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Abstract. The obstruction-free progress condition is weaker than pre-
vious nonblocking progress conditions such as lock-freedom and wait-
freedom, and admits simpler implementations that are faster in the un-
contended case. Pragmatic contention management techniques appear to
be effective at facilitating progress in practice, but, as far as we know,
none guarantees progress.
We present a transformation that converts any obstruction-free algorithm
into one that is wait-free when analyzed in the unknown-bound semisyn-
chronous model. Because all practical systems satisfy the assumptions of
the unknown-bound model, our result implies that, for all practical pur-
poses, obstruction-free implementations can provide progress guarantees
equivalent to wait-freedom. Our transformation preserves the advantages
of any pragmatic contention manager, while guaranteeing progress.

1 Introduction

Substantial effort has been made over the last decade in designing nonblocking
shared data structure implementations, which aim to overcome the numerous
problems associated with lock-based implementations. Despite this effort, de-
signs satisfying traditional nonblocking progress conditions, such as wait-freedom
and—to a lesser extent—lock-freedom, are usually complicated and expensive.

Significant progress in overcoming these problems has been achieved recently
by designing implementations that satisfy the weaker obstruction-free nonblock-
ing progress condition, which requires progress guarantees only in the (eventual)
absence of interference from other operations [16]. This weaker requirement al-
lows simpler implementations that perform better in the common uncontended
case. Recently Herlihy, Luchangco, Moir and Scherer [18] introduced a dynamic
software transactional memory (DSTM) package, which allows programmers to
develop obstruction-free data structures without reasoning about concurrency.

That obstruction-free data structures do not guarantee progress under con-
tention is not just a theoretical concern: they are observed to suffer from livelock
in practice. To combat this problem, obstruction-free implementations are com-
bined with contention managers [18], whose role is to facilitate progress when
necessary by allowing operations to run without interference long enough to com-
plete. While a number of contention managers have proved effective in practice
[18, 26, 27], as far as we know, none guarantees progress.



In this paper we show that the advantages of this pragmatic approach can
be exploited without giving up strong progress guarantees. We do so by showing
how to transform any obstruction-free algorithm so that it guarantees that ev-
ery operation eventually completes, given some very weak timing assumptions
about the target system. These assumptions are embodied by the unknown-bound

semisynchronous model of computation [9, 2]. Roughly speaking, this model as-
sumes that some bound exists on the relative execution rates of any two pro-
cesses in the system, but does not assume that the bound is known. All practical
systems satisfy this assumption.

Our transformation does not affect the behavior of the original algorithm
(except for a very small overhead) until some operation decides that it has run
for too long without completing. Furthermore, our transformation can be applied
to an obstruction-free algorithm combined with any valid contention manager
(i.e., one that preserves the obstruction-freedom of the algorithm; see [18] for
restrictions on contention managers), allowing us to take advantage of the prac-
tical benefits of a heuristic contention manager that does not guarantee progress,
without sacrificing progress guarantees.

Considering obstruction-free implementations significantly reduces the bur-
den on designers of data structures (and software transactional memory im-
plementations) by eliminating the need to ensure progress under contention.
Furthermore, designers of contention managers for obstruction-free implementa-
tions have a great deal of latitude because contention managers can change the
timing behavior of an execution arbitrarily without causing safety requirements
to be violated. This is because the obstruction-free implementations are proved
safe in an asynchronous model of computation, in which processes may execute
arbitarily fast or slow or even stop executing all together. Therefore, contention
manager designers are free to experiment with a wide range of heuristics for
controlling contention, and in particular can exploit timing information avail-
able in the target system, for example to delay an operation to prevent it from
interfering with another.

The idea of combining an algorithm that ensures the required safety proper-
ties in an asynchronous model, but does not guarantee progress, with a mech-
anism that exploits timing information about the execution environment to en-
sure progress is not new. For example, failure detectors [7, 19] can be used with
asynchronous consensus algorithms to guarantee progress in the face of failures.
Similarly, the Disk Paxos algorithm [12] employs a leader election algorithm to
ensure progress.

Although these approaches are similar in spirit to the obstruction-free ap-
proach, there are differences both in motivation and in acceptable solution ap-
proaches. First, research on failure detectors focuses on fault tolerance. It is
known to be impossible to tolerate the failure of even a single process in some
asynchronous environments, including message passing environments and shared
memory systems in which memory can be accessed only using read and write
operations [11, 20]. In such environments, it is necessary to exploit synchrony in



the system to solve fundamental problems such as consensus. Failure detector
research aims at characterizing and separating out this synchrony.

In contrast, research on obstruction-free algorithms has focused on modern
shared-memory multiprocessors, which support strong synchronization primi-
tives, such as compare-and-swap (CAS). It has long been understood that we
can implement any shared data structure so that it can tolerate process crashes
in such environments, even in an asynchronous model [15]. Thus, recent work
on the obstruction-free approach to implementing nonblocking data structures is
not motivated by fault tolerance, but by performance, simplicity of design, and
separation of concerns: we achieve simpler implementations that perform better
in the common uncontended case, while separating the design of mechanisms for
achieving progress (e.g., contention managers) from the design of the underlying
obstruction-free algorithm that guarantees the required safety properties.

The Disk Paxos algorithm [12] uses a consensus algorithm to agree on transi-
tions of a replicated state machine, but the consensus algorithm does not guar-
antee progress under contention. Therefore, the algorithm uses a leader election
algorithm, and processes take steps of the consensus algorithm only when they
believe themselves to be the leader. The leader election algorithm eventually
ensures that exactly one process is the leader (provided some reasonable as-
sumptions about system “stability” are eventually satisfied), and thereby ensures
progress. This can be viewed as a form of contention management. However, such
use of a leader election algorithm as a contention manager is not acceptable in
the design of shared data structures, because it eliminates concurrency in the
common case. This is natural in the case of Disk Paxos, because concurrent op-
erations trying to reach consensus necessarily synchronize with each other, but
operations on shared data structures should be able to proceed in parallel when
they do not conflict. Therefore, we have taken care to design our transforma-
tion so that it uses its original contention manager as long as it is effective, and
only attempts to serialize operations if this contention manager proves ineffec-
tive. This way, we guarantee that every operation eventually completes, while
continuing to exploit the natural concurrency between nonconflicting operations.

To our knowledge, the only other work aimed at providing strong progress
guarantees for obstruction-free algorithms is due to Guerraoui, Herlihy, and
Pochon [14]. They present a simple contention manager and prove that it en-
sures that every transaction completes after a bounded delay. However, their
contention manager is blocking, which means a single thread failure can prevent
further progress by any other transaction, and common events, such as thread
preemptions, can prevent progress for long periods of time.

Scherer and Scott [26] developed the timestamp contention manager based
on the ideas used by our transformation, but have not made any claims about
whether or under what circumstances it ensures progress. Furthermore, their ex-
periments show that this contention manager does not perform as well as others
they have invented. Our transformation shows that we can choose a contention
manager based on its performance in common cases, rather than in the worst
case, without giving up guaranteed progress.



2 Background

Before presenting our transformation, we introduce background on nonblock-
ing shared data structures, nonblocking progress conditions, and asynchronous
and semisynchronous models of computation, and briefly describe some previous
results that use semisynchronous models to analyze implementations.

2.1 Nonblocking shared data structures

Today, almost all concurrent programs rely on blocking constructs such as mu-
tual exclusion locks for synchronizing access to shared data structures. The use
of locks introduces numerous problems, including deadlock, performance bot-
tlenecks, and priority inversion [15]. Researchers have investigated nonblocking
implementations in the hope of eliminating these problems.

An implementation of a shared data structure in a shared memory system
provides a representation of the data structure using base objects in the system
and provides algorithms for the processes of the system to perform operations

on the data structure.
Most nonblocking algorithms are based on an optimistic approach to syn-

chronization, in which an operation is attempted but may fail to take effect if
another concurrent operation interferes. In this case, the operation is retried. A
significant source of difficulty is guaranteeing that an operation is not retried
repeatedly without ever completing. Generally, stronger nonblocking progress
guarantees are more difficult to achieve, and require algorithms that are more
complicated and more expensive.

2.2 Nonblocking progress conditions

A wait-free implementation [15] guarantees that when a process performs an op-
eration, it completes the operation in a finite number of its own steps, regardless
of how fast or slowly other processes execute, and even if they stop executing
permanently. Such strong progress guarantees are attractive, but often very dif-
ficult to achieve. Most wait-free algorithms in the literature are too complicated
and too expensive to be useful in practice.

A lock-free implementation guarantees that, starting from any state in which
one or more processes are executing operations, some process will complete its
operation within a finite number of steps. This weaker progress condition usually
makes lock-free implementations easier to design than wait-free ones. Simple
and practical lock-free implementations have been achieved for a small number
of important data structures, such as stacks [28], queues [25], and workstealing
deques [3, 8]. Lock-freedom has generally been regarded as acceptable because
well known contention management techniques such as backoff [1] are effective
at reducing contention when it arises, thereby achieving progress in practice,
despite the lack of the strong theoretical guarantee of wait-freedom.

Herlihy, Luchangco, and Moir [16] recently proposed the obstruction-free ap-
proach to implementing nonblocking operations for shared data structures. An



obstruction-free implementation simply guarantees that a process will complete
its operation if it eventually executes enough steps without interference from
other processes. Thus, if two or more processes repeatedly interfere with each
other, it is possible that none of them completes its operation. The view is
that, because contention management techniques are required to achieve accept-
able performance when contention arises anyway, it is unnecessary to make any

progress guarantees in the case of contention between concurrent operations.
Several examples in the literature suggest that by providing only obstruction-

free progress guarantees, significantly simpler implementations can be achieved
that are faster in the uncontended case [16, 18, 21]. Furthermore, although an
implementation that is obstruction-free but not lock-free will exhibit livelock if
contention is ignored, experience shows that livelock can be effectively avoided
by using simple contention management strategies [18, 26, 27].

2.3 Asynchronous and semisynchronous models of computation

Concurrent algorithms are usually required to ensure safety properties regardless
of how the steps of concurrent processes are interleaved, and (therefore) regard-
less of how fast or slowly any process executes. In other words, these algorithms
should be proved safe in an asynchronous model of computation, in which the
steps of processes are scheduled by an adversarial scheduler that can perform
many steps of a process consecutively or perform them arbitrarily far apart. In
such a model, it is impossible for a process to determine whether another process
has crashed (i.e., stopped executing) or is just running very slowly.

Of course, in reality, there are limits to how fast or slowly processes can run.
Some algorithms exploit assumptions about these limits to improve in various
ways on algorithms designed for an asynchronous model. Such algorithms are an-
alyzed in synchronous or semisynchronous models of computation that embody
timing assumptions made about the target execution environment.

In a synchronous model, all processes execute steps at the same rate (until
they crash). This means that if a process does not perform a step when it should,
other processes can detect that it has crashed. However, if the correctness of a
particular algorithm depends on all (noncrashed) processes performing steps
precisely at a given rate, then tiny variations in execution rate, for example due
to one processor becoming warmer than another, can cause incorrect behavior.
Consequently, such algorithms are not generally practical.

Semisynchronous models relax these timing requirements, allowing processes
to execute steps at different rates, and even allowing the rate at which a partic-
ular process executes to vary over time. However, it is assumed that there is an
upper bound on the relative execution rates of any pair of processes. To be more
precise, let us define the maximum step time of an execution as the longest time
between the completion times of consecutive steps of any process. We define min-

imum step time analogously. Semisynchronous models assume that there exists
a finite R such that in all executions, the ratio of the maximum and minimum
step times is at most R. The evaluation of algorithms in semisynchronous models
has value for the practitioner because real-world systems satisfy the assumptions



of such models, and for the theoretician in understanding the limitations of as-
sumptions on timing.

In the known-bound model [2, 23], R is known by all processes. This implies
that a process can wait long enough to guarantee that every other process has
taken another step, or has crashed. Some algorithms that depend on knowledge
of R can violate safety requirements in systems that do not satisfy the assumed
bound. Conservative estimates of the bound for a particular system generally
translate into worse performance, so designers are faced with a dangerous trade-
off in using such algorithms. Thus, such algorithms are not easily portable and
indeed may violate safety properties in a given system if the system stops satis-
fying the timing assumptions, for example due to increased temperature.

In the unknown-bound model [9, 2], R is not known to processes. Thus, in
contrast to the synchronous and known-bound models, a process does not know
how long to wait to ensure that every other process that has not crashed takes
a step. Therefore, it is not possible for a process to detect that another process
has crashed. Nonetheless, it is possible for algorithms to wait for increasingly
longer periods, and to exploit the knowledge that eventually all noncrashed
processes have taken a step during one of these periods. It has been shown that
an algorithm that is correct in this model does not violate any of its safety
properties even in an asynchronous model, although progress properties proved
in the unknown-bound model may not hold in an asynchronous model [2].

Algorithms that are correct in an asynchronous model are nonetheless some-
times analyzed in a synchronous or semisynchronous model, thus allowing the
analysis to depend on various timing assumptions. Because contention manage-
ment techniques such as backoff fundamentally rely on operations waiting for
some time before retrying, they cannot be meaningfully analyzed in an asyn-
chronous model of computation, which has no notion of time whatsoever.

In this paper, we show how to transform any obstruction-free implementation
into one that guarantees that every process performing an operation eventually
completes the operation, when analyzed in the unknown-bound model. Thus, the
resulting algorithm is safe to use in any non-real-time application, and guarantees
that every operation eventually completes in any practical system.

2.4 Some previous work using semisynchronous models

The study of algorithms in semisynchronous models has a long tradition in the
distributed-computing community [9, 10, 5]. Semisynchronous algorithms have
received considerable attention in the context of shared-memory synchronization.
For lack of space, we mention only a few of the results.

Fischer [10] was the first to propose a timing-based mutual exclusion algo-
rithm. He showed that in a known-bound model, there is a simple and efficient
algorithm that uses a single shared variable. This overcame the linear space
lower bound of Burns and Lynch [6] for asynchronous systems. Unfortunately,
that algorithm violates safety properties if the timing assumptions of the model
are violated. Lynch and Shavit [23] improved on Fischer’s algorithm: in the same
model, they presented an algorithm that uses two variables and ensures safety



even if the timing assumptions are violated, although progress is not guaranteed
in this case. Gafni and Mitzenmacher [13] analyzed this algorithm under various
stochastic timing models. Alur, Attiya, and Taubenfeld [2] showed that timing-
based mutual exclusion and consensus algorithms with constant time complexity
in the uncontended case exist in the unknown-bound model.

Counting networks [4] have also been evaluated in semisynchronous models.
Lynch, Shavit, Shvartsman, and Touitou [22] showed that some nonlinearizable
uniform counting networks are linearizable when analyzed in the known-bound
model. This result was generalized by Mavronicolas, Papatriantafilou, and Tsigas
[24] to nonuniform networks under a variety of timing assumptions. In these
results, the linearizability of the implementations depends on timing.

3 Our transformation

We begin by explaining some simple ways of ensuring progress for each opera-
tion under various different assumptions and models. These ideas motivate the
techniques used in our algorithm, and explain why they are needed under the
weak assumptions of the unknown-bound model.

First, if we assume that processes never crash, then it is easy to ensure
progress, even in an asynchronous model. This is achieved by ordering opera-
tions using timestamps, and having each process wait until all earlier operations
in this order have completed before performing the steps of its own operation.
This ensures that operations do not encounter contention with concurrent opera-
tions while executing the original obstruction-free algorithm, so every operation
eventually completes. However, if a process does crash while it has a pending
operation, no operations with later timestamps can be executed.

In a synchronous model, if all processes know an upper bound B on the
number of consecutive steps that must be taken by a process to ensure that
its operation completes, then it is easy to guarantee that each operation com-
pletes, even if processes can crash. The idea is, again, to order operations using
timestamps and to have processes refrain from executing their operations while
operations with earlier timestamps are pending. However, unlike in the asyn-
chronous model, a process can detect if another process crashed while executing
its operation: If the operation is not completed within B steps, then the process
executing it must have crashed. In this case, a process can execute its operation
when every operation with an earlier timestamp has either completed, or will
not interfere further because the process executing it has crashed.

A similar approach works in the known-bound model. In this case, a process
that is waiting for an earlier operation than its own to complete must conserva-
tively assume that it is executing its steps at the maximum speed allowed by the
model relative to the speed of the process executing the earlier operation. Thus,
in this model, a process must wait for RB steps in order to be sure that another
process has had time to execute B steps, where R is the ratio of the maximum
and minimum step times.



However, this technique does not work in the unknown-bound model because
the bound R is not known to processes. In fact, in this model, it is impossible for
one process to determine that another process has crashed. Nonetheless, ideas
similar to those described above can be used to guarantee that each operation
excuted by a process that does not crash will complete even in the unknown-
bound model. The key idea is that, rather than delaying for an amount of time
that is known to be long enough to allow another process to take B steps, a
process can delay for increasingly long periods of time while an earlier operation
has not completed.

Each time a process performs b steps of its operation, for some constant b,
it increments a counter. This serves the dual purposes of demonstrating that it
has not crashed, and therefore must be deferred to by later operations, as well
as increasing the number of steps for which later operations must defer. After
a process has waited the required number of steps for an earlier operation that
has not been completed and whose counter has not been incremented, it assmues

that the process performing the earlier operation has crashed. Consequently, it
removes the timestamp of that operation from the order of operations under
consideration and proceeds.

In case the process executing the earlier operation has, in fact, not crashed,
it reinstates its operation into the order (using its original timestamp). With
this arrangement, if a process does crash while executing an operation, then it is
removed from consideration and does not prevent progress by other operations.
On the other hand, if an operation fails to complete because others did not wait
long enough, then they will wait longer next time, so the bound provided by the
model ensures that eventually they will wait long enough and the operation will
complete.

It is important to note that the worst-case bound R for a particular system
might be very high, because a process might occasionally take a very long time
between two steps. However, the algorithm has no knowledge of the bound, so
the bound does not affect the performance of the algorithm; only the particular
execution behaviour does. Furthermore, even if an unlikely sequence of events
causes progress to take a long time, this has no bearing on how the algorithm
behaves in the future. In practice, processes run at approximately the same speed
most of the time. Therefore, the effective bound will generally be small, even if,
in theory, the actual bound is very large.

This description captures the key idea about how we transform implemen-
tations to provide progress guarantees in the unknown-bound model. However,
because this strategy essentially amounts to eliminating concurrency, it would
not be practical if simply used as described. Therefore, our transformation does
not employ this strategy until some process determines that it has executed the
original operation too long without making progress.

The algorithm produced by applying our transformation to an obstruction-
free algorithm OFAlg (which may include a contention manager) is shown in
Figure 1. We now describe the transformed algorithm in more detail.



invoke(op)
N1: if ¬PANIC
N2: execute up to B steps of OFAlg
N3: if op is complete
N4: return response
N5: PANIC← true

// panic mode
P1: t← fetch-and-increment(C)
P2: A[i]← 1

repeat
P3: T[i]← t

// find minimum time stamp; reset all others
P4: m← t

k ← i

P5: for each j 6= i

P6: s← T[j]
P7: if s < m

P8: T[k]←∞
P9: m← s

k ← j

else
P10: if (s <∞) T[j]←∞
P11: if k = i

repeat
P12: execute up to b steps of OFAlg
P13: if (op is complete)
P14: T[i]←∞
P15: PANIC← false
P16: return response
P17: A[i]← A[i] + 1
P18: PANIC← true
P19: until (T[i] =∞)

else
repeat

P20: a← A[k]
P21: wait a steps
P22: s← T[k]
P23: until a = A[k] or s 6= m

P24: if (s = m) T[k]←∞
P25: until (op is complete)

Fig. 1. The transformation



The PANIC flag is used to regulate when the strategy to ensure progress
should be used. When a process invokes an operation, it first checks this flag
(N1) and, if it is false, executes up to B steps of its original algorithm (N2),
where B is a parameter of the transformation. If these steps are sufficient to
complete its operation, the process simply returns (N3–N4). Observe that, if
every operation completes within B steps, then the PANIC flag remains false,
so the transformed algorithm behaves exactly like the original one, except that
it must read one variable, which is likely to be cached. Thus, by choosing B

appropriately, we ensure that our transformation introduces very little overhead,
if the original contention manager is effective.

If its operation fails to complete within B steps, a process sets the PANIC

flag to true (N5). Thereafter, until the flag is reset, all new operations see that
the PANIC flag is true and begin to participate in the strategy to ensure progress
(P1–P25).

A process pi participating in this strategy first acquires a timestamp (P1),
initializes its activity counter A[i] (P2), and then repeats loop P3–P25 until its
operation is complete. In each iteration of this loop, pi announces its times-
tamp in T [i] (P3) and then searches for the minimum (i.e., oldest) timestamp
announced by any process. All timestamps that are not ∞, but are larger than
the minimum timestamp it observes, are replaced by ∞ (P4–P10).

If pi determines that it has the minimum timestamp (P11), then it repeatedly
takes up to b steps of the original algorithm (P12) (where the constant b is a
parameter of the algorithm), increments its activity counter (P17), and resets
the PANIC flag to true (P18). Note that the PANIC flag may have been set
to false because some other process completed its operation (P15). Resetting
the PANIC flag to true ensures that new operations continue to participate
in the strategy to ensure progress. Process pi repeats these steps until either
its operation finishes (P13–P16) or some other process overwrites its timestamp
with ∞ (P19). The latter case indicates that this other process has read an older
timestamp (P8, P10) or thinks that pi may have crashed (P24).

If process pi determines that some other process pk has the minimum times-
tamp (P11), then pi enters loop P20–P23. During each iteration of this loop, pi

reads pk’s activity counter A[k] (P20) and waits for the indicated number of steps
(P21). If pk’s timestamp is overwritten during this period of time, then either
pk has completed its operation, another process thought that pk had crashed,
or another process saw an operation with a smaller timestamp. In this case, pi

exits the loop (P23). If pk’s timestamp is not overwritten by another value and
pk does not increment its activity counter during this period of time, then pk

may have crashed, so pi exits the loop (P23) and overwrites pk’s timestamp with
∞ (P24).

In the next section, we present a careful proof of correctness for the resulting
algorithm. Specifically, we show that, if process pi has the smallest timestamp
among all active processes with uncompleted operations, then pi eventually com-
pletes its operation. Before doing so, we informally explain why our strategy
ensures this property.



Eventually, in every iteration of loop P3–P25, process pi enters loop P12–P19.
Meanwhile, other processes determine that pi’s timestamp is the minimum and
wait for a number of steps indicated by pi’s activity counter A[i]. If pi doesn’t
complete its operation within b steps, then it increments its activity counter
A[i]. Eventually, no process resets T [i] to ∞, and A[i] becomes large enough so
that each process executing loop P20–P23 waits long enough at P21 so that pi

increments A[i] during this period. Thus, eventually, all other active processes
remain in loop P20–P23, so no process except pi executes steps of the original
algorithm. Hence, obstruction freedom guarantees that pi eventually completes
its operation.

On the other hand, if pi crashes, then the other processes will no longer see
A[i] change, will stop waiting for pi, and will overwrite its timestamp with ∞.
Then the way is clear for the next operation in timestamp order (if any) to make
progress.

An important feature of the transformed implementation is that, if the orig-
inal contention manager is occasionally ineffective, causing the PANIC flag to
be set, the PANIC flag will be reset and normal execution will resume, provided
the original contention manager does not remain ineffective. To see this, recall
that every operation by a noncrashed process eventually completes, and note
that each operation either sees that PANIC is false and does not set it (N1), or
sets it to false before returning (P15). Furthermore, PANIC is set to true only
by an operation that has executed either B or b steps of the original algorithm
(including the original contention manager) without completing. Thus, with ap-
propriate choices for B and b, we ensure that our mechanism continues to be
invoked only if the original contention manager continues to be ineffective.

4 Proof of Correctness

The transformed algorithm performs the original algorithm on the original shared
objects and does not apply any other steps to those objects. Thus, the algorithm
produced by applying our transformation to any obstruction-free algorithm re-
tains the semantics of the original algorithm.

It remains to prove that the resulting algorithm is wait-free (assuming that
there is a bound on the ratio of the maximum time and minimum time between
steps of each process), that is, when the algorithm is executed in a system that
satisfies the assumptions of the unknown-bound semisynchronous model, every
operation executed by a process that does not crash eventually completes.

We begin with the following lemma, which we use in the wait-freedom proof.

Lemma 1. If two different processes pi and pj are both in the loop at lines

P12–P19, then either T[i] = ∞ or T[j] = ∞.

Proof. Before reaching line P12, each process must set its entry in T to the
timestamp of its operation at line P3. Consider the last time each process did
so, and suppose, without loss of generality, that pj did so before pi did. Because
pi reached line P12, pi must have set T[j] to ∞ (or read that T[j] = ∞) after it



set T[i], which was after the last time pj set T[j] to a finite value. Since no other
process sets T[j] to anything other than ∞, we have T[j] = ∞, as required.

The proof of wait-freedom is by contradiction. Suppose there is an execution
in which some process takes an infinite number of steps after invoking an oper-
ation, but does not complete the operation. All the claims that follow are made
within the context of this execution. Throughout the proof, we use vi to denote
the local variable v in the code of process pi.

Any process that does not complete its operation within B steps must have
seen (or set) PANIC = true. Then, on line P1, it must have applied fetch-and-
increment to C and received a unique timestamp for this operation.

Let t∗ be the minimum timestamp of any operation that does not complete
even though the process pi∗ that invoked this operation takes an infinite number
of steps. Thus, after some point in the execution, any process that gets a times-
tamp less than t∗ for an operation it invokes either completes the operation or
stops taking steps. Let X be any point in the execution after pi∗ first sets T [i∗]
to t∗ on line P3 and such that, after X, no process takes a step of an operation
with timestamp less than t∗.

Lemma 2. Infinitely often, pi∗ is not in loop P12–P19.

Proof. Suppose that there is some point Y after X in the execution such that
after Y , pi∗ remains in loop P12–P19 forever. Note that pi∗ is the only process
that can set T [i∗] to a value other than ∞. However, pi∗ does not do so after Y .
Thus, if T [i∗] is set to ∞ after Y , then it will remain ∞. But then pi∗ will exit
the loop, contrary to assumption. Hence, from Y onwards, T [i∗] = t∗.

By Lemma 1, any other process pj that is in loop P12–P19 after Y has
T [j] = ∞ and so, if it continues to take steps, would eventually exit this loop.
Process pj cannot re-enter this loop after leaving it: since tj > t∗ = T [i∗], when
pj next reaches line P11, kj 6= j . Thus, there is some point after Y in the
execution after which no process except pi∗ performs steps in loop P12–P19.

Since the only line that sets PANIC to false is P15, which pi∗ does not
perform after Y (or else pi∗ would complete its operation), and since pi∗ sets
PANIC to true every iteration, eventually PANIC remains true. Thus, eventually,
no process will perform N2. Thus, there is some point after Y in the execution
after which no process except pi∗ performs steps of OFAlg.

Note that, in each iteration of loop P12–P19, process pi∗ executes b steps of
OFAlg. Since OFAlg is obstruction free, this implies that pi∗ eventually completes
its operation and exits the loop by performing line P16. This contradicts the
assumption that pi∗ remains in loop P12–P19 from Y onwards.

When pi∗ performs line P4 during its last operation, it sets mi∗ to t∗. There-
after, mi∗ is always less than or equal to t∗, since the only other way mi∗ gets
assigned a value is when lines P7–P9 are performed. After X, every process pk

with T [k] < t∗ takes no steps, so A[k] does not change. Thus, if pi∗ enters loop
P20–P23 (with ki∗ 6= i∗ and mi∗ < t∗), it will eventually leave it, because A[ki∗ ]
does not change. Furthermore, if no other process sets T [ki∗ ] to a different value



(either to the timestamp of a later operation performed by pki∗
or to ∞), then

pi∗ will set T [ki∗ ] to ∞ on line P24.
Because pi∗ takes an infinite number of steps and remains in loop P3–P25,

but does not remain in loop P12–P19 or loop P20–P23 forever, pi∗ performs lines
P3–P10 infinitely often. Thus, eventually, T [j] > t∗ for all j 6= i. In each iteration
of loop P3–P25 starting after this point, pi∗ performs a successful test on line P11
and executes loop P12–P19. In each iteration of this inner loop, pi∗ increments
A[i∗]. Thus A[i∗] increases without bound. Furthermore, the number of steps
performed between successive increments of A[i∗] is bounded by a constant.

Eventually, from some point Z on, T [j] > t∗ for all j 6= i∗ and A[i∗] is greater
than R times the maximum number of steps between successive increments of
A[i∗], where R is the ratio of the maximum and minimum step times. If, after
Z, process pj begins loop P20–P23 with kj = i∗, then, while it is waiting on
line P21, process pi∗ increments A[i∗]. Hence, if pj exits this loop, sj 6= mj and
pj does not set T [i∗] to ∞. The only other places that T [i∗] can be set to ∞

are lines P8, P10, and P14. By assumption, process pi∗ does not complete its
operation, and so does not execute P14. Note that after X, T [i∗] contains only
t∗ or ∞. If process pj reads T [i∗] = ∞ on line P6, then it performs no write on
line P10. Otherwise process pj reads T [i∗] = t∗ on line P6. In this case, it sets
mj = t∗ on line P9. After Z, T [k] > t∗ for all k 6= i∗, so process pj does not
write to T [i∗] on line P8. Thus, eventually, no process writes ∞ to T [i∗]. Since
process pi∗ writes t∗ to T [i∗] infinitely often, T [i∗] has value t∗ from some point
onwards.

But this implies that, eventually, process pi∗ enters and never exits loop
P12–P19. This contradicts Lemma 2.

5 Concluding remarks

We have shown that any obstruction-free algorithm can be transformed into a
new algorithm that is wait-free when analyzed in the unknown-bound semisyn-
chronous model of computation. Our transformation can be applied to an
obstruction-free implementation, together with any valid contention manager,
and the transformed implementation behaves like the original as long as the
chosen contention manager is effective. Because real-world systems satisfy the
assumptions of the model we consider, our result shows that obstruction-free
algorithms and ad hoc contention managers can be used in practice without
sacrificing the strong progress guarantees of wait-freedom.

In an earlier version of our transformation, a process incremented its activity
counter only once in each iteration of the outer loop P3–P25, rather than each
iteration of loop P12–P19. Hugues Fauconnier pointed out that this transforma-
tion applies only to bounded obstruction-free algorithms. These are algorithms
having a finite bound such that every operation completes within that number
of steps after it encounters no more interference. In contrast, the algorithm we
present here can be applied even if an execution contains an operation and an
infinite sequence of different configurations with increasing time requirements for



completion of that operation when running alone. In other words, our algorithm
ensures that every operation executed by a noncrashed process eventually com-
pletes, even if the underlying obstruction-free algorithm only guarantees eventual

completion after encountering no more interference.
Our result can easily be made stronger from both practical and theoreti-

cal points of view. First, as presented, our transformation introduces the need
to know of the maximum number of processes that use the implementation.
However, this disadvantage can easily be eliminated using results of Herlihy,
Luchangco and Moir [17]. From a theoretical point of view, our use of the fetch-
and-increment can be eliminated by using standard timestamping techniques
based on an array of single-writer-multiple-reader registers. Thus, our transfor-
mation is applicable in a wide range of shared memory systems, as it does not
depend on any special support for synchronization.
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