
Split-Ordered Lists: Lock-Free Extensible Hash Tables

ORI SHALEV

Tel-Aviv University, Tel-Aviv, Israel

AND

NIR SHAVIT

Tel-Aviv University and Sun Microsystems Laboratories, Tel-Aviv, Israel

Abstract. We present the first lock-free implementation of an extensible hash table running on current
architectures. Our algorithm provides concurrent insert, delete, and find operations with an expected
O(1) cost. It consists of very simple code, easily implementable using only load, store, and compare-
and-swap operations. The new mathematical structure at the core of our algorithm is recursive split-
ordering, a way of ordering elements in a linked list so that they can be repeatedly “split” using a
single compare-and-swap operation. Metaphorically speaking, our algorithm differs from prior known
algorithms in that extensibility is derived by “moving the buckets among the items” rather than “the
items among the buckets.” Though lock-free algorithms are expected to work best in multiprogrammed
environments, empirical tests we conducted on a large shared memory multiprocessor show that even in
non-multiprogrammed environments, the new algorithm performs as well as the most efficient known
lock-based resizable hash-table algorithm, and in high load cases it significantly outperforms it.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming; D.4.1 [Operating Systems]: Process Management—Synchronization; con-
currency; multiprocessing/multiprogramming/multitasking; E.2 [Data Storage Representation]—
Hash-table representations

General Terms: Algorithms, Theory, Performance, Experimentation

Additional Key Words and Phrases: Concurrent data structures, hash table, non-blocking synchro-
nization, compare-and-swap

This work was performed while N. Shavit was at Tel-Aviv University, supported by a Collaborative
Research Grant from Sun Microsystems.
A preliminary version of this article appeared in Proceedings of the 22nd Annual ACM Symposium
on Principles of Distributed Computing (Boston, MA), ACM, New York, 2003, pp. 102–111.
Copyright is held by Sun Microsystems, Inc.
Authors’ address: School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel 69978, e-mail:
orish@post.tau.ac.il; shanir@sun.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 0004-5411/06/0500-0379 $5.00

Journal of the ACM, Vol. 53, No. 3, May 2006, pp. 379–405.

380 O. SHALEV AND N. SHAVIT

1. Introduction

Hash tables, and specifically extensible hash tables, serve as a key building block of
many high performance systems. A typical extensible hash table is a continuously
resized array of buckets, each holding an expected constant number of elements,
and thus requiring an expected constant time for insert, delete and find operations
[Cormen et al. 2001]. The cost of resizing, the redistribution of items between old
and new buckets, is amortized over all table operations, thus keeping the average
complexity of any one operation constant. As this is an extensible hash table,
“resizing” means extending the table. It is interesting to note, as argued elsewhere
[Hsu and Yang 1986; Lea (e-mail communication 2005)], that many of the standard
concurrent applications using hash tables require tables to only increase in size.”

We are concerned in implementing the hash table data structure on multiprocessor
machines, where efficient synchronization of concurrent access to data structures
is essential. Lock-free algorithms have been proposed in the past as an appeal-
ing alternative to lock-based schemes, as they utilize strong primitives such as
CAS (compare-and-swap) to achieve fine grained synchronization. However, lock-
free algorithms typically require greater design efforts, being conceptually more
complex.

This article presents the first lock-free extensible hash table that works on current
architectures, that is, uses only loads, stores and CAS (or LL/SC [Moir 1997])
operations. In a manner similar to sequential linear hashing [Litwin 1980] and fitting
real-time1 applications, resizing costs are split incrementally to achieve expected
O(1) operations per insert, delete and find. The proposed algorithm is simple to
implement, leading us to hope it will be of interest to practitioners as well as
researchers. As we explain shortly, it is based on a novel recursively split-ordered
list structure. Our empirical testing shows that in a concurrent environment, even
without multiprogramming, our lock-free algorithm performs as well as the most
efficient known lock-based extensible hash-table algorithm due to Lea [2003], and
in high-load cases, it significantly outperforms it.

1.1. BACKGROUND. There are several lock-based concurrent hash table imple-
mentations in the literature. In the early eighties, Ellis [1983, 1987] proposed an
extensible concurrent hash table for distributed data based on a two level locking
scheme, first locking a table directory and then the individual buckets. Michael
[2002a] has recently shown that on shared memory multiprocessors, simple algo-
rithms using a reader-writer lock [Mellor-Crummey and Scott 1991] per bucket
have reasonable performance for non-extensible tables. However, to resize one
would have to hold the locks on all buckets simultaneously, leading to significant
overheads. A recent algorithm by Lea [2003], proposed for java.util.concurrent,
the JavaTM Concurrency Package, is probably the most efficient known concurrent
extensible hash algorithm. It is based on a more sophisticated locking scheme that
involves a small number of high level locks rather than a lock per bucket, and
allows concurrent searches while resizing the table, but not concurrent inserts or
deletes. In general, lock-based hash-table algorithms are expected to suffer from
the typical drawbacks of blocking synchronization: deadlocks, long delays, and

1 In this article, by real-time we mean soft real-time [Buttazzo et al. 2005], where some flexibility on
the real-time requirements is allowed.

Split-Ordered Lists: Lock-Free Extensible Hash Tables 381

priority inversions [Greenwald 1999]. These drawbacks become more acute when
performing a resize operation, an elaborate “global” process of redistributing the
elements in all the hash table’s buckets among newly added buckets. Designing
a lock-free extensible hash table is thus a matter of both practical and theoretical
interest.

Michael [2002a], builds on the work of Harris [2001] to provide an effective
compare-and-swap (CAS) based lock-free linked-list algorithm (which we will
elaborate upon in the following section). He then uses this algorithm to design a
lock-free hash structure: a fixed size array of hash buckets with lock-free insertion
and deletion into each. He presents empirical evidence that shows a significant ad-
vantage of this hash structure over lock-based implementations in multiprogrammed
environments. However, this structure is not extensible: if the number of elements
grows beyond the predetermined size, the time complexity of operations will no
longer be constant.

As part of his “two-handed emulation” approach, Greenwald [2002] provides
a lock-free hash table that can be resized based on a double-compare-and-swap
(DCAS) operation. However, DCAS, an operation that performs a CAS atomically
on two non-adjacent memory locations, is not available on current architectures.
Moreover, although Greenwald’s hash table is extensible, it is not a true extensible
hash table. The average number of steps per operation is not constant: it involves a
helping scheme where that under certain scheduling scenario would lead to a time
complexity linearly dependant on the number of processes.

Independently of our work, Gao et al. [2004] have developed a extensible and
“almost wait-free” hashing algorithm based on an open addressing hashing scheme
and using only CAS operations. Their algorithm maintains the dynamic size by
periodically switching to a global resize state in which multiple processes collec-
tively perform the migration of items to new buckets. They suggest performing
migration using a write-all algorithm [Hesselink et al. 2001]. Theoretically, each
operation in their algorithm requires more than constant time on average because
of the complexity of performing the write-all [Hesselink et al. 2001], and so it is
not a true extensible hash-table. However, the nonconstant factor is small, and the
performance of their algorithm in practice will depend on the yet-untested real-
world performance of algorithms for the write-all problem [Hesselink et al. 2001;
Kanellakis and Shvartsman 1997].

1.2. THE LOCK-FREE RESIZING PROBLEM. What is it that makes lock-free ex-
tensible hashing hard to achieve? The core problem is that even if individual buckets
are lock-free, when resizing the table, several items from each of the “old” buckets
must be relocated to a bucket among “new” ones. However, in a single CAS opera-
tion, it seems impossible to atomically move even a single item, as this requires one
to remove the item from one linked list and insert it in another. If this move is not
done atomically, elements might be lost, or to prevent loss, will have to be replicated,
introducing the overhead of “replication management”. The lock-free techniques
for providing the broader atomicity required to overcome these difficulties imply
that processes will have to “help” others complete their operations. Unfortunately,
“helping” requires processes to store state and repeatedly monitor other processes’
progress, leading to redundancies and overheads that are unacceptable if one wants
to maintain the constant time performance of hashing algorithms.

382 O. SHALEV AND N. SHAVIT

FIG. 1. A split-ordered hash table.

1.3. SPLIT-ORDERED LISTS. To implement our algorithm, we thus had to over-
come the difficulty of atomically moving items from old to new buckets when
resizing. To do so, we decided to, metaphorically speaking, flip the linear hashing
algorithm on its head: our algorithm will not move the items among the buckets,
rather, it will move the buckets among the items. More specifically, as shown in
Figure 1, the algorithm keeps all the items in one lock-free linked list, and gradu-
ally assigns the bucket pointers to the places in the list where a sublist of “correct”
items can be found. A bucket is initialized upon first access by assigning it to a new
“dummy” node (dashed contour) in the list, preceding all items that should be in that
bucket. A newly created bucket splits an older bucket’s chain, reducing the access
cost to its items. Our table uses a modulo 2i hash (there are known techniques for
“pre-hashing” before a modulo 2i hash to overcome possible binary correlations
among values Lea [2003]). The table starts at size 2 and repeatedly doubles in size.

Unlike moving an item, the operation of directing a bucket pointer can be done
in a single CAS operation, and since items are not moved, they are never “lost”.
However, to make this approach work, one must be able to keep the items in the
list sorted in such a way that any bucket’s sublist can be “split” by directing a new
bucket pointer within it. This operation must be recursively repeatable, as every split
bucket may be split again and again as the hash table grows. To achieve this goal
we introduced recursive split-ordering, a new ordering on keys that keeps items in
a given bucket adjacent in the list throughout the repeated splitting process.

Magically, yet perhaps not surprisingly, recursive split-ordering is achieved by
simple binary reversal: reversing the bits of the hash key so that the new key’s
most significant bits (MSB) are those that were originally its least significant. As
detailed below and in the next section, some additional bit-wise modifications must
be made to make things work properly. In Figure 1, the split-order key values are
written above the nodes (the reader should disregard the rightmost binary digit at
this point). For instance, the split-order value of 3 is the bit-reverse of its binary
representation, which is 11000000. The dashed-line nodes are the special dummy
nodes corresponding to buckets with original keys that are 0,1,2, and 3 modulo
4. The split-order keys of regular (nondashed) nodes are exactly the bit-reverse
image of the original keys after turning on their MSB (in the example we used 8-bit
words). For example, items 9 and 13 are in the “1 mod 4” bucket, which can be
recursively split in two by inserting a new node between them.

To insert (respectively delete or find) an item in the hash table, hash its key
to the appropriate bucket using recursive split-ordering, follow the pointer to the
appropriate location in the sorted items list, and traverse the list until the key’s
proper location in the split-ordering (respectively, until the key or a key indicating
the item is not in the list) is found. The solution depends on the property that the

Split-Ordered Lists: Lock-Free Extensible Hash Tables 383

items’ position is “encoded” in their binary representation, and therefore cannot be
generalized to bases other than 2.

As we show, because of the combinatorial structure induced by the split-ordering,
this will require traversal of no more than an expected constant number of items.
A detailed proof appears in Section 3.

We note that our design is modular: to implement the ordered items list, one can
use one of several non-blocking list-based set algorithms in the literature. Potential
candidates are the lock-free algorithms of Harris [2001] or Michael [2002a], or the
obstruction-free algorithms of Valois2[1995] or Luchangco et al. [2003]. We chose
to base our presentation on the algorithm of Michael [2002a], an extension of the
Harris algorithm [Harris 2001] that fits well with memory management schemes
[Herlihy et al. 2002; Michael 2002b] and performs well in practice.

1.4. COMPLEXITY. When analyzing the complexity of concurrent hashing
schemes, there are two adversaries to consider: one controlling the distribution
of item keys, the other controlling the scheduling of thread operations. The former
appears in all hash table algorithms, sequential or concurrent, while the latter is a
direct result of the introduction of concurrency. We use the term expected time to
refer to the expected number of machine instructions per operation in the worst case
scheduling scenario, assuming (as is standard in the literature [Cormen et al. 2001])
a hash function of uniform distribution. We use the term average time to refer to
the number of machine instructions per operation averaged over all executions, also
assuming a uniform hash function. It follows that constant expected time implies
constant average time.

As we show in Section 3, if we make the standard assumption of a hash function
with a uniform distribution, then under any scheduling adversary our new algorithm
provides a lock-free extensible hash table with O(1) average cost per operation.

The complexity improves to expected constant time if we assume a constant
extendibility rate, meaning that the table is never extended (doubled in size) a
non-constant number of times while a thread is delayed by the scheduler. Constant
expected time is an improvement over average expected time since it means that
given a good hash function, the adversary cannot cause any single operation to take
more than a constant number of steps.

One feature in which the new algorithm is similar in flavor to sequential linear
hashing algorithms [Litwin 1980] (in contrast to all the above algorithms [Gao
et al. 2004; Greenwald 2002; Lea 2003]) is that resizing is done incrementally and
only bad distributions (ones that have very low probability given a uniform hash
function) or extreme scheduling scenarios can cause the cost of an operation to
exceed constant time. This possibly makes the algorithm a better fit for soft real-
time applications [Buttazzo et al. 2005] where relaxable timing deadlines need to
be met.

1.5. PERFORMANCE. We tested our new split-ordered list hash algorithm
against the most-efficient known lock-based implementation due to Lea [2003].
We created an optimized C++ based version of the algorithm and compared it to
split-ordered lists using a collection of tests executed on a 72-node shared memory
machine. We present experiments in Section 4 that show that split-ordered lists

2 Valois’ algorithm was labeled “lock-free” by mistake. It is livelock-prone.

384 O. SHALEV AND N. SHAVIT

perform as well as Lea’s algorithms, even in nonmultiprogrammed cases, although
lock-free algorithms are expected to benefits systems mainly in multiprogrammed
environments. Under high loads, they significantly outperform Lea’s algorithm,
exhibiting up to four times higher throughput. They also exhibit greater robustness,
for example in experiments where the hash function is biased to create nonuniform
distributions.

The remainder of this article is organized as follows: In the next section, we
describe the background and the new algorithm in depth. In Section 3, we present
the full correctness proof. In Section 4, the empirical results are presented and
discussed.

2. The Algorithm in Detail

Our hash table data structure consists of two interconnected substructures (see
Figure 1): A linked list of nodes containing the stored items and keys, and an
expanding array of pointers into the list. The array entries are the logical “buckets”
typical of most hash tables. Any item in the hash table can be reached by traversing
down the list from its head, while the bucket pointers provide shortcuts into the list
in order to minimize the search cost per item.

The main difficulty in maintaining this structure is in managing the continuous
coverage of the full length of the list by bucket pointers as the number of items in
the list grows. The distribution of bucket pointers among the list items must remain
dense enough to allow constant time access to any item. Therefore, new buckets
need to be created and assigned to sparsely covered regions in the list.

The bucket array initially has size 2, and is doubled every time the number of
items in the table exceeds si ze · L , where L is a small integer denoting the load
factor, the maximum number of items one would expect to find in each logical
bucket of the hash table. The initial state of all buckets is uninitialized, except
for the bucket of index 0, which points to an empty list, and is effectively the
head pointer of the main list structure. Each bucket goes through an initialization
procedure when first accessed, after which it points to some node in the list.

When an item of key k is inserted, deleted, or searched for in the table, a hash
function modulo the table size is used, that is, the bucket chosen for item k is
k mod size. The table size is always equal to some power 2i , i ≥ 1, so that the
bucket index is exactly the integer represented by the key’s i least significant bits
(LSBs). The hash function’s dependency on the table size makes it necessary to
take special care as this size changes: an item that was inserted to the hash table’s
list before the resize must be accessible, after the resize, from both the buckets it
already belonged to and from the new bucket it will logically belong to given the
new hash function.

2.1. RECURSIVE SPLIT-ORDERING. The combination of a modulo-size hash
function and a 2i table size is not new. It was the basis of the well known se-
quential extensible Linear Hashing scheme proposed by Litwin [1980], was the
basis of the two-level locking hash scheme of Ellis [1983], and was recently used
by Lea [2003] in his concurrent extensible hashing scheme. The novelty here is
that we use it as a basis for a combinatorial structure that allows us to repeatedly
“split” all the items among the buckets without actually changing their position in
the main list.

Split-Ordered Lists: Lock-Free Extensible Hash Tables 385

When the table size is 2i , a logical table bucket b contains items whose keys
k maintain k mod 2i = b. When the size becomes 2i+1, the items of this bucket
are split into two buckets: some remain in the bucket b, and others, for which
k mod 2i+1 = b + 2i , migrate to the bucket b + 2i . If these two groups of items
were to be positioned one after the other in the list, splitting the bucket b would
be achieved by simply pointing bucket b + 2i after the first group of items and
before the second. Such a manipulation would keep the items of the second group
accessible from bucket b as desired.

Looking at their keys, the items in the two groups are differentiated by the i’th
binary digit (counting from right, starting at 0) of their items’ key: those with 0
belong to the first group, and those with 1 to the second. The next table doubling
will cause each of these groups to split again into two groups differentiated by bit
i + 1, and so on. For example, the elements 9 (1001(2)) and 13 (1101(2)) share the
same two least significant bits (01). When the table size is 22, they are both in the
same bucket, but when it grows to 23, having a different third bit will cause to to be
separated. This process induces recursive split-ordering, a complete order on keys,
capturing how they will be repeatedly split among logical buckets. Given a key, its
order is completely defined by its bit-reversed value.

Let us now return to the main picture: an exponentially growing array of (possibly
uninitialized) buckets maps to a linked list ordered by the split-order values of
inserted items’ keys, values that are derived by reversing the bits of the original keys.
Buckets are initialized when they are accessed for the first time. List operations such
as insert, delete or find are implemented via a linearizable lock-free linked list
algorithm. However, having additional references to nodes from the bucket array
introduces a new difficulty: it is nontrivial to manage deletion of nodes pointed to
by bucket pointers. Our solution is to add an auxiliary dummy node per bucket,
preceding the first item of the bucket, and to have the bucket pointer point to this
dummy node. The dummy nodes are not deleted, which helps keep things simple.

In more detail, when the table size is 2i+1, the first time bucket b+2i is accessed,
a dummy node is created, holding the key b+2i . This node is inserted to the list via
bucket b, the parent bucket of b +2i . Under split-ordering, b +2i precedes all keys
of bucket b +2i , since those keys must end with i +1 bits forming the value b +2i .
This value also succeeds all the keys of bucket b that do not belong to b + 2i : they
have identical i LSBs, but their bit numbered i is “0”. Therefore, the new dummy
node is positioned in the exact location in the list that separates the items that belong
to the new bucket from other items of bucket b. In the case where the parent bucket
b is uninitialized, we apply the initialization procedure on it recursively before
inserting the dummy node. In order to distinguish dummy keys from regular ones
we set the most significant bit of regular keys to “1”, and leave the dummy keys
with “0” at the MSB. Figure 2 defines the complete split-ordering transformation
using the functions so regularkey and so dummykey. The former, reverses the
bits after turning on the MSB, and the latter simply performs the bit reversal.3

Figure 3 describes a bucket initialization caused by an insertion of a new key to
the set. The insertion of key 10 is invoked when the table size is 4 and buckets 0,1
and 3 are already initialized.

3 An efficient implementation of the REVERSE function utilizes a 28 or 216 lookup table holding the
bit-reversed values of [0..28 − 1] or [0..216 − 1] respectively.

386 O. SHALEV AND N. SHAVIT

FIG. 2. The Split-Ordering Transformation. The function so regularkey computes the split-order
value for regular nodes, where the MSB is set before reversing the bits. The split-order value of
dummy nodes is the exact bit reverse of the key.

FIG. 3. Insertion into the split-ordered list.

Split-Ordered Lists: Lock-Free Extensible Hash Tables 387

Since the bucket array is growing, it is not guaranteed that the parent bucket of
an uninitialized bucket is initialized. In this case, the parent has to be initialized
(recursively) before proceeding. Though the total complexity in such a series of
recursive calls is potentially logarithmic, our algorithm still works. This is because
given a uniform distribution of items, the chances of a logarithmic-size series of
recursive initialization calls are low, and in fact, the expected length of such a bad
sequence of parent initializations is constant.

2.2. THE CONTINUOUSLY GROWING TABLE. We can now complete the pre-
sentation of our algorithm. We use the lock-free ordered linked-list algorithm of
Michael [2002a] to maintain the main linked list with items ordered based on
the split-ordered keys. This algorithm is an improved variant, including improved
memory management, of an algorithm by Harris [2001]. Our presentation will not
discuss the various memory reclamation options of such linked-list schemes, and
we refer the interested reader to Harris [2001], Herlihy et al. [2002], and Michael
[2002a, 2002b]. To keep our presentation self contained, we provide in Appendix A
the code of Michael’s linked list algorithm. This implementation is linearizable, im-
plying that each of these operations can be viewed as happening atomically at some
point within its execution interval.

Our algorithm decides to double the table size based on the average bucket load.
This load is determined by maintaining a shared counter that tracks the number
of items in the table. The final detail we need to deal with is how the array of
buckets is repeatedly extended. To simplify the presentation, we keep the table of
buckets in one continuous memory segment as depicted in Figure 4. This approach is
somewhat impractical, since table doubling requires one process to reallocate a very
large memory segment while other processes may be waiting. The practical version
of this algorithm, which we used for performance testing, actually employs an
additional level of indirection in accessing buckets: a main array points to segments
of buckets, each of which is a bucket array. A segment is allocated only upon the
first access to some bucket within it. The code for this dynamic allocation scheme
appears in Section 2.4.

2.3. THE CODE. We now provide the code of our algorithm. Figure 4 specifies
some type definitions and global variables. The accessible shared data structures are
the array of buckets T, a variable size storing the current table size, and a counter
count denoting the number of regular keys currently inside the structure.4 The
counter is initially 0, and the buckets are set as uninitialized, except the first one,
which points to a node of key 0, whose next pointer is set to NULL. Each thread
has three private variables prev, cur, and next, that point at a currently searched
node in the list, its predecessor, and its successor. These variables have the same
functionality as in Michael’s algorithm [Michael 2002a]: they are set by list find
to point at the nodes around the searched key, and are subsequently used by the
same thread to refer to these nodes in other functions. In Figure 5, we show the
implementation of the insert, find and delete operations. The fetch-and-inc
operation can be implemented in a lock-free manner via a simple repeated loop of

4 Though for the sake of brevity, we do not mention it in the presented code, to reduce contention, we
have threads accumulate updates locally and update the shared counter count only periodically. We
included this optimization in the code used in our benchmarks.

388 O. SHALEV AND N. SHAVIT

FIG. 4. Types and Structures. The angular brackets notation denotes a single word type divided to
the two fields mark and next. mark is a single bit, while the size of next is the rest.

CAS operations, which as we show, given the low access rates, has a negligible
performance overhead.

The function insert creates a new node and assigns it a split-order key. Note
that the keys are stored in the nodes in their split-order form. The bucket in-
dex is computed as key mod size. If the bucket has not been initialized yet,
initialize bucket is called. Then, the node is inserted to the bucket by using
list insert. If the insertion is successful, one can proceed to increment the item
count using a fetch-and-inc operation. A check is then performed to test whether
the load factor has been exceeded. If so, the table size is doubled, causing a new
segment of uninitialized buckets to be appended.

The function find ensures that the appropriate bucket is initialized, and then
calls list find on key after marking it as regular and inverting its bits. list find
ceases to traverse the chain when it encounters a node containing a higher or equal
(split-ordered) key. Notice that this node may also be a dummy node marking the
beginning of a different bucket.

The function delete also makes sure that the key’s bucket is initialized. Then
it calls list delete to delete key from its bucket after it is translated to its split-
order value. If the deletion succeeds, an atomic decrement of the total item count
is performed.

The role of initialize bucket is to direct the pointer in the array cell of the
index bucket. The value assigned is the address of a new dummy node containing
the dummy key bucket. First, the dummy node is created and inserted to an existing
bucket, parent. Then, the cell is assigned the node’s address. If the parent bucket
is not initialized, the function is called recursively with parent. In order to control
the recursion, we maintain the invariant that parent < bucket, where “<” is the
regular order among keys. It is also wise to choose parent to be as close as possible
to bucket in the list, but still preceding it. Formally, the following constraints define

Split-Ordered Lists: Lock-Free Extensible Hash Tables 389

FIG. 5. Our split-order-based hashing algorithm.

our the algorithm’s choice of parent uniquely, where “<” is the regular order and
“≺” is the split-order among keys:

∀k ≺ bucket, (k = parent ∨ k ≺ parent)
parent ≺ bucket
parent < bucket.

This value is achieved by calling the GET PARENT macro that unsets bucket’s most
significant turned-on bit. If the exact dummy key already exists in the list, it may

390 O. SHALEV AND N. SHAVIT

FIG. 6. Structure of the dynamic-sized table.

be the case that some other process tried to initialize the same bucket, but for some
reason has not completed the second step. In this case, list insert will fail, but
the private variable cur will point to the node holding the dummy key. The newly
created dummy node can be freed and the value of cur used. Note that when line
B8 is executed concurrently by multiple threads, the value of dummy is the same for
all of them.

As we will show in the proof, traversing the list through the appropriate bucket
and dummy node will guarantee the node matching a given key will be found, or
declared not-found in an expected constant number of steps.

2.4. DYNAMIC-SIZED ARRAY. Our presentation so far simplified the algorithm
by keeping the buckets in one continuous memory segment. This approach is some-
what impractical, since table doubling requires one process to reallocate a very large
memory segment while other processes may be waiting. In practice, we avoid this
problem by introducing an additional level of indirection for accessing buckets:
a “main” array points to segments of buckets, each of which is a bucket array. A
segment is allocated only on the first access to some bucket within it. The structure
of the dynamic-sized hash table is illustrated in Figure 6.

Applying this variation is done by replacing the array of buckets T by ST, an
array of bucket segments, and accessing the table via calls to get bucket and
set bucket as defined in Figure 7. Referring to the code of Figure 5, the lines I3,
S2, D2, D4, B2, and B5 will use get bucket to access the bucket, and in line B8
set bucket will be called instead of the assignment. Accessing a bucket involves
calculating the segment index and then the bucket index within the segment. In
get bucket, if the segment has not been allocated yet, it is guaranteed that the
bucket was never accessed, and we can return UNINITIALIZED. When setting a
bucket, in set bucket, if the segment does not exist we have to allocate it and set
its pointer in the segment table.

Asymptotically, introducing additional levels of indirection makes the cost of a
single access O(log n). However, one should view the asymptotic in the context of
overall memory size, which is bounded. In our case, each level extends the range
exponentially with a very high constant, reaching the maximum integer value using
a very shallow hierarchy. A level-4 hirarchy can exhaust the memory of a 64-bit
machine. Therefore, taking memory size into consideration, the overhead of our
construction can be considered as constant.

Split-Ordered Lists: Lock-Free Extensible Hash Tables 391

FIG. 7. Dynamic sized array.

3. Correctness Proof

This section contains a formal proof that our algorithm has the desired properties of
a resizable hash table. Our model of multiprocessor computation follows [Herlihy
and Wing 1990], though for brevity, we will use operational style arguments.

Our linearizable hash table data structure implements an abstract set object in
a lock-free way so that all operations take an expected constant number of steps
on average. Our correctness proof will thus have to prove that our concurrent
implementation is linearizable to a sequential set specification, that it is lock-free,
and that given a “good” class of hash functions, all operations take an expected
constant number of steps on average.

3.1. CORRECT SET SEMANTICS. We begin by proving that the algorithm com-
plies with the abstract set semantics. We use the sequential specification of a “dy-
namic set with dictionary operations” as defined in Cormen et al. [2001], including
the three functions insert, delete and find. The insert operation returns 1 if the key
was successfully inserted into the set, and 0 if that key already existed in the table.
The find operation returns 1 if the key is in the set, 0 otherwise. The delete operation
returns 1 if the key was successfully deleted from the set and 0 if it was not found.

Given a sequential specification of a set, our proof will provide specific lineariza-
tion points mapping operations in our concurrent implementation to sequential
operations so that the histories meet the specification.

Let list refer to the non-blocking ordered linked list of all items, pointed to by the
buckets of the hash table. Execution histories of our algorithm include sequences of
list find, list insert, and list delete operations on this list. Though we
argue about these as operations on the shared list and not as abstract set operations,
our proof will treat these operations as atomic operations. This is a valid approach
since they are linearizable by definition of the list-based set algorithms [Harris 2001;
Michael 2002a]. We do however need to make additional claims about properties of

392 O. SHALEV AND N. SHAVIT

operations on the list, since we will apply them to various “midpoints” pointed to by
buckets, and not only to the start of the list as in the original use of these algorithms of
Harris [2001] and Michael [2002a]. To this end, we present the following invariant,
which refers to the structure of the list in any state in the execution history of our
algorithm.

INVARIANT 1. In any state:

—all keys in the list starting at T[0] are sorted in an ascending order.
—for every 0 ≤ i < si ze if T[i] is initialized, then the node pointed by T[i]

holds the key so dummykey[i] and is reachable from T[0] by traversing the
list following the nodes’ next pointers.

PROOF. Initially, the invariant holds. We will show that every operation that
modifies the data structure preserves the invariant. Lines I9 and D6 manipulate the
shared counter, but have no impact on the invariant. Line I10 doubles size, which
adds new buckets, but since size only grows, those new buckets are uninitialized,
and the invariant is unaffected.

Assuming that the invariant is true just before line I5, we will show that it
is preserved. If list insert fails, the shared state has not changed. Otherwise,
we use the induction assumption that T[bucket] points to a node holding the
key so dummykey(bucket), and that node is in the list beginning at T[0]. The
procedure list insert inserts node to the list T[bucket]. This trivially preserves
the second condition of the invariant for the bucket. The new node’s key is the bit
reverse of key OR 0×800...0. The array index bucket and the value of key
share the same log si ze least significant bits, while the rest of bucket’s bits are 0.
Therefore, the new node’s key is ordered after the first node of T[bucket], whose
key is the bit reverse of bucket. The first part is also preserved, that is, the list
reachable from T[0] remains sorted since all keys before T[bucket] are by the
inductive assumption ordered and have lower keys than so dummykey(bucket)
and so are properly positioned before the new node, and all other keys are positioned
properly by the inductive assumption and the correctness of the list insert
operation, since they are a part of the list pointed to by T[bucket].

The list delete operation of line D4 only deletes a key, and thus cannot affect
the order. The deleted node cannot be the first node of T[bucket], since the least
significant bit of its key is 0 and the deleted key’s least significant bit is 1.

The function list insert in line B5 inserts a node with key
so dummykey(bucket) to the sublist T[parent], starting with a node holding
so dummykey(parent). The key parent is defined by turning off the index
bucket’s most significant “1” bit, so the insertion is not before the first node
of the sublist starting at T[parent], and as in the above proof for the case of I5,
the invariant is preserved.

Finally, the assignment in B8 sets T[bucket] to either the dummy node created
at B4, or the one assigned at B7. In the first case, since a dummy node created
in line B4 is inserted, the second condition of the invariant follows immediately
from the correctness of the list insert operation. The first condition follows
since the dummy node is inserted in order after its parent node which is neces-
sarily ordered before it. In the second case, list insert failed because the key
so dummykey(bucket) was in the list and cur was by the definition of list insert
set to the node holding that key, so both parts of the invariant follow.

Split-Ordered Lists: Lock-Free Extensible Hash Tables 393

We now define the set H of keys whose items are in the hash table in any given
state.

Definition 3.1. For any pointer p, let S(p) be the set of keys in the sorted linked
list beginning with the pointer p. Let the hash table set

H = {k | so regularkey(k) ∈ S(T[0])}.
The set H defines the abstract state of the table. For each one of the hash table
operations, we will now show that one can pick a linearization point within its
execution interval, so that at this point it has modified the abstract state, that is,
the set H , according to the specified operation’s semantics. Specifically, we will
choose the following linearization points:

—the insert operation is linearized in line I5, at the list insert operation,
—the find operation is linearized in line S4, at the list find operation, and
—the delete operation is linearized in line D4, at the list delete operation.

We start with the following helpful lemma:

LEMMA 3.2. In lines I5, S4, and D4, T[bucket] is already initialized, and at
B5 T[parent] is already initialized.

PROOF. All of the lines above follow a validation that T[bucket] is initialized.
If T[bucket] is not initialized, initialize bucket is called and the bucket is
initialized in B8.

Note that, in the proof above, we were not interested in whether the initialization
sequence (where initializing a bucket causes initialization of the parent) actually
terminates, but rather that if it did terminate then all parents of a bucket were
initialized.

LEMMA 3.3. If key is in H in line I5, then insert fails, and if it is not, insert
succeeds and key joins H.

PROOF. When key is in H , so regularkey(key) ∈ S(T[0]). According to
Lemma 3.2, T[bucket] is initialized, and using Invariant 1, we conclude that the
node pointed by T[bucket] has the key so dummykey(bucket) and it is a part of
the list. The list is sorted, and

so dummykey(bucket) = REVERSE(bucket) =
REVERSE(key mod size) < REVERSE(key OR 0×800..0) =

so regularkey(key).
(1)

Thus, the searched key is in the sublist, S(T[bucket]). The list insert at I5
will fail and so will insert. If key is not in H , it is also not in S(T[bucket]), and
list insert inserts so regularkey(key) in the bucket’s sublist. From that
state on, so regularkey ∈ S(T[0]), that is, key is in H .

LEMMA 3.4. If key is in H at line S4, the find succeeds, and otherwise the
find fails.

PROOF. If line S4 is executed when key is in H , then so regularkey(key)
is in S(T[0]). T[bucket] is assigned to a node in that list, holding the key
so dummykey(bucket). Using Eq. (1), we conclude that the searched key is in

394 O. SHALEV AND N. SHAVIT

S(T[bucket]), so list find succeeds and so does find. If in line S4 key is not
in H , it cannot be in S(T[bucket]), so list find fails.

LEMMA 3.5. If key is in H in line D4, delete succeeds and removes key from
H, and otherwise delete fails.

PROOF. If key is in H , then so regularkey(key) is in S(T[0]).
T[bucket] is assigned to a node inside that list, where the key of that node is
so dummykey(bucket). Using Eq. (1), we conclude that the searched key is in
S(T[bucket]), so list delete removes it. If key is not in H , it cannot be in
S(T[bucket]), so list delete fails.

From Lemma 3.3, Lemma 3.4, and Lemma 3.5, it follows that:

THEOREM 3.6. The split-ordered list algorithm of Figure 5 is a linearizable
implementation of a set object.

3.2. LOCK FREEDOM. Our algorithm uses loads and stores together with im-
plementations of a list-based set, a shared counter, and memory allocation routines
as primitive objects/operations. As we will show, in terms of these primitive op-
erations the algorithm’s implementation is wait-free, that is, each thread always
completes in a finite number of operations. This implies that its overall progress
condition in terms of primitive machine operations will be exactly that of the under-
lying implementation of those objects. Since we used the lock-free list-based sets
of Harris [2001] and Michael [2002a] and a lock-free shared counter as building
blocks in this presentation, our implementation will also be lock-free. As noted in
the introduction, in some cases, there are advantages in using the obstruction free
list-based set algorithm of Luchangco et al. [2003]. If Luchangco et al. [2003] is
used together with a lock-free shared counter, our hash table will be obstruction-free
[Herlihy et al. 2003].

THEOREM 3.7. The split-ordered list algorithm of Figure 5 is a wait-free
implementation of a set object in terms of load, store, fetch-and-inc,
fetch-and-dec, list find, list insert and list delete operations.

PROOF. The functions insert, find, delete and initialize bucket all
take a finite number of steps, each of which is a machine level load or store
operation or an operation on the list based set object or the shared counter. The
initialize bucket procedure is the only one with a recursive call. However,
the recursion of initialize bucket is limited, since each step is executed on
the parent of a bucket, which satisfies parent < bucket. Since bucket 0 is
initialized from the start, the recursion is finite, and the implementation is wait-
free.

The lock-freedom property means that a thread executing the hash table operation
completes in a finite number of steps unless other threads are infinitely making
progress. Thus, it is a weaker requirement than wait-freedom, and by combining
implementations the following is a corollary of Theorem 3.7:

COROLLARY 3.8. The split-ordered list algorithm of Figure 5 with lock-free
implementations of list find, list insert, list delete, fetch-and-inc,
and the fetch-and-dec operations is lock-free.

Split-Ordered Lists: Lock-Free Extensible Hash Tables 395

COROLLARY 3.9. The split-ordered list algorithm of Figure 5 with obstruction-
free implementations of fetch-and-inc, fetch-and-dec, list find, list
insert and list delete operations is obstruction-free.

The fetch-and-inc and fetch-and-dec operations have known lock-free
implementations [Michael and Scott 1998].

3.3. COMPLEXITY. The most important property of a hash table is its expected
constant time performance. When analyzing the complexity of hashing in a con-
current environment there are two adversaries one needs to consider: one con-
trolling the distribution of hash values of keys by the hash function (i.e., how
good is the hash), the other controlling the scheduling of thread operations. We
will follow the standard practice of modelling the hash function as a uniform
distribution over keys [Cormen et al. 2001]. The uniformity of keys we assume
is global, that is, it extends across all threads in a given execution (A simple
way to think of this is that we apply the standard uniform distribution assump-
tion [Cormen et al. 2001] on the linearization of any given execution). We will
use the term expected time (or expected number of steps) to refer to the expected
number of machine instructions per operation in the worst case scheduling sce-
nario, assuming a hash function of uniform distribution. We will use the term
average time (or average number of steps) to refer to the number of machine in-
structions per operation averaged over all executions, also assuming a uniform
hash function. It follows that constant expected time implies constant average
time.

In our complexity analysis, we assume that loops within the underlying linked
list code involve no more than a constant number of retries. This assumption is
realistic since a nonconstant number of retry loops implies Compare& Swap failures
caused by contention within a single bucket, which cannot occur due to the global
uniformity of the hash function.

We will show that under any scheduling adversary, our algorithm performs all
hash table operations in constant average time. The complexity improves to constant
expected time if we assume a constant extendibility rate. This is a restriction on
the scheduler that requires that the table is never forced to extend a nonconstant
number of times while a thread is delayed by the scheduler. It means that given a
good hash function, the adversary cannot cause any single operation to take more
than a constant number of steps unless it delays its progress through more than a
constant number of global resize operations. Formally, when there are n items in
the data structure, a thread must complete a single operation before n ·2c successful
insertions of elements by other threads were completed, where c ∈ O(1). We
believe this is the common situation in practice.

Two algorithmic issues require a detailed proof: one is the complexity of list
operations, which is essentially the complexity of executing a list find, and the
other is the complexity of initialize bucket, which involves recursive calls.

Denote by n the total number of items in the set, and by s the number of buck-
ets. For the complexity analysis, we are not interested in the cases where the ta-
ble is small, so we make the assumption that s is greater than the number of
threads. Let L denote the load factor MAX LOAD in our code, typically a small
constant.

396 O. SHALEV AND N. SHAVIT

LEMMA 3.10. For any number p of threads, at all times the following condition
holds:

n − p
s

≤ L .

PROOF. Focus on the successful completed insert and delete operations.
Each successful insertion incremented count by 1, and each successful deletion
decremented it. In any state, there are no more than p concurrent operations. Every
one of the “already completed” insert operations checked, when executing line I9,
that the ratio of count and csize is not more than L , and doubled the size if
the gap was exceeded. At all times, there are no more than p currently executing
insert operations. Therefore, when n/s > L and a resize is needed, no more than
p new keys can be inserted to the data structure before the resize takes place.

LEMMA 3.11. Assuming a hash function of uniform distribution, the proba-
bility that a bucket is not accessed during the time where the table size is s, is
asymptotically bounded by exp (−L/2).

PROOF. Focus on a growing table from size s/2 to s and then to 2s. According
to Lemma 3.10, in the state in which line I10 doubled the table from s/2 to s, the
number of items in the table was less or equal to p + Ls/2. When later in line I10
the table doubled in size to 2s, the condition of line I9 implies that the number of
items was at least Ls. The last two observations imply that during the set of states
in which size was s, the item count increased by at least Ls/2 − p, that is, line I9
was executed at least Ls/2 − p times. When we consider at most p processes that
may have begun the insert operation when size was less than s, we get that line I2
was executed at least Ls/2 − 2p times.

Assuming a uniform distribution of the keys, the probability that a bucket b
was not accessed during this period is at most (s−1

s)Ls/2−2p. When p is signifi-
cantly smaller than s, as assumed, the last expression is asymptotically equal to
exp (−L/2).

LEMMA 3.12. For any key k, when the table size is s and the bucket k mod si ze
is initialized, there is no dummy node with key d such that k mod size ≺ d ≺ k,
that is, d’s split-order value is between those of k mod size and k.

PROOF. Assume by way of contradiction that d is the key of a node such that:
k mod size ≺ d ≺ k. It is the case that d < size because d is in the list, and bucket
indices are always smaller than the table size. Therefore, d has less than log2(size)
non-zero bits. The keys k and k mod size have at least log2(size) − 1 identical less
significant bits. The split-order value of d is between them, so it must have the same
low log2(size) − 1 bits, that actually constitute all of its non-zero bits. This implies
that d = k mod size under the split-order, a contradiction to the assumption that
d 	 k mod size.

LEMMA 3.13. If the hash function distributes the keys uniformly then:

—In any execution history, the list traversal of list find takes constant time on
average.

—Under the constant extendibility rate assumption, the traversal of list find
takes expected constant time.

Split-Ordered Lists: Lock-Free Extensible Hash Tables 397

PROOF. For a table of size s, the expected number of uninitialized buckets
among the first s/2 buckets is no more than s/2 · exp (−L/2), by Lemma 3.11. For
each of the initialized buckets, there is a dummy node in the list holding the bucket
index as the split-order value. Therefore, there are at least s/2 · (1 − exp (−L/2))
dummy nodes with keys from 0..s/2−1. Those values divide the integer range into
s/2 equal segments, while the missing items are distributed evenly. Using Lemma
3.10, there are on average less than

n
s/2 · (1 − exp (−L/2))

≤ Ls + p
s/2 · (1 − exp (−L/2))

= 2L + 2p/s
1 − exp (−L/2)

(2)

nodes between every two dummy nodes. The operation list find is called to
search for a key k from the bucket k mod size, so, using Lemma 3.12, we conclude
that in the state in which it was called there were no dummy nodes between the
bucket’s dummy node and the node at which the search would be completed. We
have just computed that dummy nodes are distributed in intervals of less than

2L + 2p/s
1 − exp (−L/2)

nodes, implying that if the table size does not change, the search will take no more
than a constant expected number of steps.

We will now show that if the search took more than constant time, there were
enough successful inserts to maintain a constant number of steps on average. If
list find took �(r) steps, �(r) dummy nodes must have been traversed, since
at any time the expected distance between them is constant. All of these dummy
nodes were inserted to the list after list find started. The number of dummy
nodes in the original bucket doubles each time the table is extended, so there were
�(log r) table resize events. Since there were exactly n items in the table when
the list find operation started, the number of items had to rise by �(rn), that
is, �(rn) successful insertions to the list. There were no more than p threads that
successfully executed list insert but then were delayed before completing the
insert routine. Therefore, we can consider only �(rn − p) as complete hash
table insertions. According to the constant extensibility rate assumption, a thread
must complete a single operation within n · 2c successful insertions. Looking at the
single operation that took �(r) steps, we now know that during that time there were
at least �(rn − p) successful inserts, but we also know that the operation lasted
less than n · 2c successful operations. We get that log(r − p/n) ∈ O(1), and thus
r ∈ O(1).

LEMMA 3.14. Given a hash function with an expected uniform distribution,
the number of steps performed by the function initialize bucket is constant on
average. Under the constant extendibility rate assumption, the number of expected
steps in the worst case execution is constant.

PROOF. A recursive call to initialize bucket terminates when the parent
bucket is initialized. To have m recursive calls, m uninitialized ancestor buck-
ets are needed. Applying Lemma 3.11, this may happen with probability less
than exp (−L(m − 1)/2). The number of m-deep executions among m calls to

398 O. SHALEV AND N. SHAVIT

initialize bucket is m · exp (−L(m − 1)/2) ∈ O(1), implying that the ex-
pected number of recursive calls is constant. By Lemma 3.13, the list insert
call inside initialize bucket costs a constant number of steps on average. If
we assume constant extendibility rate (threads are not delayed while the table is
doubled a nonconstant number of times), a recent ancestor of every bucket is always
initialized, and the recursion depth is constant. Also, according to Lemma 3.13, the
execution of list insert is of expected constant time.

THEOREM 3.15. Given a hash function with expected uniform distribution, all
hash table operations complete within a constant number of steps on average.
Assuming a constant extendibility rate, all hash table operations complete within
expected constant number of steps.

PROOF. Beside executing a constant number of simple instructions, all hash op-
erations call a list traversing routine twice at most (actually, only hash deletemay
cause list find to run twice). By Lemma 3.13, the list traversals cost a constant
average number of steps, and by Lemma 3.14, the initialize bucket opera-
tion also completes within a constant average number of steps. Both of the above
lemmas imply that under the constant extendibility rate assumption, the number of
steps is constant in the worst case execution assuming a uniform distribution.

4. Performance

We ran a series of tests to evaluate the performance of our lock-free algorithm. Since
our algorithm is the first lock-free extensible hash table, it needs to be proven effi-
cient in comparison to existing lock-based extensible hash table algorithms. We have
thus chosen to compare our algorithm to the resizable hash table algorithm of Lea
[2003] (revision 1.3), originally suggested as a part of util.concurrent.Concurrent-
HashMap, the proposed JavaTM Concurrency Package, JSR-166.

Lea’s algorithm is based on an exponentially growing table of buckets, doubled
when the average bucket load exceeds a given load factor. Access to the table
buckets is synchronized by 64 locks, dividing the bucket range to 64 interleaved
regions, that is, lock i is obtained when bucket b is accessed if b mod 64 = i .
Insert and delete operations always acquire a lock, but find operations are first
attempted without locking, and retried with locking upon failure. When a process
decides to resize the table, it locks all 64 locks, allocates a larger array and rehashes
the buckets’ items to their new buckets, utilizing the simplicity of power-of-two
hashing. This scheme offers good performance, in comparison to simpler schemes
that separately lock each bucket, by significantly reducing the number of locks
that need to be acquired when resizing. Figure 8 illustrates the effect of different
concurrency levels on Lea’s algorithm performance.

We translated the JavaTM code by Lea to C++ and simplified it to handle integer
keys that also serve as values, exactly as in our new algorithm’s code. There is a
trade-off in this algorithm: the more locks used, the lower the contention on them,
but the higher the global delay when resizing. We thus ran an experiment to confirm
that in the translated algorithm there is no significant advantage to using more or
less than 64 locks.

We compared our split-ordered hashing algorithm to Lea’s algorithm using a
collection of experiments on a 30-processor Sun Enterprise 6000, a cache-coherent

Split-Ordered Lists: Lock-Free Extensible Hash Tables 399

FIG. 8. Lea’s algorithm with different concurrency levels.

NUMA machine formed from 15 boards of two 300 MHz UltraSPARC® II pro-
cessors and 2 GB of RAM on each. The C/C++ code was compiled with a Sun
cc compiler 5.3, with the flags -xO5 and -xarch=v8plusa. We executed each
experiment three times to lower the effect of temporary scheduling anomalities.

Lea’s algorithm has significant vulnerability in multiprogrammed environments
since whenever the resizing processor is swapped out or delayed, the algorithm as
a whole grinds to a halt. The significant latency overhead while resizing would
also make it less of a fit for real-time environments. However, our tests here are de-
signed to compare the performance of the algorithms in the currently more common
environments without multiprogramming or real-time requirements.

Since Lea’s algorithm behaves differently when hash table operations fail rather
than succeed, we also tested the algorithms in scenarios where they begin after a
significant amount of elements have been inserted. Since the range from which the
elements are selected is limited, the more we pre-insert, the more chances are that
an element is already in the table when search for it. Additionally, we ran a series
of experiments measuring the change in throughput as a function of concurrency
under various synthetic distributions of insert, delete and find.

To capture performance under typical hash-table usage patterns [Lea (personal
communication, 2003)], we first look at a mix that consists of about 88% find
operations, 10% inserts and 2% deletes. Our first graph, in Figure 9, shows the
results of comparing the algorithms under such a pattern. The hash table load factor
(the number of items per bucket) for both tested algorithms was chosen as 3. In the
presented graph we show the change in throughput as a function of concurrency. As
can be seen, at high loads the lock-free split-ordered hashing algorithm significantly
outperforms Lea’s when the concurrency level goes beyond eight threads.

The first data point, corresponding to the throughput when executed by a single
thread, is a measure for the overhead cost of the new algorithm. According to this
data point, the new algorithm is 23% slower than the lock-based algorithm when

400 O. SHALEV AND N. SHAVIT

FIG. 9. Throughput of both algorithms. Standard deviation is denoted by vertical bars.

run by a single thread.

—Lea’s algorithm reaches peak performance at about 24 threads and at the same
concurrency level, our new algorithm has two times higher throughput.

—Our algorithm reaches peak performance at 44 threads, where it is almost three
times faster than Lea’s.

—Our algorithm’s performance fluctuates after reaching peak performance because
it involves significantly higher concurrent communication and is thus much more
sensitive to the specific layout of threads on the machine and to the load on the
shared crossbar.

—Lea’s algorithm suffers a much milder deterioration caused by the architectural
critical paths because it never reaches high concurrency levels and its overall
performance is limited by the bottlenecks introduced by the shared locks.

Figure 10 shows the results of an experiment varying the chosen distribution of
inserts, deletes, and finds. Note that our algorithm consistently outperforms
Lea’s algorithm throughout the full range of tested distributions. We also ran an
experiment that varies the load factor in our algorithm. As seen in Figure 11, the
load factor does not affect the performance significantly, and its effect is in any case
minimal when compared to those of the thread layout and the overall communication
overhead.

Figure 12 shows the throughput of both algorithms when the amount of pre-
insertions varied among 0, 300 K, 600 K, and 900 K. The range from which elements
were selected was [0, 1e + 6], so pre-insertions affected significantly the success
rate of the hash table operations. The performance of Lea’s algorithm slightly
improves on lower concurrency levels, but from 12 threads and on the new algorithm
is faster.

We also tested the robustness of the algorithms under a biased hash function,
mimicking conditions in case of a bad choice of a hash function relative to the

Split-Ordered Lists: Lock-Free Extensible Hash Tables 401

FIG. 10. Varying operation distribution.

FIG. 11. Varying load factor.

given data. To do, so we generated keys in a nonuniform distribution by randomly
turning off 0 to 3 LSBs of randomly chosen integers. Our empirical data shows that
our algorithm shows greater robustness: it was slowed down by approximately 7%,
while Lea’s algorithm’s performance decreased by more than 30%. The reason for
this is that a biased hash function causes some number of buckets to have many
more items than the average load. The locks controlling these buckets in Lea’s

402 O. SHALEV AND N. SHAVIT

FIG. 12. Varying amount of pre-insertions.

algorithm are thus contended, causing a performance degradation. This does not
happen in the lock-free list used by the new algorithm.

Based on the above results, we conclude that in low-load nonmultiprogrammed
environments both algorithms offer comparable performance, while under medium
to high loads, split-ordered hashing scales better than Lea’s algorithm and is thus
the algorithm of choice.

5. Conclusion

Our article introduced split-ordered lists and showed how to use them to build
resizable concurrent hash tables. We believe the split-order list structure may have
broader applications, and in particular it might be interesting to test empirically if
a purely sequential variation of split-ordered hashing will offer an improvement
over linear hashing in the sequential case. This follows since splitting buckets in
split-ordered hash tables does not require redistribution of individual items among
buckets, but rather only the insertion of a dummy node, and in the sequential case
the need for the dummy nodes might be avoidable altogether.

Appendix

A. Additional Code

For the purpose of being self contained, we provide in Figures 13 and 14 the code
for the lock-free CAS-based ordered list algorithm of Michael [2002a].

The difficulty in implementing a lock-free ordered linked list is in ensuring that
during an insertion or deletion, the adjacent nodes are still valid, that is, they are
still in the list and are still adjacent. Both the implementation of Harris [2001] and
that of Michael [2002a] do so by “stealing” one bit from the pointer to mark a
node as deleted, and performing the deletion in two steps: first marking the node,

Split-Ordered Lists: Lock-Free Extensible Hash Tables 403

FIG. 13. Michael’s lock free list based sets.

and then deleting it. This bit and the next pointer are set atomically by the same
CAS operation.5 The list find operation is the most complicated: it traverses
through the list, and stops when it reaches an item that is equal-to or greater-than
the searched item. If a marked-for-deletion node is encountered, the deletion is
completed and the traversal continues. The list find in Michael’s scheme thus
improves on that of Harris since by completing the deletion immediately when
a marked node is encountered it prevents other operations from traversing over
marked nodes, that is, ones that have been logically deleted.

5Stealing one bit in a pointer in such a manner is straightforward assuming properly aligned memory,
and can be achieved with indirection using a “dummy bit node” [Agesen et al. 2000] in languages like
JavaTM where stealing a bit in a pointer is a problem. The new JavaTM Concurrency Package proposes
to eliminate this drawback by offering “tagged” atomic variables.

404 O. SHALEV AND N. SHAVIT

FIG. 14. Michael’s lock free list based sets–continued.

FIG. 15. Lock free atomic counter implementation.

Figure 15 depicts a simple lock-free implementation of a shared incrementable
(or decrementable) counter using CAS.

ACKNOWLEDGMENTS. We thank Mark Moir, Victor Luchangco and Paul Martin for
their help and patience in accessing and running our tests on several of Sun’s large
multiprocessor machines. This paper could not have been completed without them.
We also thank Victor Luchangco, Mark Moir, Maged Michael, Sivan Toledo, and
the anonymous PODC 2003 referees for their helpful comments and insights. We
thank Doug Lea for his constructive skepticism and for sharing with us real-world
data on the growth characteristics of dynamic hash tables. Finally, the comments
of the anonymous referees assisted greatly in improving this manuscript.

REFERENCES

AGESEN, O., DETLEFS, D., FLOOD, C., GARTHWAITE, A., MARTIN, P., SHAVIT, N., AND STEELE, G. 2000.
DCAS-based concurrent deques. In Proceedings of the 12th Annual ACM Symposium on Parallel Algo-
rithms and Architectures. ACM, New York.

Split-Ordered Lists: Lock-Free Extensible Hash Tables 405

BUTTAZZO, G., LIPARI, G., ABENI, L., AND CACCAMO, M. 2005. Soft Real-Time Systems: Predictability
vs. Efficiency. Series: Series in Computer Science. Springer-Verlag, New York.

CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN, C. 2001. Introduction to Algorithms,
Second Edition. MIT Press, Cambridge, MA.

ELLIS, C. S. 1983. Extendible hashing for concurrent operations and distributed data. In Proceedings
of the 2nd ACM SIGACT-SIGMOD Symposium on Principles of Database Systems. ACM, New York,
106–116.

ELLIS, C. S. 1987. Concurrency in linear hashing. ACM Trans. Database Syst. 12, 2, 195–217.
GAO, H., GROOTE, J., AND HESSELINK, W. 2004. Almost wait-free resizable hashtables. In Proceedings

of the 18th International Parallel and Distributed Processing Symposium (IPOPS).
GREENWALD, M. 1999. Non-blocking synchronization and system design. Ph.D. dissertation. Stanford

University Tech. Rep. STAN-CS-TR-99-1624, Palo Alto, CA.
GREENWALD, M. 2002. Two-handed emulation: How to build non-blocking implementations of complex

data-structures using DCAS. In Proceedings of the 21st ACM Symposium on Principles of Distributed
Computing. ACM, New York, 260–269.

HARRIS, T. L. 2001. A pragmatic implementation of non-blocking linked-lists. In Proceedings of 15th
International Symposium on Distributed Computing (DISC 2001). 300–314.

HERLIHY, M., LUCHANGCO, V., AND MOIR, M. 2002. The repeat offender problem: A mechanism for
supporting dynamic-sized, lock-free data structures. In Proceedings of 16th International Symposium on
Distributed Computing (DISC 2002). 339–353.

HERLIHY, M., LUCHANGCO, V., MOIR, M., AND SCHERER, III, W. N. 2003. Software transactional memory
for dynamic-sized data structures. In Proceedings of the 22nd Annual Symposium on Principles of
Distributed Computing. ACM, New York, 92–101.

HERLIHY, M. P., AND WING, J. M. 1990. Linearizability: A correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems (TOPLAS) 12, 3, 463–492.

HESSELINK, W., GROOTE, J., MAUW, S., AND VERMEULEN, R. 2001. An algorithm for the asynchronous
write-all problem based on process collision. Distrib. Comput. 14, 2, 75–81.

HSU, M., AND YANG, W. 1986. Concurrent operations in extendible hashing. In Proceedings of the 12th
International Conference on Very Large Data Bases (VLDB’86) (Kyoto, Japan, Aug. 25–28). W. W. Chu,
G. Gardarin, S. Ohsuga, and Y. Kambayashi, Eds. Morgan-Kaufmann, San Francisco, CA, 241–247.

KANELLAKIS, P. C., AND SHVARTSMAN, A. 1997. Fault-Tolerant Parallel Computation. Kluwer Aca-
demic Publishers.

LEA, D. 2003. Hash table util.concurrent.ConcurrentHashMap, revision 1.3, in JSR-166, the
proposed Java Concurrency Package. http://gee.cs.oswego.edu/cgi-bin/viewcvs.cgi/jsr166/src/main/
java/util/concurrent/.

LITWIN, W. 1980. Linear hashing: A new tool for file and table addressing. In Proceedings of the 6th
International Conference on Very Large Data Bases (VLDB’80) (Montreal, Que., Canada, Oct. 1–3).
IEEE Computer Society, Press, Los Alamitos, CA, 212–223.

LUCHANGCO, V., MOIR, M., AND SHAVIT, N. 2003. Nonblocking k-compare single swap. In Proceedings
of the 15th Annual ACM Symposium on Parallel Algorithms and Architectures. ACM, New York.

MELLOR-CRUMMEY, J. M., AND SCOTT, M. L. 1991. Scalable reader-writer synchronization for shared-
memory multiprocessors. In Proceedings of the 3rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. ACM, 106–113.

MICHAEL, M. M. 2002a. High performance dynamic lock-free hash tables and list-based sets. In Pro-
ceedings of the 14th Annual ACM Symposium on Parallel Algorithms and Architectures. ACM, New
York, 73–82.

MICHAEL, M. M. 2002b. Safe memory reclamation for dynamic lock-free objects using atomic reads
and writes. In Proceedings of the 21st Annual Symposium on Principles of Distributed Computing. ACM,
New York, 21–30.

MICHAEL, M. M., AND SCOTT, M. L. 1998. Nonblocking algorithms and preemption-safe locking on
multiprogrammed shared-memory multiprocessors. J. Parall. Distrib. Comput. 51, 1, 1–26.

MOIR, M. 1997. Practical implementations of non-blocking synchronization primitives. In Proceedings
of the 15th Annual ACM Symposium on the Principles of Distributed Computing. ACM, New York.

VALOIS, J. D. 1995. Lock-free linked lists using compare-and-swap. In Proceedings of the Symposium
on Principles of Distributed Computing. ACM, New York, 214–222.

RECEIVED MARCH 2004; REVISED SEPTEMBER 2005; ACCEPTED FEBRUARY 2006

Journal of the ACM, Vol. 53, No. 3, May 2006.

