (DCAS(&RightHat, &LeftHat,
8 rh, lh, Dummy, Dummy))
9 return rh->V;
10 } else {
11 rhL = rh->L;
12 if (DCAS(&RightHat, &rh->L,
13 rh, rhL, rhL, rh)) {
14 result = rh->V;
15 rh->R = Dummy;
16 return result;
17 }
18 }
19 }
20 }

Figure 4: Original popRight operation [3].

219



C ?BA

RightHatLeftHat

?

?
?

Figure 5: A deque containing three elements.

?

LeftHat RightHat

Dummy

RightHat

? ?

LeftHat

?
?

(a) (b)

Figure 6: Empty deque states. (a) Generic empty
state. (b) Special case empty state.

6(a) illustrates one such state. Snark uses a global constant
Dummy such that Dummy→L= Dummy→R= Dummy always holds.
Observe that Figure 6(b) shows a special case of the empty
deque representations shown in Figure 6(a). This represen-
tation is used as an initial state, and can also be reached by
removing the last element from the list.

The pushRight operation (Figure 3) works in a straight-
forward way: the DCAS at line 12 attempts to change an
empty doubly linked list to a list containing the value being
pushed, using Dummy as a sentinel on both sides; the DCAS
at line 17 attempts to insert a new node (containing the ap-
propriate value) onto the right side of a nonempty list, using
Dummy as the new right sentinel.

Like pushRight, popRight (Figure 4) applies one of two
DCAS operations to modify the doubly linked list: the DCAS
at line 7 is meant to be applied when there is only one ele-
ment in the deque, setting LeftHat and RightHat to Dummy

so that both hats point to a node with appropriate self point-
ers (thereby making the deque empty). The DCAS at line 12
removes the node pointed to by RightHat from the doubly
linked list by storing a self pointer into its L field and shifting
RightHat onto the next node to the left. (Note that the re-
moved node becomes the new right sentinel. The transition
is illustrated by Figures 5 and 7.)

There are two problems with the algorithm as presented
in [3] (and reproduced in Figures 3 and 4). Both problems
cause the pop operations to behave incorrectly. First, a pop
operation can return empty even if the deque is never empty
during the execution of the pop operation. To see why, ob-
serve that a pop operation returns empty if the test at line
5 succeeds. The idea behind this is that if RightHat→R=
RightHat then the deque is empty (see Property 1). How-
ever, pop operations attempt to confirm this by testing the
local variable rh, which does not ensure that RightHat still
contains the value read from it earlier (in line 3 of Figure 4).
The following describes an erroneous execution:

• A process p invokes popRight while the deque is not
empty. It loads its rh variable and is then delayed.

• While p is delayed, other processes complete pushRight
and popLeft operations so that the node referenced by

C ?BA?

RightHat

?
?

LeftHat

Figure 7: After DCAS at line 12 of popRight.
Dashed lines show changed values.

p’s rh variable is popped from the deque by a popLeft

without the deque being empty in that period.

• p resumes execution and performs the test at line 5,
finding rh→R= rh (because rh has been removed by a
popLeft), and returns empty.

As the deque was never empty during p’s operation, this
execution is not linearizable.

Second, Snark allows a node to be removed from the dou-
bly linked list twice, causing its value to be returned twice.
A more detailed description of this bug can be found in [5].
Briefly, it is possible to construct executions in which the
following happens (the expression p.x means the value of
process p’s local variable x):

• Process p invokes popRight when the deque contains
more than one element and runs alone until it is about
to execute the DCAS at line 12, but is delayed before
it does so.

• Other processes execute pushRight and popLeft oper-
ations so that p.rh= LeftHat and the deque contains
more than one element. This can be achieved without
modifying p.rh→L.

• Some process q invokes and completes an execution of
popLeft, and this operation removes the node refer-
enced by p.rh. This also happens without modifying
p.rh→L.

• Other processes execute popRight operations so that
once again, p.rh= RightHat. The deque is now empty.
Finally, p executes its DCAS, which succeeds because
p.rh= RightHat and p.rh→L= p.rhL, and p returns
p.rh→V, which has already been returned by q.

The above-described bug is an instance of the ABA prob-
lem [26], which is well known in the context of CAS-based
algorithms. ABA describes the following phenomenon: a
process may read value A from a location and subsequently
use CAS to attempt to change the contents of the location
from A to some other value. Usually, the desired effect is
that the CAS should succeed only if the value of the location
has not changed since the previous read. However, CAS con-
firms only that the expected value A is in the location at the
time of the CAS. It is possible that, between the read and
the CAS, other processes change the value in the location
from A to B and subsequently back to A again, and that the
CAS therefore succeeds when we want it to fail. DCAS is
subject to exactly the same phenomenon, extended to two
locations, and that is the cause of the bug described above:
p reads a value in RightHat, and its subsequent DCAS suc-
ceeds even though the RightHat has moved off that node
and back onto it in the interim.

220



1 val popRight() {
2 while (true) {
3 rh = RightHat;
4 rhL = rh->L;
5 if (rh->R == rh) {
6 if (RightHat == rh) return "empty";
7 } else {
8 if (DCAS (&RightHat, &rh->L,
9 rh, rhL, rhL, rh)) {
10 result = rh->V;
11 if (result != "claimed"){
12 if (CAS(&rh->V, result, "claimed")) {
13 rh->R = Dummy;
14 return result;
15 } else return "empty";
16 } else return "empty";
17 }
18 }
19 }
20 }

Figure 8: Corrected popRight operation.

It is interesting to note that garbage collection (GC) elim-
inates some instances of the ABA problem. GC eliminates
instances of the ABA problem in which the value read is a
pointer that cannot be reintroduced to the location in ques-
tion before the object to which the pointer refers has been
reclaimed by the garbage collector and subsequently real-
located. The premature reclamation that would cause this
problem is prevented by GC because the process that intends
to perform a CAS (or DCAS) has a copy of the pointer in
its local variable, and therefore the object is not reclaimed
and reallocated until after the CAS attempt. While this is a
very useful trick in some cases, we caution the reader against
assuming that GC eliminates all instances of the ABA prob-
lem. As illustrated above, the ABA problem can arise even
in implementations that rely on GC.

4. A CORRECTED VERSION
Both of the above-described bugs can be fixed by modi-

fying the pop operations; the push operations are left un-
touched. Figure 8 presents the modified popRight opera-
tion. One modification has been made to the original Snark
algorithm that is not related to either bug: lines 6 to 9 of
the original algorithm (Figure 4) have been removed. As
noted above, the test at line 6 and the subsequent DCAS
at line 7 were intended to address the special case in which
the deque contains only one element. However, the DCAS
at line 12 handles this case correctly. Therefore, the single-
element deque need not be treated as a special case, and so
the code at lines 6 to 9 can be eliminated. As a result of
this eliminated special case, there is no longer any need for
processes to read or modify the opposite hat (LeftHat in
the case of processes popping from the right), so line 4 can
also be eliminated from the popRight operation in Figure 4.
This modification eliminates contention between pop oper-
ations and operations on the opposite end of the deque, and
should therefore improve performance.

The first bug—a popping process returning empty even
when the deque is never empty during the operation—is
solved by the extra test on line 6 of Figure 8. It is a property
of the Snark algorithm that once a node has a self pointer
in either of its L or R fields, that field will always contain
a self pointer. Therefore, if a process is about to execute

line 6, we know that rh→R= rh still holds, so by Property
1 above, if rh= RightHat holds, then the deque is empty.

The second bug—that nodes can be removed from the
deque more than once—is solved by lines 10 to 16 of Figure
8. The basic idea is to allow a node to be removed from
the data structure more than once, but to make processes
compete to return the value contained in it.6

After a process p removes a node from the list, p reads
the node’s V field (line 10), and attempts to use CAS to
atomically replace the value with a special claimed value
(line 12), unless the value is already claimed (line 11). If
this CAS is successful, p returns the replaced value (line 14).
If the value already contains claimed or if the CAS at line
12 fails, then some other process has already claimed the
value from this node, so p returns empty. Because claimed

is a special value that is never pushed, only one process can
succeed in its CAS on a given node. That process can safely
return the value in the node; processes that fail the CAS
return empty.

It may seem strange that a process returns empty when it
finds that some other process has claimed the value of the
node it removed from the list. However, it can be shown
that if two processes remove the same node, then the deque
is empty when the second successful DCAS is executed and
that this DCAS occurs during the execution of both oper-
ations. Thus, failing processes can return empty without
having to retry their whole operation (thereby avoiding the
contention that could be caused by that retry).

5. VERIFICATION OVERVIEW
The correctness of the modified algorithm has been ver-

ified using the PVS verification system [28]. It is straight-
forward to see that the algorithm is lock-free, so the proof
effort focussed on linearizability. A complete description of
the verification effort is in preparation, and is beyond the
scope of this paper. Here we give an overview of the struc-
ture of the verification and the chief difficulties encountered.
Because the modified algorithm is complicated, its verifica-
tion required substantial human input and insight into the
algorithm. As described in the next section, a slightly more
powerful synchronization primitive enables a much simpler
implementation that is easy to verify.

The verification of the corrected Snark algorithm is
achieved by modelling both the algorithm and the speci-
fication of a deque using I/O automata, and using simula-
tion proof techniques to prove that the algorithm automaton
implements the specification automaton. An I/O automa-
ton [20, 21] is a labelled transition system whose labels,
called actions, are classified as external (those that represent
invocations and responses of operations) or internal (those
that represent internal steps of operations). A trace of an
automaton is the sequence of external actions in some exe-
cution of that automaton. A concrete automaton C, which
models the algorithm, implements a specification automa-
ton S if every trace of C is a trace of S (so the automata
are externally indistiguishable).

One way to show that C implements S is to demonstrate

6This bug could also be eliminated by using the standard
technique of adding “version numbers” [25] to the LeftHat
and RightHat pointers. However, this would further restrict
the applicability of the algorithm because it would require
DCAS to access the pointer and the version number together
atomically.

221



a forward simulation from C to S. A forward simulation [22]
is a relation between the states of C and the states of S such
that for every step of C, there is a corresponding sequence
(possibly empty) of steps of S that preserves the relation
between the states in the two automata (i.e., if the pre-
states satisfy the relation then so too do the post-states).
The sequence of actions in S that corresponds to any step
of C must depend only on that step (i.e., the pre-state, the
action, and the post-state), and should include an external
action if and only if that action is the action in the step of
C under consideration. With a forward simulation from C
to S, it is easy to show by induction on the length of an
arbitrary execution of C that C implements S.

In the simple and natural abstract deque specification au-
tomaton S, the deque is represented by the sequence of val-
ues in the deque, and, in addition to the external invoca-
tion and response actions, S has a single internal action for
each operation, which represents that operation taking ef-
fect atomically. For example, when the deque is not empty,
the internal action for process p’s popRight operation atom-
ically removes the rightmost item from the sequence, and
records it for p’s response action to return. Unfortunately,
as discussed below, there is no forward simulation from the
(corrected) Snark automaton C to S.

Suppose there is a forward simulation from C to S. If
two processes executing pop operations remove the same
node from the doubly linked list, one of the two—call it q—
will eventually claim and return the value from the node.
Therefore, we must include the internal action of q’s pop
operation in the sequence of steps of S corresponding to
some step in the execution of C. We cannot do so at any step
before q claims the value, because we do not yet know which
process will claim it. However, a sequence of pop operations
that occurs after the node is removed, but before q claims the
value, may cause the deque to become empty. This would
require us to include q’s internal action in the sequence of
steps corresponding to some step of C that occurs before q
claims the value. Thus, there is no forward simulation from
C to S.

To overcome this problem, the verification introduces an
intermediate automaton I, which is carefully designed to al-
low a forward simulation from C to I, but also to admit
a verification that I implements S using a proof technique
known as backward simulation [22]. In contrast to forward
simulation proofs, backward simulations construct an exe-
cution of the specification automaton with the same trace as
an arbitrary finite execution of the algorithm automaton (in
our case the intermediate automaton I) by starting at the
last state of the execution and working backwards from that
state. Backward simulations are significantly more chal-
lenging than forwards ones. For this reason, the interme-
diate automaton I was designed to be as close as possible
to the specification automaton S, differing just enough to
allow a forward simulation from the algorithm automaton
C to I. Specifically, I is like S in that operations act on
an abstract sequence of values rather than a doubly linked
list, and values are atomically added to and removed from
that sequence; but it is like the Snark algorithm in that one
operation may “steal” a value removed from the sequence
by another operation, causing the operation whose value is
stolen to return “empty”. I is constructed so that values
can be stolen only if the abstract deque is empty at some
point during the execution of both operations. The back-

ward simulation from I to S shows that all traces of I are
also traces of S, and the forward simulation from C to I
shows that all traces of C are also traces of I. Thus, by
transitivity, C implements S.

Both the forward and backward simulation proofs were
achieved using the PVS verification system. PVS provides a
language (a typed high-order logic) for making assertions,
and a theorem prover that provides help in constructing
proofs and checking their validity. The human effort of the
verification consisted of defining the automata and the two
simulation relations using the PVS language, constructing
proofs that the relations satisfy the requirements of a sim-
ulation relation (forward for proving that C implements I
and backward for proving that I implements S), and guid-
ing the prover in validating these proofs. In addition to
preventing the simple human mistakes that are common in
manual proofs, the use of PVS substantially reduced the
burden of checking mundane details of the proof, particu-
larly in rechecking these details when earlier parts of the
proof changed as the proof was being developed. Nonethe-
less, PVS did not make it straightforward to construct and
validate the proofs: Considerable insight was required to
select the right specification automaton, to define the cor-
rect simulation relations, and to guide the theorem prover
in verifying that the relations indeed meet the requirements
for forward and backward simulations, respectively.

6. DISCUSSION
The case study presented above clearly illustrates that,

even using DCAS, the design and verification of nonblocking
implementations of some mundane data structures is still
difficult enough to provide publishable results. Below we
discuss some alternative directions for putting this cottage
industry out of business.

All of the complication of Snark can be avoided by using
a more powerful synchronisation primitive than DCAS. For
example, a compare-and-swap that operates on three inde-
pendent words (3CAS) can be used to atomically make both
pointers in a node become self pointers. The popRight op-
eration is shown in Figure 9; again the popLeft operation
is symmetric and the push operations are unchanged. By
using 3CAS in this way, it becomes impossible for a node to
be popped twice, and the verification becomes straightfor-
ward because the entire effect of a pop operation on shared
variables happens in a single atomic step. The operation
can be linearized to that point, allowing a simple forward
simulation proof to the natural specification automaton.

Another approach that can significantly simplify nonblock-
ing algorithm design is to consider a weaker nonblocking
progress property. The algorithms discussed in Section 2
are all lock-free. That is, processes are prevented from mak-
ing progress only by the progress of other processes. An
obstruction-free algorithm [14, 15] only guarantees that an
operation completes if it does not encounter interference
from a concurrent operation for a sufficient period of time.
This property is weaker than lock-freedom, because it does
not require progress in the case of repeated interference be-
tween two or more operations. The approach advocated by
the authors of [14, 15] is to combine obstruction-free imple-
mentations with orthogonal “contention managers”, which
attempt to facilitate the conditions needed for progress.

The weaker requirements of obstruction-freedom admit
implementations that are substantially simpler and more

222



1 val popRight() {
2 while (true) {
3 rh = RightHat;
4 rhL = rh->L;
5 rhR = rh->R;
6 if (rhR == rh) {
7 if (RightHat == rh) return "empty";
8 } else {
9 if (3CAS (&RightHat, &rh->L, &rh->R,
10 rh, rhL, rhR, rhL, rh, rh)) {
11 return result;
12 }
13 }
14 }

Figure 9: popRight operation using 3CAS.

efficient (at least in the absence of contention) than their
lock-free counterparts, and this has resulted in significant
progress in the implementation of nonblocking data struc-
tures, especially dynamic-sized ones [12, 14, 15, 19]. How-
ever, these implementations still depend on nontrivial in-
sights, and we do not believe that the obstruction-free ap-
proach alone will simplify the design of nonblocking algo-
rithms and data structures sufficiently that additional syn-
chronisation support is no longer desired.

The design of efficient nonblocking algorithms would be
significantly simplified by the use of synchronisation prim-
itives that are stronger than DCAS. For example, as dis-
cussed above, a simple and correct dynamic-sized deque im-
plementation similar in spirit to Snark can be constructed
with the use of 3CAS (i.e., compare-and-swap that accesses
three locations). This phenomenon is not isolated to the
Snark algorithm. The authors of [23] describe a naive deque
implementation admitting bulk allocation in which the data
structure can enter pathological states. Dealing with these
pathological states using DCAS complicated their algorithm
significantly, but this could have been avoided easily using
a 3CAS. Similarly, the dynamic-sized deque implementation
of [3] would not need to “steal” a bit from pointers if 3CAS
could be used to access the flag in a separate location.

Our intention here is not to start a new cottage industry
of algorithms based on 3CAS, but merely to point out that
the ability to access more locations can admit substantially
simpler solutions to a given problem. In general, it is easy to
imagine a need for compare-and-swap operations that can
access even more than 3 locations: If we want to “compose”
two operations (for example, to support the atomic trans-
fer of a value from one deque to another), then we need a
compare-and-swap that accesses the sum of the number of
locations accessed by the two operations being composed.
Therefore a general NCAS operation has been considered
by some researchers [8, 10, 12, 27].

Another alternative for synchronisation support is trans-
actional memory [16], which allows processes to make “ten-
tative” changes to shared memory and to then commit those
changes atomically. When two transactions seek to modify
overlapping sets of memory locations, a successful commit
by one transaction will cause the other transaction to fail
without modifying memory. Therefore, achieving a correct
implementation of a nonblocking data structure using trans-
actional memory is in principle not much more difficult than
achieving a sequential implementation. Transactional mem-
ory is more flexible than atomic multi-location update op-
erations such as DCAS and 3CAS, and it does not suffer

from the ABA problem because if a location is modified af-
ter a transaction reads from it and before that transaction
attempts to commit, then the transaction fails and does not
modify memory.

Recent experience with software implementations of trans-
actional memory [9, 15] shows that transactional memory
can be used to design simple nonblocking implementations
that outperform their lock-based counterparts. For example,
Herlihy et al. [15] present an implementation of a concurrent
linked-list-based set that is based on their dynamic software
transactional memory implementation. They also present
experimental results showing that this implementation out-
performs a coarse-grained locking implementation, even at
low levels of contention. Harris and Fraser [9] describe an-
other software transactional memory implementation, which
they use to implement a hash table. This transactional hash
table is always competitive with a fine-grained locking hash
table implementation and in some situations outperforms it
substantially.

Software implementations of NCAS and of transactional
memory using only single-location synchronisation primi-
tives such as CAS or LL/SC exist [10, 12, 27]. However,
despite recent progress towards making these implementa-
tions more efficient and more widely applicable [10, 12], they
are still complicated, and each multi-location operation or
transaction entails multiple CAS operations. It remains to
be seen whether these implementations (or future improved
implementations) can serve as the basis for practical non-
blocking algorithms and data structures. If not, hardware
support for these primitives may be needed before practical
and efficient nonblocking data structures are easy to design.

7. CONCLUDING REMARKS
We have argued that DCAS does not provide a “silver

bullet” for nonblocking algorithms and data structures: al-
gorithms based on DCAS share many of the disadvantages
of previous algorithms based on single-location synchronisa-
tion primitives such as CAS and LL/SC. In particular, the
algorithms are often complicated and subtle, requiring care-
ful correctness proofs. Furthermore, many of the algorithms
are achieved by relying on aspects of the execution envi-
ronment, which severely restricts their applicability. While
we have also argued that slightly stronger synchronisation
support does significantly simplify the design of nonblock-
ing algorithms, our intention in this paper is not to take a
position on what hardware support should be included in fu-
ture architectures. Instead, we hope to shift the focus from
DCAS and encourage researchers to consider the utility and
feasibility of other, stronger alternatives.

Apart from the lessons summarised above, the recent line
of research into DCAS-based algorithms has been valuable
for at least two other reasons. First, the techniques learned
for effecting operations while strictly limiting the number of
locations accessed are valuable even if stronger support for
synchronisation is available. Limiting the number of loca-
tions accessed by common operations improves performance
and scalability, but the ability to access more locations to
deal with exceptional circumstances avoids the complica-
tions we have observed in work based solely on CAS or
DCAS.

Second, as discussed earlier, the DCAS-based Lock-Free
Reference Counting methodology for nonblocking memory
management [4] provided insights that led directly to the

223



development of practical memory management mechanisms
that are applicable in current architectures [13].

8. REFERENCES
[1] O. Agesen, D. Detlefs, C. H. Flood, A. Garthwaite,

P. Martin, M. Moir, N. Shavit, and Guy L. Steele Jr.
DCAS-based concurrent deques. In Theory of
Computing Systems, volume 35, 2002.

[2] N. S. Arora, B. Blumofe, and C. G. Plaxton. Thread
scheduling for multiprogrammed multiprocessors. In
Proceedings of the 10th Annual ACM Symposium on
Parallel Algorithms and Architectures, 1998.

[3] D. Detlefs, C. H. Flood, A. Garthwaite, P. Martin,
N. Shavit, and G. L. Steele Jr. Even better
DCAS-based concurrent deques. In Proceedings of the
14th International Symposium on Distributed
Computing, pages 59–73, 2000.

[4] D. Detlefs, P. Martin, M. Moir, and G. L. Steele, Jr.
Lock-free reference counting. In Proceedings of the
20th Annual ACM Symposium on Principles of
Distributed Computing, August 2001.

[5] S. Doherty. Modelling and verifying non-blocking
algorithms that use dynamically allocated memory.
Master’s thesis, Victoria University Wellington, April
2003. http://www.mcs.vuw.ac.nz/~sdoherty.

[6] M. Greenwald. Two-handed emulation: How to build
non-blocking implementations of complex data
structures using DCAS. In Proceedings of the 21st
Annual Symposium on Principles of Distributed
Computing, 2002.

[7] M. Greenwald and D. Cheriton. The synergy between
non-blocking synchronization and operating system
structure. In Proceedings of the 2nd Symposium on
Operating System Design and Implementation, pages
123–136, 1996.

[8] M. B. Greenwald. Non-Blocking Synchronisation and
System Design. PhD thesis, Stanford University,
August 1999.

[9] T. Harris and K. Fraser. Language support for
lightweight transactions. In Proceedings of the 18th
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
2003.

[10] T. L. Harris, K. Fraser, and I. A. Pratt. A practical
multi-word compare-and-swap operation. In
Proceedings of the 14th International Conference on
Distributed Computing, 2002.

[11] M. Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languages and
Systems, 11(1):124–149, January 1991.

[12] M. Herlihy, V. Luchangco, and M. Moir.
Obstruction-free software NCAS and transactional
memory. Unpublished manuscript, 2002.

[13] M. Herlihy, V. Luchangco, and M. Moir. The repeat
offender problem: A mechanism for supporting
dynamic-sized, lock-free data structure. In Proceedings
of the 16th International Symposium on Distributed
Computing, October 2002.

[14] M. Herlihy, V. Luchangco, and M. Moir.
Obstruction-free synchronization: Double-ended
queues as an example. In Proceedings of the IEEE

International Conference on Distributed Computing
Systems, 2003.

[15] M. Herlihy, V. Luchangco, M. Moir, and W. Scherer.
Software transactional memory for dynamic-sized data
structures. In Proceedings of the 22nd Annual ACM
Symposium on Principles of Distributed Computing,
2003.

[16] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proceedings of 20th Annual International Symposium
on Computer Architecture, 1993.

[17] M. P. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and
Systems, 12(3):463–492, November 1990.

[18] D. E. Knuth. The Art of Computer Programming:
Fundamental Algorithms. Addison-Wesley, 2nd
edition, 1968.

[19] V. Luchangco, M. Moir, and N. Shavit. Nonblocking
k-compare-single-swap. In Proceedings of the ACM
Symposium on Parallel Architectures and Algorithms,
2003.

[20] N. Lynch. Distributed Algorithms. Morgan Kaufmann,
San Mateo, CA, 1996.

[21] N. Lynch and M. Tuttle. Hierarchical correctness
proofs for distributed algorithms. In Proceedings of the
Sixth Annual ACM Symposium on Principles of
Distributed Computing, pages 137–151, August 1987.

[22] N. A. Lynch and F. W. Vaandrager. Forward and
backward simulations – part I: untimed systems.
Information and Computation, 121(2):214–233,
September 1995.

[23] P. A. Martin, M. Moir, and Guy L. Steele, Jr.
DCAS-based concurrent deques supporting bulk
allocation. Technical Report TR-2002-111, Sun
Microsystems Laboratories, 2002.

[24] H. Massalin and C. Pu. A lock-free multiprocessor OS
kernel. Technical report, Columbia University, New
York, June 1991.

[25] M. Michael and M. Scott. Nonblocking algorithms and
preemption-safe locking on multiprogrammed shared
memory multiprocessors. Journal of Parallel and
Distributed Computing, 51(1):1–26, 1998.

[26] S. Prakash, Y. Lee, and T. Johnson. A non-blocking
algorithm for shared queues using compare-and-swap.
IEEE Transactions on Computers, 43(5):548–559,
1994.

[27] N. Shavit and D. Touitou. Software transactional
memory. In Distributed Computing, Special Issue,
volume 10, pages 99–116, 1997.

[28] The PVS Specification and Verification System,
http://pvs.csl.sri.com/.

[29] R. K. Treiber. Systems programming: Coping with
parallelism. Technical Report RJ 5118, IBM Almaden
Research Center, April 1986.

224


