
Special issue on NETYS 2019 manuscript No.
(will be inserted by the editor)

Recoverable Mutual Exclusion with Abortability

Prasad Jayanti · Anup Joshi

Received: date / Accepted: date

Abstract Recent advances in non-volatile main memory (NVRAM) technology have spurred
research on designing algorithms that are resilient to process crashes. This paper is a fuller ver-
sion of our conference paper [18], which presents the first Recoverable Mutual Exclusion (RME)
algorithm that supports abortability. Our algorithm uses only the read, write, and CAS opera-
tions, which are commonly supported by multiprocessors. It satisfies FCFS and other standard
properties.

Our algorithm is also adaptive. On DSM and Relaxed-CC multiprocessors, a process incurs
O(min(k, log n)) RMRs in a passage and O(f + min(k, log n)) RMRs in an attempt, where n
is the number of processes that the algorithm is designed for, k is the point contention of the
passage or the attempt, and f is the number of times that p crashes during the attempt. On a
Strict CC multiprocessor, the passage and attempt complexities are O(n) and O(f + n).

Attiya et al. proved that, with any mutual exclusion algorithm, a process incurs at least
Ω(log n) RMRs in a passage, if the algorithm uses only the read, write, and CAS operations [2].
This lower bound implies that the worst-case RMR complexity of our algorithm is optimal for
the DSM and Relaxed CC multiprocessors.

Keywords concurrent algorithm, synchronization, mutual exclusion, recoverable algorithm,
fault tolerance, non-volatile main memory, shared memory, multi-core algorithms

1 Introduction

Recent advances in non-volatile main memory (NVRAM) technology [11][25][29][30] have spurred
research on designing algorithms that are resilient to process crashes. NVRAM is byte-addressable,
so it replaces main memory, directly interfacing with the processor. This development is excit-
ing because, if a process crashes and subsequently restarts, there is now hope that the process

The first author is grateful to the Frank family and Dartmouth College for their support through James Frank
Family Professorship of Computer Science. The second author is grateful for the support from Dartmouth College.

Prasad Jayanti
Dartmouth College, Hanover NH 03755, USA
E-mail: prasad.jayanti@dartmouth.edu

Anup Joshi
Dartmouth College, Hanover NH 03755, USA
E-mail: anup.s.joshi.gr@dartmouth.edu

2 Prasad Jayanti, Anup Joshi

can somehow recover from the crash by consulting the contents of the NVRAM and resume its
computation.

To leverage this advantage given by the NVRAM, there has been keen interest in reexamining
the important distributed computing problems for which algorithms were designed in the past for
the traditional (crash-free) model of an asynchronous shared memory multiprocessor. The goal
is to design new algorithms that guarantee good properties even if processes crash at arbitrary
points in the execution of the algorithm and subsequently restart and attempt to resume the
execution of the algorithm. The challenge in designing such “recoverable” algorithms stems from
the fact that when a process crashes, even though the shared variables that are stored in the
NVRAM are unaffected, the crash wipes out the contents of the process’ cache and CPU registers,
including its program counter. So, when the process subsequently restarts, it can’t have a precise
knowledge of exactly where it crashed. For instance, if the last instruction that a process executes
before a crash is a compare&swap (CAS) on a shared variable X, when it subsequently restarts,
it can’t tell whether the crash occurred just before or just after executing the CAS instruction
and, if it did crash after the CAS, it won’t know the response of the CAS (because the crash
wipes out the register the CAS’s response went into). The “recover” method, which a process is
expected to execute when it restarts, has the arduous task of ensuring that the process can still
somehow resume the execution of the algorithm seamlessly.

The mutual exclusion problem, formulated to enable multiple processes to share a resource
that supports only one process at a time [6], has been thoroughly studied for over half a century
for the traditional (crash-free) model, but its exploration for the crash-restart model is fairly
recent. In the traditional version of the problem, each process p is initially in the “remainder”
section. When p becomes interested in acquiring the resource, it executes the tryp() method;
and when this method completes, p is in the “critical section” (CS). To give up the CS, p invokes
the exitp() method; and when this method completes, p is back in the remainder section. An
algorithm to this problem specifies the code for the try and exit methods so that at most one
process is in the CS at any time and other desirable properties (such as starvation freedom,
bounded exit, and First-Come-First-served, or FCFS) are also satisfied. Golab and Ramaraju
were the first to reformulate this problem for the crash-restart model as Recoverable Mutual
Exclusion (RME). In the RME problem, a process p can crash at any time and subsequently
restart [10]. If p crashes while in try, CS, or exit, p’s cache and registers (aka local variables)
are wiped out and p returns to the remainder section (i.e., crash resets p’s program counter to
its remainder section). When p restarts after a crash, it is required to invoke a new method,
named recoverp(), whose job is to “repair” the adverse effects of the crash and send p to where
it belongs. In particular, if p crashed while in the CS, recoverp() puts p back in the CS (by
returning IN CS). On the other hand, if p crashed while executing tryp(), recoverp() has a
choice—it can either roll p back to the Remainder (by returning IN REM) or put it in the CS
(by returning IN CS). Similarly, if p crashed while executing exitp(), recoverp() has a choice
of returning either IN REM or IN CS.

Golab and Ramaraju made a crucial observation that if p crashes while in the CS, then no
other process should be allowed into the CS until p restarts and reenters the CS. This Crit-
ical Section Reentry (CSR) requirement was strengthed by Jayanti and Joshi’s Bounded CSR
requirement: if p crashes while in the CS, when p subsequently restarts and executes the re-
cover method, the recover method should put p back into the CS in a bounded number of its
own steps [17]. There has been a flurry of research on RME algorithms in the recent years
[3][5][8][9][10][14][15][17][18][19].

Orthogonal to this development of recoverable algorithms, motivated by the needs of real
time systems and database systems, Scott and Scherer advocated the need for mutual exclusion
algorithms to support the “abort” feature, whereby a process in the try section can quickly

Recoverable Mutual Exclusion with Abortability 3

quit the algorithm, if it so desires [27]. More specifically, if p receives an abort signal from the
environment while executing the try method, the try method should complete in a bounded
number of p’s steps and either launch p into the CS or send p back to the remainder section. In
the past two decades, there has been a lot of research on abortable mutual exclusion algorithms
for the traditional (crash-free) model.

The possibility of crashes, together with the CSR requirement, renders abortability even more
important in the crash-restart model, yet there have been no abortable recoverable algorithms
until the conference publication of the algorithm in this submission [18]. There has since been
one more algorithm, by Katzan and Morrison [19], and we will soon compare the two algorithms.

1.1 RMR complexity.

Remote Memory Reference (RMR) complexity is the standard complexity metric used for com-
paring mutual exclusion algorithms, so we explain it here. This metric is explained for the two
prevalent models of multiprocessors—Distributed Shared Memory (DSM) and Cache-Coherent
(CC) multiprocessors—as follows. In DSM, shared memory is partitioned into n portions, one
per process, and each shared variable resides in exactly one of the n partitions. A step in which
a process p executes an instruction on a shared variable X is considered an RMR if and only if
X is not in p’s partition of the shared memory.

In CC, the shared memory is remote to all processes, but every process has a local cache.
A step in which a process p executes an instruction op on a shared variable X is considered an
RMR if and only if op is read and X is not in p’s cache, or op is any non-read operation (such as
a write or CAS). If p reads X when X is not present in p’s cache, X is brought into p’s cache.
If a process q performs a non-read operation op while X is in p’s cache, X’s copy in p’s cache is
deleted in the Strict CC model, but in the Relaxed CC model it is deleted only if op changes X’s
value. Thus, if X is in p’s cache and q performs an unsuccessful CAS on X, then X continues to
remain in p’s cache in the relaxed CC model.

A passage of a process p starts when p leaves the remainder section and completes at the
earliest subsequent time when p returns to the remainder (note that p returns to the remainder
either because of a crash or because of a normal return from try, exit or recover methods). An
attempt of p starts when p leaves the remainder and completes at the earliest subsequent time
when p returns to the remainder “normally,” i.e., not because of a crash. Note that each attempt
includes one or more passages.

The RMR complexity of a passage (respectively, attempt) of a process p is the number of
RMRs that p incurs in that passage (respectively, attempt).

1.2 Adaptive complexity.

A process is active if it is in the CS, or executing the try, exit, or recover methods, or crashed
while in try, CS, exit, or recover and has not subsequently invoked the recover method. The
point contention at any time t is the number of active processes at t. The point contention of
a passage (respectively, attempt) is the maximum point contention at any time in that passage
(respectively, attempt). An algorithm is adaptive if the RMR complexity r of each passage (or
attempt) of a process p is a function of that passage’s (or attempt’s) point contention k such
that r = O(1) if k = O(1).

4 Prasad Jayanti, Anup Joshi

1.3 Our contribution.

We present the first abortable RME algorithm. Our algorithm is based on the ideas underlying
two earlier CAS-based algorithms—one that is recoverable but not abortable [17] and another
that is abortable but not recoverable [13]. Our algorithm uses only the read, write, and CAS
operations, which are commonly supported by multiprocessors. It satisfies FCFS and other stan-
dard properties (starvation-freedom, bounded exit, bounded CSR, and bounded abort). The
algorithm’s space complexity—the number of words of memory used—is O(n).

Our algorithm is also adaptive. On DSM and Relaxed CC multiprocessors, a process p incurs
O(min(k, log n)) RMRs in a passage and O(f + min(k, log n)) RMRs in an attempt, where n
is the number of processes that the algorithm is designed for, k is the point contention of the
passage or the attempt, and f is the number of times that p crashes during the attempt. On a
Strict CC multiprocessor, the passage and attempt complexities are O(n) and O(f + n).

Attiya et al. proved that, with any mutual exclusion algorithm (even if the algorithm does
not have to satisfy recoverability or abortability), a process incurs at least Ω(log n) RMRs in a
passage, if the algorithm uses only the read, write, and CAS operations [2]. This lower bound
implies that the worst-case RMR complexity of our algorithm is optimal for the DSM and Relaxed
CC multiprocessors.

1.4 Comparison to Katzan and Morrison’s algorithm.

To the best of our knowledge, there is only one other abortable RME algorithm, published
recently by Katzan and Morrison [19]. They achieve sublogarithmic complexity: a process incurs
at most O(min(k, log n/ log log n) RMRs in a passage and O(f + min(k, log n/ log log n) in an
attempt. Furthermore, they achieve these bounds for even the Strict CC multiprocessor.

On the other hand, our work has the following merits. Unlike the CAS instruction employed
in our algorithm, the fetch&add instruction, which their algorithm employs to beat Attiya et
al’s lower bound and achieve sublogarithmic complexity, is not commonly supported by cur-
rent machines. Their algorithm does not satisfy FCFS and has a higher space complexity of
O(n log2 n/ log log n). Their algorithm is stated to satisfy starvation-freedom if the total number
of crashes in the run is finite. In contrast, our algorithm guarantees that each attempt completes
even in the face of infinitely many crashes in the run, provided that there are only finitely many
crashes during each attempt.

Finally, Katzan and Morrison correctly point out a shortcoming in our conference paper: our
algorithm there admits starvation if there are infinitely many aborts in a run. The algorithm in
this submission has been revised to eliminate this shortcoming.

1.5 Related Research.

All of the works on RME prior to the conference version of our paper [18] has focused on
designing algorithms that do not provide abortability as a capability. Golab and Ramaraju [10]
formalized the RME problem and designed several algorithms by adapting traditional mutual
exclusion algorithms. Ramaraju [24], Jayanti and Joshi [17], and Jayanti et al. [14] designed
RME algorithms that support the First-Come-First-Served property [20]. Golab and Hendler
[8] presented an algorithm that has sub-logarithmic RMR complexity on CC machines. Jayanti
et al. [15] presented a unified algorithm that has a sub-logarithmic RMR complexity on both
CC and DSM machines. In another work, Golab and Hendler [9] presented an algorithm that
has the ideal O(1) passage complexity, but this result assumes that all processes in the system

Recoverable Mutual Exclusion with Abortability 5

crash simultaneously. Recently, Dhoked and Mittal [5] present an RME algorithm whose RMR
complexity adapts to the number of crashes, and Chan and Woelfel [3] present an algorithm
which has an O(1) amortized RMR complexity. Recently Katzan and Morrison [19] gave an
abortable RME algorithm that incurs sub-logarithmic RMR on CC and DSM machines.

When it comes to abortability for classical mutual exclusion problem, Scott [26] and Scott
and Scherer [28] designed abortable algorithms that build on the queue-based algorithms [4][22].
Jayanti [13] designed an algorithm based on read, write, and comparison primitives having
O(log n) RMR complexity which is also optimal [2]. Lee [21] designed an algorithm for CC
machines that uses the Fetch-and-Add and Fetch-and-Store primitives. Alon and Morrison [1]
designed an algorithm for CC machines that has a sub-logarithmic RMR complexity and uses
the read, write, Fetch-And-Store, and comparison primitives. Recently, Jayanti and Jayanti [16]
designed an algorithm for the CC and DSM machines that has a constant amortized RMR com-
plexity and uses the read, write, and Fetch-And-Store primitives. While the works mentioned so
far have been deterministic algorithms, randomized versions of classical mutual exclusion with
abortability exist. Pareek and Woelfel [23] give a sublogarithmic RMR complexity randomized
algorithm and Giakkoupis and Woelfel [7] give an O(1) expected amortized RMR complexity
randomized algorithm.

2 Modeling an Abortable RME Algorithm and its runs

Definition 1 (Abortable RME algorithm) An Abortable RME algorithm is a tuple
(P,X ,Vals,F ,OP, ∆,M), where

– P is a set of processes. Each process p ∈ P has a set of registers, including a program counter,
denoted PCp, which points to an instruction in p’s code.

– X is a set of variables, which includes a Boolean variable AbortSignal[p], for each p ∈ P.
No process except p can invoke any operation on AbortSignal[p], and p can only invoke a
read operation on AbortSignal[p].
Intuitively, the “environment” sets AbortSignal[p] to true when it wishes to communicate
to p that it should abort its attempt to acquire the CS and return to the Remainder.

– Vals is a set of values (that each variable in X can possibly take on). For example, on a 64-bit
machine, Vals would be the set of all 64-bit integers.

– F is a function that assigns a value from Vals to each variable in X . For all X ∈ X , F(X) is
X’s initial value.

– OP is a set of operations that each variable in X − {AbortSignal[p] | p ∈ P} supports.
For the algorithm in this paper, OP = {read, write, CAS}, where CAS(X, r, s), when executed
by a process p (and X is a variable and r, s are p’s registers), compares the values of X and
r; if they are equal, the operation writes in X the value in s and returns true; otherwise, the
operation returns false, leaving X unchanged.

– ∆ is a partition of X into |P| sets, named ∆(p), for each p ∈ P. Intuitively, ∆(p) is the set of
variables that reside locally at process p’s partition on a DSM machine, but has no relevance
on a CC machine.

– M is a set of methods, which includes three methods per process p ∈ P, named tryp(),
exitp(), and recoverp(), such that:
– In any instruction of any method, at most one operation is performed and it is performed

on a single variable from X .
– The methods tryp() and recoverp() return a value from {IN CS, IN REM}, and exitp()

has no return value.

6 Prasad Jayanti, Anup Joshi

– None of tryp(), exitp(), or recoverp() calls itself or the other two. (This assumption
simplifies the model, but is not limiting in any way because it does not preclude the use
of helper methods each of which can call itself or the other helper methods.)

For each process p ∈ P, we model p’s code outside of the methods in M to consist of two dis-
joint sections, named remainderp() and csp(). Furthermore, we introduce the following abstract
variables, which are not in X and not accessed by the methods inM, but are helpful in defining
the problem.

– statusp ∈ {good, recover-from-try,recover-from-cs, recover-from-exit, recover-from-rem}.
Informally, statusp models p’s “recovery status”. If statusp 6= good, it means that either p
has crashed and not yet restarted or p has restarted and invoked recoverp() but has not yet
completed recoverp(). The value of statusp reveals the section of code where p most recently
crashed.

– Cachep holds a set of pairs of the form (X, v), where X ∈ X and v ∈ Vals. Informally, if
(X, v) is present in the cache, X is in p’s cache and v is its current value. This abstract variable
helps define what operations count as remote memory references (RMR) on CC machines.

Definition 2 (State, Configuration, Initial Configuration)

– A state of a process p is a function that assigns a value to each of p’s registers, including PCp,
and a value to each of statusp, AbortSignal[p], and Cachep.

– A configuration is a function that assigns a state to each process in P and a value to each
variable in X . (Intuitively, a configuration is a snapshot of the states of processes and values
of variables at a point in time.)

– An initial configuration is a configuration where, for each p ∈ P, PCp = remainderp(),
statusp = good, AbortSignal[p] = false, and Cachep = ∅; and, for each X ∈ X , X = F(X).

Definition 3 (Run) A run is a finite sequence C0, α1, C1, α2, C2, . . . αk, Ck, or an infinite se-
quence C0, α1, C1, α2, C2, . . . such that:

1. C0 is an initial configuration and, for each i, Ci is a configuration and αi is either (p,normal)
or (p, crash), for some p ∈ P.
We call each triple (Ci−1, αi, Ci) a step; it is a normal step of p if αi = (p,normal), and a
crash step of p if αi = (p, crash).

2. For each normal step (Ci−1, (p,normal), Ci), Ci is the configuration that results when p
executes an enabled instruction of its code, explained as follows:

– If PCp = remainderp() and statusp = good in Ci−1, then p invokes either tryp() or
recoverp().

– If PCp = remainderp() and statusp 6= good in Ci−1, then p invokes recoverp().
– If PCp = csp(), then p invokes exitp().
– Otherwise, p executes the instruction that PCp points to in Ci−1.

If this instruction returns IN CS (resp., IN REM), PCp is set to csp() (resp., remainderp()).
If the instruction causes p to return from recoverp(), statusp is set to good in Ci.
If p performs a read on X and X is not present in Cachep in Ci−1, then (X, v) is inserted
in Cachep, where v is X’s value in Ci−1.
In the Strict-CC model, if p performs a non-read operation on X, X is removed from
Cacheq, for all q ∈ P.
In the Relaxed-CC model, if p performs a non-read operation on X that changes X’s
value, X is removed from Cacheq, for all q ∈ P.

3. For each crash step (Ci−1, (p, crash), Ci), we have:

Recoverable Mutual Exclusion with Abortability 7

– In Ci, PCp is set to remainderp() and all other registers of p are set to arbitrary values,
and Cachep is set to ∅.

– If statusp 6= good in Ci−1, then statusp remains unchanged in Ci. Otherwise, if (in Ci−1)
p is in tryp() (respectively, csp(), exitp(), or recoverp()), then statusp is set in Ci to
recover-from-try (respectively, recover-from-cs, recover-from-exit, or recover-from-rem).

Liveness of the algorithm, which guarantees that processes don’t wait forever, can be realized
only if the underlying model assures that every crashed process eventually restarts, no process
stays in the CS forever, and no process permanently ceases to take steps when it is outside the
Remainder section. Hence, “fair” runs of the algorithm where these assurances are kept are of
interest, as captured by the next definition.

Definition 4 (Fair run) A run R = C0, α1, C1, α2, C2, . . . is fair if and only if either R is finite
or, for all configurations Ci and for all processes p ∈ P, the following condition is satisfied: unless
PCp = remainderp() and statusp = good in Ci, p has a step in the suffix of R from Ci.

Definition 5 (Passage and Attempt)

– A passage of a process p is a contiguous sequence σ of steps in a run such that p leaves
remainderp() in the first step of σ and the last step of σ is the earliest subsequent step in the
run where p reenters remainderp() (either because p crashes or because p’s method returns
IN REM).

– An attempt of a process p is a maximal contiguous sequence σ of steps in a run such that
p leaves remainderp() in the first step of σ with statusp = good and the last step of σ is
the earliest subsequent normal step in the run that causes p to reenter remainderp() (which
would be a return from exitp, or a return of IN REM from tryp or recoverp).

Definition 6 (RMR)

– A step of p is an RMR on a DSM machine if and only if it is a normal step in which p
performs an operation on some variable that is not in ∆(p).

– A step of p is an RMR on a Strict or Relaxed CC machine if and only if it is a normal step
in which p performs a non-read operation, or p reads some variable that is not present in p’s
cache.

Definition 7 (Active) A process p is active in a configuration C if the condition (PCp 6=
remainderp()) ∨ (statusp 6= good) holds in C.

Definition 8 (Point contention) The point contention at a configuration C is the number of
active processes in C.

3 Properties of an abortable RME algorithm

We state the properties required of an abortable RME algorithm which, for easy comprenhensi-
bility, we have divided into four categories: basic safety, responsiveness, liveness, and fairness.

Basic safety properties

P1. Mutual Exclusion: At most one process is in the CS in any configuration of any run.
P2. Critical Section Reentry (CSR) [10]: In any run, if a process p crashes while in the CS, no

other process enters the CS until p subsequently reenters the CS.

8 Prasad Jayanti, Anup Joshi

P3. No Trivial Aborts: In any run, if AbortSignal[p] is false when a process p invokes tryp()
and it remains false during the execution of tryp(), then tryp() does not return IN REM.

Responsiveness properties
Once a process leaves the CS, it should be able to return to the remainder section without

having to wait on other processes, as captured by the next property.

P3. Bounded Exit: There is an integer b such that if in any run any process p invokes and executes
exitp() without crashing, the method completes in at most b steps of p.

The next property formalizes the requirement that, if the environment signals a waiting
process to abort (and maintains that signal so that it is not missed), then the process should
be able to quit the try method (i.e., either return to the remainder or capture the CS) without
being obstructed by others.

P4. Bounded Abort [13]: There is an integer b such that if at any point in any run a pro-
cess p is in tryp() or recoverp() with statusp = recover-from-try, and from that point on
AbortSignal[p] stays true and p executes steps without crashing, then tryp() or recoverp()
returns in at most b steps of p.

A process p finds itself in the remainder section either because it crashed while executing
the algorithm or because it returned normally from the algorithm. In the former case, when p
restarts, it is required to execute recoverp(), but in the latter case, p has a choice—it can execute
either tryp() or recoverp(). If p is unsure whether it is restarting from a crashed state, it can
harmlessly “probe” by executing recoverp(). However, if p executes recoverp() in the latter
case, for efficiency we require recoverp() to complete quickly (and return IN REM).

P5. Fast Probing: There is an absolute constant b, i.e., a constant independent of |P|, such
that if in any run any process p executes recoverp() without crashing and with statusp ∈
{good, recover-from-rem}, the method completes in at most b steps of p.

If p crashes while in the CS, the CSR property stated earlier prohibits others from entering
the CS until p reenters the CS. Therefore, when p restarts and executes recoverp(), we would
want p to be able to complete recoverp() (and return IN CS) without being obstructed by other
processes [17]. Similarly, when p executes recoverp() following a crash in the exit section, p
should be able to complete recoverp() (returning IN CS or IN REM) without having to wait on
others. On the other hand, if p crashes while executing tryp(), the execution of recoverp() upon
restart has two options: either it gives up the attempt to acquire the CS and returns IN REM
or it tries once again to acquire the CS. In the latter case, waiting is unavoidable, but in the
former case we require that p completes recoverp() without having to wait on others. The next
property formalizes these requirements.

P6. Bounded Recovery: There is an integer b such that if in any run any process p executes
recoverp() without crashing and either with statusp ∈ {recover-from-cs, recover-from-exit}
or with statusp = recover-from-try and the method returns IN REM, the method completes
in at most b steps of p.

Liveness property
For the traditional mutual exclusion problem, the liveness condition is usually starvation-

freedom, which states that if a process p is in tryp() at any point in a fair infinite run, it is in the
CS at a later point. We adapt this definition to allow for aborts and crashes. To accommodate

Recoverable Mutual Exclusion with Abortability 9

aborting, we relax the phrase “it is in the CS at a later point” in the definition to “it returns
from tryp() at a later point.” Furthermore, since a non-aborting waiting process cannot enter
the CS if the process in the CS fails repeatedly (infinitely many times), we could require progress
only when there are finitely many crashes:

Starvation Freedom: In every fair infinite run in which there are only finitely many crash
steps, if a process p is in tryp() in a configuration, p subsequently returns from tryp().

Our algorithm satisfies a stronger property that guarantees progress even when there are
infinitely many crashes in the run, provided that there are only finitely crashes in each attempt
of the run.

P7. Strong Starvation Freedom: In every fair infinite run in which every attempt contains only
finitely many crash steps (counting the crash steps of all processes), if a process p is in tryp()
in a configuration, p subsequently returns from tryp().

Fairness property
For the traditional mutual exclusion problem, a standard fairness property, known as First-

Come-First-Served (FCFS) [20], informally states that if a process p completes its request for
the CS before q begins its request, then q does not enter the CS before p. Formally, p’s request
for the CS consists of the first b steps of tryp(), where b is a bound that depends only on the
algorithm. Thus, the formal definition of FCFS states that there is an integer b such that if p
performs b steps of tryp() before q invokes tryq(), then q does not enter the CS before p.

To accommodate aborts, the condition is adapted to: “If p completes the request before q
begins its request and p does not abort, then q won’t enter the CS before p” [17]

When adapting this condition further to accommodate crashes, two interesting issues come up.
First, p might invoke tryp(), crash before performing b steps, restart and crash yet again before
performing b steps, and so on. Given this possibility, we deem p to have completed its request
before q begins its request if p performs at least b steps between some two of its successive crashes
(in tryp() or in recoverp() with statusp = recover-from-try) before q invokes tryq(). Second,
suppose that p completes its request before q begins its request, and suppose further that p does
not receive the abort signal. Should q be necessarily prohibited from entering the CS before p?
Rather surprisingly, the answer is no. To understand why, suppose that p crashes after having
requested the CS. When p restarts and executes recoverp(), there are two possibilities: (1) p
completes the recovery method in a bounded number of its own steps, thereby either returning
to the remainder or capturing the CS, or (2) p waits in the recovery method until eventually
capturing the CS. The algorithm in this paper is designed to realize the first possibility, which is
attractive because, in case the recovery sends p to the remainder, p can choose whether or not
to execute the algorithm afresh. On the other hand, just as legitimately, the algorithm designer
might prefer the second possibility, where even after the crash p persists in its resolve to acquire
the CS. Turning our attention back to FCFS, in the first possibility, since p is assured of a
bounded recovery, there is no reason to prohibit q from entering the CS, but in the second
possibility, q should not be allowed to enter the CS ahead of p. The definition below incorporates
all of these elements, where RR′ denotes a concatenation of sequences R and R′.

P8. FCFS: There is an integer b such that if (i) R and RR′ are finite runs, (ii) p starts an attempt
A in R but does not complete it in R, (iii) q starts an attempt A′ in R and is in the CS in
A′ at the end of R, (iv) before q starts the attempt A′, p performs at least b normal steps in
A without any intervening crash steps of p in A, and (v) p has no crash steps in R′ and has
at least b steps in R′, then p enters the CS or the remainder section in A in RR′.

10 Prasad Jayanti, Anup Joshi

4 A key building block: the min-array object [12]

The design of a mutual exclusion algorithm requires a facility by which processes can quickly
identify a most deserving (i.e., a highest priority or a longest waiting process) among the waiting
processes that should be launched into the CS next. When an algorithm is restricted to using
only the read, write, and CAS operations, Jayanti’s min-array construction [12] has proved useful
for this purpose in some earlier algorithms [13] [17]. Our algorithm is also based on the min-array
object.

A min-array object X of n locations supports two operations: X[p].write(v), which can only
be executed by process p ∈ {1, 2, . . . , n}, writes v in X[p]; and X.findmin() returns the minimum
value among X[1], X[2], . . . , X[n]. The construction in [12] presents a linearizable and wait-free
implementation of this object using only the read, write, and CAS operations. The following
properties of this implementation are what makes it useful for our algorithm:

– The implementation has adaptive and small worst-case step complexity. Specifically, a process
p completes X.findmin() in O(1) steps and X[p].write(v) in O(min(k, log n)) steps, where k
is the maximum point contention during the execution of X[p].write(v).

– Suppose that p invokes X[p].write(v) and crashes before completing the method; when it
restarts, suppose that it invokes X[p].write(v) once more and yet again crashes before com-
pleting the method. Suppose this pattern repeats f times before p invokes X[p].write(v) and
executes it to completion. Despite the many partial executions before the full execution, the
implementation ensures that the X[p].write(v) operation appears to take effect exactly once.
Furthermore, the total number of p’s steps, over all of the partial executions and the final full
execution, is O(f + min(k, log n)).

– Suppose that p invokes X[p].write(v) and crashes before completing it. When p subse-
quently restarts, suppose that p chooses to abandon that write operation and instead executes
X[p].write(v′) to completion, for some v′ 6= v. Then, the implementation guarantees that ei-
ther X[p].write(v) does not take effect and only X[p].write(v′) takes effect, or X[p].write(v)
takes effect before X[p].write(v′) takes effect.

– The implementation has O(n) space complexity (i.e., uses only O(n) memory words).

5 The Algorithm and its intuitive description

We present in Figure 1 our abortable RME algorithm for the set of processes P = {1, 2, . . . , n}.
All the shared variables used by our algorithm are stored in NVRAM. Variables with a subscript
of p to their name are local to process p, and are stored in p’s registers or volatile memory. We
begin by describing the role played by each of the shared variables used in the algorithm.

– Token is an unbounded positive integer. A process p reads this variable at the beginning of
tryp() to obtain its token and then increments, thereby ensuring that processes that invoke
the try method later will get a strictly bigger token.

– CSStatus and Seq: These two shared variables are used in conjunction, with Seq holding an
unbounded integer and CSStatus holding a pair, which is either (true, p) (for some p ∈ P)
or (false,Seq). If CSStatus = (true, p), it means that p owns the CS and, if CSStatus =
(false,Seq), it means that no process owns the CS. If Seq has a value s while p is the CS,
when exiting the CS p increments Seq to s + 1 and writes (0, s + 1) in CSStatus. As we
explain later, this act is crucial to ensuring that no process will be made the owner of the CS
after it has moved back to the remainder.

Recoverable Mutual Exclusion with Abortability 11

Persistent variables (stored in NVRAM)
Registry[1 . . . |P|] : A min-array; initially Registry[p] = (p,∞), for all p ∈ P.
CSStatus ∈ {0} × ({0} ∪ N+) ∪ {1} × P; initially (0, 1).
Seq ∈ N; initially 1.
∀p ∈ P,Go[p] ∈ N+ ∪ {−1, 0}, initially ⊥.
Token ∈ N, initially 1.

1. Remainder Section

procedure tryp():

2. tokp ← Token
3. CAS(Token, tokp, tokp + 1)
4. Go[p]← tokp
5. Registry[p].write((p, tokp))
6. promotep(false)

7. wait till Go[p] = 0 ∨AbortSignal[p]
8. if Go[p] = 0: return IN CS
9. return abortp()

10. Critical Section

procedure exitp():

11. Registry[p].write((p,∞))
12. sp ← Seq
13. Seq← sp + 1
14. CSStatus← (0, sp + 1)
15. promotep(false)

16. Go[p]← −1

procedure recoverp():

17. if Go[p] = −1: return IN REM
18. return abortp()

procedure abortp():

19. Registry[p].write((p,∞))
20. promotep(true)

21. if CSStatus = (1, p): return IN CS
22. Go[p]← −1
23. return IN REM

procedure promotep(boolean flagp):

24. (bp, sp)← CSStatus; if bp = 1: { peerp ← sp; go to Line 27 }
25. (peerp, tokp)← Registry.findmin(); if tokp =∞∧ flagp: peerp ← p else if tokp =∞: return
26. if ¬CAS(CSStatus, (0, sp), (1, peerp)): return
27. gp ← Go[peerp]; if gp ∈ {−1, 0}: return
28. if CSStatus 6= (1, peerp): return
29. CAS(Go[peerp], gp, 0)

Fig. 1: Abortable RME Algorithm for CC and DSM machines. Code for process p.

– Go[p] has one of three values — −1, 0, or p’s token. The algorithm ensures that Go[p] = −1
whenever p is in the remainder “normally”, i.e., not because of a crash but because the try,
exit, or recover method returned normally. If Go[p] = 0, it means that p is made the owner
of CS, hence p has the permission to enter the CS. After p obtains a token in tryp(), p writes
its token in Go[p] and, subsequently when p must wait for its turn to enter the CS, it spins
until either Go[p] turns 0 or it receives a signal to abort.

12 Prasad Jayanti, Anup Joshi

– Registry is a min-array object [12] of n locations. After p obtains a token t in tryp(), it
announces its interest in capturing the CS by writing the pair (p, t) in Registry[p], and when
no longer interested, it removes the token by writing (p,∞) in Registry[p]. The “less than”
relation on pairs is defined as follows: (p, t) < (p′, t′) if and only if t < t′ or (t = t′)∧ (p < p′).

Next we present an intuitive understanding of the algorithm, explaining the lines of code
and, more importantly, drawing attention to potential race conditions and how the algorithm
overcomes them.

Understanding tryp()

After a process p invokes tryp(), it reads and then attempts to increments Token (Lines 2,
3). The attempt to increment serves two purposes. First, if a different process q invokes tryq()
later, it gets a strictly larger token, which helps realize FCFS. Second, if p were to abort its
curent attempt A, it will obtain a strictly larger token in its next attempt A′, which, as we will
see, helps ensure that any process q that might attempt to release p from its busy-wait in the
attempt A will not accidentally release p from its busy-wait in the attempt A′. Process p writes
its token in Go[p] (Line 4), where it will later busy-wait until some process changes Go[p] to 0,
and then announces its interest in the CS by changing Registry[p] from (p,∞) to (p, its token)
(Line 5). It then calls the promotep() procedure, which is crucial to ensuring livelock-freedom
(Line 6).

Understanding promotep()

The promotep() procedure’s purpose is to push a waiting process into the CS, if the CS
is unoccupied. To this end, p reads CSStatus (Line 24). If it finds that the CS is already
owned (i.e., bp = 1), since it is possible that the owner peerp is still busywaiting unaware of
its ownership, p jumps to Line 27, where the code to release peerp starts. On the other hand,
if the CS is unoccupied (i.e., bp = 0), it executes Line 25 to find out the process that has the
smallest token in the Registry, i.e., the process peerp that has been waiting the longest. Since
promotep() is called from p’s Line 6, at which point Registry[p] has a finite token number for p,
at Line 25 we have tokp 6=∞. So, p proceeds to Line 26, where it attempts to launch peerp into
the CS. If p’s CAS fails, it means that someone else must have succeeded in launching a process
into the CS between p’s Line 24 and Line 26; in this case p has no further role to play, so it
returns from the procedure. On the other hand, if p’s CAS succeeds, which means that peerp has
been made the CS owner, p has a responsibility to release peerp from its busywait, i.e., p must
write 0 in Go[peerp]. However, there is potential for a nasty race condition here, as explained by
the following scenario: some process different from p releases peerp from its busywait; peerp enters
the CS and then exits to the remainder; some other process q is now in the CS; peerp executes
the try method once more and proceeds up to the point of busy-waiting. Recall that p is poised
to write 0 in Go[peerp]. If p does this writing, peerp will be released from its busywait, so peerp
proceeds to the CS, where q is already present. So, mutual exclusion is violated! Our algorithm
averts this disaster by exploiting the fact that, while peerp busywaits, Go[peerp]’s value is never
the same between different attempts of peerp. Specifically, p reads Go[peerp] (Line 27); if gp is
−1 or 0, it means that peerp is not busywaiting, so p has no role to play, hence it returns. If
things have moved on and peerp no longer owns the CS, then too p has no role to play, hence
it returns (Line 28). Otherwise, there are two possibilities: either Go[peerp] is still gp or it has
changed. In the former case, peerp must be busywaiting, so it is imperative that p takes the
responsibility to release peerp (by changing Go[peerp] to 0). In the latter case, peerp requires
no help from p, so p must not change Go[peerp] (in order to avoid the race condition described
above). This is precisely what the CAS at Line 29 accomplishes.

Recoverable Mutual Exclusion with Abortability 13

The rest of tryp()

Upon returning from promotep(), p busywaits until it reads a 0 in Go[p] or it receives a
request to abort (Line 7). If p reads a 0 in Go[p], p infers that it owns the CS, so tryp() returns
IN CS (Line 8). If p receives a request to abort, it calls abortp() (Line 9), which we describe
next.

Understanding abortp()

To abort, p writes (p,∞) to make it known to all that it has no interest in capturing the CS
(Line 19). If any process will invoke the promote procedure after this point, it will not find p
in Registry, so it will not attempt to launch p into the CS. Does this mean that p can now
return to the remainder section? The answer is a thundering no because there are two nasty race
conditions that need to be overcome.

First, it is possible that, before p performed Line 19, some process q performed its Line 25 to
find p in Registry, and then successfully launched p into the CS (by writing (1, p) in CSStatus).
Taking care of this scenario is easy: p can read CSStatus and if p finds that it owns the CS, it
can abort by simply returning IN CS.

The second potential race is more subtle and harder to overcome. As in the earlier scenario,
suppose that, before p performed Line 19, some process q performed its Line 25 to find p in
Registry (i.e., peerq = p). Furthermore, suppose that q is now at Line 26 and CSStatus =
(0, sq). So, after performing Line 19, if p naively returns to the remainder and then q performs
Line 26, we would be in a situation where p has been made the CS owner after it was back in
the remainder!

To overcome the above two race conditions, p calls promotep(true) (Line 20).

The parameter true conveys that the call is made by p while aborting, and has the following
impact on how p executes promotep(): if p finds the CS to be unoccupied at Line 24 and finds
Registry to be empty at Line 25, to preempt the second race condition discussed above (where
some process q is poised to launch p into the CS), p will attempt to launch itself into the CS (by
setting peerp to p at Line 25 and attempting to change CSStatus to (1, peerp)). The key insight
is that, after p performs the CAS at Line 26, only two possibilities remain: either p is already
launched into the CS (i.e., CSStatus = (1, p)) or it is guaranteed that no process will launch p
into the CS. In the former case, abortp() returns IN CS at Line 21; and in the latter case, since
it is safe for p to return to the remainder, abortp() returns IN REM at Line 23 after setting
Go[p] to −1 at Line 22 (in order to respect the earlier mentioned invariant that Go[p] = −1
whenever p returns to the remainder normally).

Understanding exitp()

There are two routes by which p might enter the CS. One is the “normal” route where p
executes tryp() without aborting or crashing, and tryp() returns IN CS, thereby sending p to
the CS. The second route is where p receives an abort signal, calls at Line 9 abortp(), which
returns IN CS at Line 21, causing tryp() also to return IN CS at Line 9. When p is in the CS, p’s
announcement in Registry[p] (made at Line 5), would no longer be there if it entered the CS by
the second route (because of Line 19), but it would still be there if it entered the CS by the first
route. So, when p exits the CS, it removes its announcement in Registry[p] (Line 11). It then
increments the number in Seq and gives up its ownership of the CS by changing CSStatus from
(1, p) to (0,Seq) (Lines 12, 13, 14). To launch a waiting process, if any, into the just vacated
CS, p then executes promotep() (Line 15), and returns to the remainder after setting Go[p] to
−1 at Line 16 (in order to respect the earlier mentioned invariant that Go[p] = −1 whenever p
returns to the remainder normally).

14 Prasad Jayanti, Anup Joshi

Understanding recoverp()
Process p executes recoverp() when it restarts after a crash. If Go[p] has −1, p infers that

either recoverp() was called when statusp = good or the most recent crash had occured early in
tryp(), so recoverp() simply sends p back to the remainder (Line 17). Otherwise, recoverp()
simply calls abortp() (Line 17), which does the needful. In particular, if p was in the CS at the
most recent crash, then CSStatus would have (1, p), which causes abortp() to send p back to
the CS. Otherwise, abortp() extricates p from the algorithm, sending it either to the CS or to
the remainder.

6 The invariant

Figure 2 presents the invariant satisfied by the Abortable RME algorithm given in Figure 1.
We have written the 13 statements comprising the invariant with the following conventions.
All statements about process p are universally quantified, i.e., ∀p ∈ P is implicit (these are
Statements 3 through 11, and Statement 13). The program counter for a process p, i.e., PCp,
can take any of the values from the set [1,29]. However, when a call to procedure promotep()
is made by p and p is executing one of the steps from Lines 24-29, for clearly conveying where
the call was made from, we prefix the value of PCp with the line number from where promotep()
was called, along with the scope resolution operator from C++, namely, “::”. Thus, PCp = 6::27
means p called promotep() from Line 6 and is now executing Line 27 in that call. Sometimes,
in the interest of brevity, we use the range operator, i.e., [a, b], to convey something more than
just saying the range of values from a to b (inclusive). That is, if PCp ∈ [6,8], we also mean
that PCp could take on values from [6::24,6::29] because there is a call to promotep() at Line 6.
Similarly, the range [5,6] includes Line 5 as well as the lines in the range [6::24,6::29] because,
again, there is a call to promotep() at Line 6.

The lemma below asserts that the invariant is correct. Its proof is presented in Appendix A.

Lemma 1 The algorithm in Figure 1 satisfies the invariant in Figure 2 (i.e., the conjunction of
all the conditions stated in Figure 2 holds in every configuration of every run).

7 Proof of the properties and the main theorem

Using the invariant, we now prove that the algorithm satisfies all of the properties stated in
Section 3 and has adaptive and worst-case logarithmic RMR complexity on DSM and Relaxed-
CC machines.

Lemma 2 (Mutual Exclusion) At most one process is in the CS in any configuration of any
run.

Proof Assume to the contrary that there is a configuration C where two distinct processes p and q
are in the CS, i.e., PCp = PCq = 10. By Condition 5, CSStatus = (1, p) and CSStatus = (1, q)
in C, which means CSStatus has two different values in the same configuration, a contradiction.

Lemma 3 (Critical Section Reentry) In any run, if a process p crashes while in the CS, no
other process enters the CS until p subsequently reenters the CS.

Proof Suppose that p crashes while in the CS, thereby moving from the CS to the remainder
section with statusp set to recover-from-cs. The value of statusp remains recover-from-cs until
p subsequently restarts and executes recoverp() to completion. It follows from Condition 5 of

Recoverable Mutual Exclusion with Abortability 15

Conditions:

1. Token ≥ 1
2. (CSStatus = (0,Seq)) ∨ (∃q ∈ P, CSStatus = (1, q))
3. (−1 ≤ Go[p] < Token) ∧ (PCp = 5⇒ Go[p] = tokp) ∧ (PCp ∈ [6,8]⇒ Go[p] ∈ {0, tokp})

∧ (PCp ∈ {9-16,18-22,24-29} ⇒ Go[p] 6= −1)
∧ ((PCp ∈ {2-4,23} ∨ (PCp ∈ {1,17} ∧ statusp ∈ {good, recover-from-rem}))⇒ Go[p] = −1)

4. (∃t ∈ [1,Token− 1] ∪ {∞},Registry[p] = (p, t))
∧ (PCp ∈ [6,8]⇒ Registry[p] = (p, tokp))
∧ ((PCp ∈ {5,12-16,20-22} ∨Go[p] = −1) ⇒ Registry[p] = (p,∞))

5. (((PCp ∈ [6,8] ∧ Go[p] = 0) ∨ PCp ∈ [10,14] ∨ statusp = recover-from-cs)⇒ CSStatus = (1, p))
∧ ((PCp ∈ {5,22} ∪ [15,16] ∨ Go[p] = −1) ⇒ CSStatus 6= (1, p))

6. This condition states what values local variables of process p take on.
(PCp = 3⇒ 1 ≤ tokp ≤ Token) ∧ (PCp ∈ [4,8]⇒ 1 ≤ tokp < Token)
∧ (PCp = 13⇒ sp = Seq) ∧ (PCp = 14⇒ sp = Seq− 1)
∧ (PCp ∈ [6::24,6::29] ∪ [15::24,15::29]⇒ flagp = false) ∧ (PCp ∈ [20::24,20::29]⇒ flagp = true)
∧ (PCp ∈ [26,29]⇒ peerp ∈ P)
∧ (PCp ∈ [2,16]⇒ statusp = good)

7. (PCp = 8⇒ (Go[p] = 0 ∨ abort was requested)) ∧ (PCp = 9⇒ abort was requested)
8. PCp ∈ {25,26} ⇒ (sp ≤ Seq ∧ (∀q, PCq ∈ {13,14} ⇒ sp ≤ sq))
9. ((PCp = 25 ∧ CSStatus = (0, sp)) ⇒

∀q, (Registry[q] 6= (q,∞)⇒ (PCq ∈ {6-9,18,19} ∨ (PCq ∈ {1,17} ∧Go[q] 6= −1))))
∧ ((PCp = 26 ∧ CSStatus = (0, sp))⇒ (PCpeerp ∈ [6,8] ∪ {18-20,20::24}

∨ (PCpeerp ∈ {20::25,20::26} ∧ speerp = sp)
∨ (PCpeerp ∈ {1,17} ∧Go[peerp] 6= −1)))

10. PCp = {28,29} ⇒ 1 ≤ gp < Token
11. PCp = 29⇒ ((PCpeerp ∈ {3,4} ⇒ 1 ≤ gp < tokpeerp)

∧ (PCpeerp = 5⇒ 1 ≤ gp < Go[peerp])
∧ ((PCpeerp ∈ {6,7,8} ∧ gp = Go[peerp])⇒ CSStatus = (1, peerp)))

12. If a process is registered, some q is either in CS or can be counted on to launch a waiting process into CS.

min(Registry) 6= (∗,∞) ⇒ ∃q, (CSStatus = (1, q)
∨ (PCq ∈ {1,17} ∧Go[q] 6= −1) ∨ PCq ∈ {6,15,18-20,24}
∨ (PCq ∈ {25,26} ∧ CSStatus = (0, sq)))

13. If p has the ownership of CS but Go[p] 6= 0, then there is some q that can be counted on to set Go[p] to 0.

(CSStatus = (1, p) ∧Go[p] 6= 0) ⇒ ∃q, (PCq ∈ {18-20,24} ∨ (PCq = 27 ∧ peerq = p)
∨ (PCq ∈ {28,29} ∧ peerq = p ∧ gq = Go[p])
∨ (PCq ∈ {1,17} ∧Go[q] 6= −1))

Fig. 2: Invariant of the Abortable RME Algorithm from Figure 1.

the invariant that Go[p] 6= −1 and CSStatus = (1, p) through this interval, all the way until
recoverp() completes. Therefore, when p executes recoverp(), the condition on Line 17 does not
apply, and when p proceeds to Line 21 (after executing Lines 18, 19, and the procedure called
at 20), it reads (1, p) at Line 22, which causes it to reenter the CS. Hence, we conclude that
CSStatus = (1, p) from the time of p’s crash to the time of its reentering the CS. Therefore, if
the lemma is false and some process q enters the CS before this reentry of p to the CS, at the
configuration where q enters the CS, CSStatus = (1, q) (by Condition 5 of the invariant) and
CSStatus = (1, p) (as we just argued), which is a contradiction.

Lemma 4 (No Trivial Aborts) In any run, if AbortSignal[p] is false when a process p
invokes tryp() and it remains false during the execution of tryp(), then tryp() does not return
IN REM.

Proof If AbortSignal[p] is false during the entire execution of tryp(), it is clear from an
inspection of the code that, when p quits the loop at Line 7, Go[p] = 0. Since no process
other than p ever changes Go[p] from 0, if p doesn’t crash and proceeds to execute Line 8, the

16 Prasad Jayanti, Anup Joshi

condition on Line 8 holds, so tryp() returns IN CS. Hence, we conclude that tryp() does not
return IN REM.

Lemma 5 (Responsiveness) The algorithm satisfies Bounded Exit, Bounded Abort, Bounded
Recovery, and Fast Probing.

Proof The Bounded Exit, Bounded Abort, and Bounded Recovery properties are immediate from
the observation that any process p can complete the methods promotep(), exitp(), abortp(),
and recoverp() in O(log n) steps. Fast Probing is immediate from an inspection of Line 17 and
the observation that Condition 3 of the invariant assures that Go[p] = −1 if PCp = 17 and
statusp ∈ {good, recover-from-rem}.

Lemma 6 (Starvation-Freedom) The algorithm satisfies Strong Starvation-Freedom.

Proof Assume to the contrary that the algorithm does not satisfy strong starvation-freedom.
Then, there is a fair, infinite run R and an attempt A of a process p such that there are finitely
many crashes in A and p is stuck at Line 7 forever in A. Let τ be the token that p writes in
the registry in A. Then, there is a time t in the attempt A such that p is at Line 7 at t and
no process crashes beyond t. For each process q, if q has an active attempt at t with a token τ ′

such that (q, τ ′) < (p, τ), then move further in time such that either that attempt of q completes
or q is stuck forever. It follows that there is a far enough time t′ such that (1) the set S of
active attempts stuck at Line 7 forever is nonempty (because A ∈ S), (2) for each active attempt
A′ ∈ S, if the process q that executes A′ obtained a token τ ′ in A′ such that (q, τ ′) < (p, τ),
then q is stuck at Line 7 forever, (3) If PCq = 26 (for some q), then (peerq, tokq) ≤ (p, τ) and
peerq’s attempt is in S, and (4) no process crashes beyond t′. Since the registry has p’s finite
token, Condition 12 of the invariant asserts that there is a process q such that one of the four
disjuncts of that condition applies. Regardless of which disjunct applies, as q takes steps, it is
easy to see that q calls promoteq and performs Lines 24, 25, and 26, thereby launching some
process r from S into CSStatus. Then, by Condition 13 of the invariant, there exists a process
q that writes 0 in Go[r]. Thus, Go[r] gets set to 0, for some process r that has an active attempt
in S, contradicting that r is stuck forever in the run.

Lemma 7 (FCFS) The algorithm satisfies FCFS: there is an integer b such that if (i) R and
RR′ are finite runs, (ii) p starts an attempt A in R but does not complete it in R, (iii) q starts
an attempt A′ in R and is in the CS in A′ at the end of R, (iv) before q starts the attempt A′,
p performs at least b normal steps in A without any intervening crash steps of p in A, and (v) p
has no crash steps in R′ and has at least b steps in R′, then p enters the CS or the remainder
section in A in RR′.

Proof Let b be the number of steps that it takes to execute all of Lines 2 through 6 and all
of Lines 17 through 29, which makes b = O(lg n). Assume for a contradiction that the lemma
is false, i.e., there are R, R′, p, q, A, and A′ that satisfy the conditions (i) through (v) in
the lemma, yet p does not enter the CS or the remainder section in A in RR′. Let C be the
configuration in R when q starts its attempt A′, and C ′ be the configuration at the end of R. We
derive a contradiction through the following sequence of observations, where each observation is
accompanied immediately by a justification.

O1. p is at the busy-wait loop (Line 7) at C ′.

Since p does not enter the CS or the remainder in its attempt A in RR′, given the definition of
b, at C ′ process p must be at Lines 7, 8, 9, or 11 through 29 or at Line 1 with statusp 6= good.
However, given the definition of b, if at C ′ process p were at any of Lines 11 through 29 or at

Recoverable Mutual Exclusion with Abortability 17

Line 1 with statusp 6= good, then p would return IN REM or IN CS in R′, contradicting our
assumption. Hence, the observation.

O2. (p, tokp) < (q, tokq), where (p, tokp) and (q, tokq) are the values that p and q write in the reg-
istry in their attempts A and A′, respectively, and Registry[p] = (p, tokp) at all intermediate
configurations of the run R, from C to C ′.

This observation follows from the fact that p performs Lines 2 through 5 in A before q starts
A′.

O3. CSStatus 6= (1, q), PCq = 1, and Go[q] = −1 at C.

Since q starts an attempt at C, q must in the remainder (i.e., PCq = 1) with statusq = good.
This fact, together with Condition 5 of the invariant, implies that CSStatus 6= (1, q). The
same fact, together with Condition 3 of the invariant, implies that Go[q] = −1.

O4. CSStatus = (1, q) at C ′.

Since q is in the CS at C ′ (i.e., PCq = 10), Condition 5 of the invariant implies that
CSStatus = (1, q).

O5. Let σ26 be the earliest step that occurs after C (and before C ′) where some process r performs
a successful CAS at Line 26, changing CSStatus from (0, sr) to (1, q). Let σ24 and σ25 denote
the steps where r executes the prceding Lines 24 and 25. Then, it must be the case that r
reads (0, sr) in CSStatus at σ24 and r reads (q, tokr) in Registry (i.e., peerr = q) at σ25.

O6. CSStatus = (0, sr) during the interval from σ24 to σ26.

We know that CSStatus has (0, sr) at σ24 and at σ26. It could not taken on a different value
in the middle because, if it did, CSStatus would have had to change from (0, sr) to (1, x),
and then eventually back to (0, y), but then y would be strictly more than sr, a contradiction.

O7. PCr 6= 26 at C.

Assume to the contrary that PCr = 26 at C. Then, it follows from Observation (4) that
CSStatus = (0, sr) at C. Thus, at C, we have PCr = 26, CSStatus = (0, sr), peerr = q
(from Observation 3), and (from Observation 1) PCq = 1 and Go[q] = −1, which contradicts
Condition 9 of the invariant.

O8. The step σ25 is performed after C.

This observation follows from Observations 3 and 5.

It follows from Observations O8 and O2 that r could not have obtained (q, ∗) at the step σ25,
contradicting Observation O5. Hence, we have the lemma.

The theorem below summarizes the result of our paper.

Theorem 1 The algorithm in Figure 1 is an abortable RME algorithm for n processes using
read, write, and CAS operations. It satisfies properties P1-P8 stated in Section 3. A process
incurs O(min(k, log n)) RMRs per passage on DSM and Relaxed-CC machines and O(n) RMRs
per passage on Strict-CC machines, where k is the maximum point contention during the passage.
If a process p crashes f times during its attempt and k is the maximum point contention during
the attempt, on DSM and Relaxed-CC machines p incurs O(f + min(k, log n)) RMRs in that
attempt, and on Strict-CC machines p incurs O(f + n) RMRs in that attempt. The algorithm’s
space complexity is O(n).

Proof The lemmas of this section have established that the algorithm satisfies properties P1-P8.
We now analyze the complexity. Consider the RMRs that a process p incurs due to its busy-wait

18 Prasad Jayanti, Anup Joshi

at Line 7. On DSM machines, where Go[p] is assigned to p’s partition of NVRAM, p does not
incur any RMRs at Line 7. On Relaxed-CC machines, one RMR is incurred when bringing Go[p]
to p’s cache at the start of executing Line 7, spinning on Go[p] incurs no RMRs, one RMR
is incurred when some process changes Go[p] to 0, and possibly one more RMR is incurred to
read that 0 in Go[p]. Thus, on Relaxed-CC machines, p incurs only O(1) RMRs at Line 7. On
Strict-CC machines, while p spins on Go[p] at Line 7, O(n) processes could be at Line 29, each
poised to perform a CAS on Go[p]. At most one of these succeeds in its CAS, but every one of
them makes p incur an RMR with their CAS (albeit the CAS is unsuccessful). Thus, p can incur
O(n) RMRs at Line 7.

As explained in Section 4, each of Lines 5 and 19 incurs O(min(k, log n)) RMRs. Every other
line in the code (except Line 7 that is already analyzed) incurs at most one RMR. Hence, we
have the RMR complexity stated in the lemma.

The space complexity of O(n) immediate from the observation that Go[p] array takes O(n)
space and Registry takes O(n) space, as explained in Section 4, other shared variables take
O(1) space, and O(1) local variables per process.

8 Conclusion

In this paper, we have introduced the notion of a mutual exclusion lock that is both recover-
able and abortable. Our algorithm demonstrates a curious relation between recoverability and
abortability: an algorithm designed only to be recoverable can easily incorporate abortability if
only the recover method were carefully designed to be bounded even when recovering from a
crash that occurs in the try method. This idea works because aborting can then be implemented
by feigning a crash and executing the recover method. In fact, our algorithm showcased that
this idea leads to an optimal RMR algorithm for DSM and Relaxed-CC machines when only the
commonly available read, write, CAS operations may be used.

It would be interesting to explore if the logarithmic RMR complexity, shown here for DSM
and Relaxed-CC machines, is also attainable for Strict-CC machines.

Acknowledgment: We thank Siddhartha Jayanti for his critical reading and comments and the
NETYS ’19 reviewers for their helpful feedback.

References

1. Alon, A., and Morrison, A. Deterministic abortable mutual exclusion with sublogarithmic adaptive rmr
complexity. In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing (New York,
NY, USA, 2018), PODC ’18, ACM, pp. 27–36.

2. Attiya, H., Hendler, D., and Woelfel, P. Tight RMR Lower Bounds for Mutual Exclusion and Other
Problems. In Proc. of the Fortieth ACM Symposium on Theory of Computing (New York, NY, USA, 2008),
STOC ’08, ACM, pp. 217–226.

3. Chan, D. Y. C., and Woelfel, P. Recoverable mutual exclusion with constant amortized rmr complexity
from standard primitives. In Proceedings of the 39th Symposium on Principles of Distributed Computing
(New York, NY, USA, 2020), PODC ’20, Association for Computing Machinery, p. 181190.

4. Craig, T. S. Building FIFO and Priority-Queuing Spin Locks from Atomic Swap. Tech. Rep. TR-93-02-02,
Department of Computer Science, University of Washington, February 1993.

5. Dhoked, S., and Mittal, N. An adaptive approach to recoverable mutual exclusion. In Proceedings of the
39th Symposium on Principles of Distributed Computing (New York, NY, USA, 2020), PODC ’20, Association
for Computing Machinery, p. 110.

6. Dijkstra, E. W. Solution of a Problem in Concurrent Programming Control. Commun. ACM 8, 9 (Sept.
1965), 569–.

Recoverable Mutual Exclusion with Abortability 19

7. Giakkoupis, G., and Woelfel, P. Randomized abortable mutual exclusion with constant amortized rmr
complexity on the cc model. In Proceedings of the ACM Symposium on Principles of Distributed Computing
(New York, NY, USA, 2017), PODC ’17, ACM, pp. 221–229.

8. Golab, W., and Hendler, D. Recoverable mutual exclusion in sub-logarithmic time. In Proceedings of the
ACM Symposium on Principles of Distributed Computing (New York, NY, USA, 2017), PODC ’17, ACM,
pp. 211–220.

9. Golab, W., and Hendler, D. Recoverable Mutual Exclusion Under System-Wide Failures. In Proceedings
of the 2018 ACM Symposium on Principles of Distributed Computing (New York, NY, USA, 2018), PODC
’18, ACM, pp. 17–26.

10. Golab, W., and Ramaraju, A. Recoverable Mutual Exclusion: [Extended Abstract]. In Proceedings of the
2016 ACM Symposium on Principles of Distributed Computing (New York, NY, USA, 2016), PODC ’16,
ACM, pp. 65–74.

11. Intel. Intel R© Optane
TM

DC Persistent Memory Product Brief. https://www.intel.com/content/dam/

www/public/us/en/documents/product-briefs/optane-dc-persistent-memory-brief.pdf, 2019 (accessed
November 26, 2020).

12. Jayanti, P. f -arrays: Implementation and Applications. In Proceedings of the Twenty-first Symposium on
Principles of Distributed Computing (New York, NY, USA, 2002), PODC ’02, ACM, pp. 270–279.

13. Jayanti, P. Adaptive and efficient abortable mutual exclusion. In Proceedings of the Twenty-second Annual
Symposium on Principles of Distributed Computing (New York, NY, USA, 2003), PODC ’03, ACM, pp. 295–
304.

14. Jayanti, P., Jayanti, S., and Joshi, A. Optimal Recoverable Mutual Exclusion using only FASAS. In The
6th Edition of The International Conference on Networked Systems (2018), NETYS 2018.

15. Jayanti, P., Jayanti, S., and Joshi, A. A recoverable mutex algorithm with sub-logarithmic rmr on both cc
and dsm. In Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing (New York,
NY, USA, 2019), PODC 19, Association for Computing Machinery, p. 177186.

16. Jayanti, P., and Jayanti, S. V. Constant Amortized RMR Complexity Deterministic Abortable Mutual
Exclusion Algorithm for CC and DSM Models. In Accepted for publication in PODC’ 19 (2019).

17. Jayanti, P., and Joshi, A. Recoverable FCFS mutual exclusion with wait-free recovery. In 31st International
Symposium on Distributed Computing (2017), DISC 2017, pp. 30:1–30:15.

18. Jayanti, P., and Joshi, A. Recoverable mutual exclusion with abortability. In Networked Systems (Cham,
2019), M. F. Atig and A. A. Schwarzmann, Eds., Springer International Publishing, pp. 217–232.

19. Katzan, D., and Morrison, A. Recoverable, Abortable, and Adaptive Mutual Exclusion with Sublogarithmic
RMR Complexity. In Proceedings of The International Conference on Principles of Distributed Systems
(OPODIS 2020) (2020), OPODIS 2020.

20. Lamport, L. A New Solution of Dijkstra’s Concurrent Programming Problem. Commun. ACM 17, 8 (Aug.
1974), 453–455.

21. Lee, H. Fast local-spin abortable mutual exclusion with bounded space. In Proceedings of the 14th Inter-
national Conference on Principles of Distributed Systems (Berlin, Heidelberg, 2010), OPODIS’10, Springer-
Verlag, pp. 364–379.

22. Mellor-Crummey, J. M., and Scott, M. L. Algorithms for Scalable Synchronization on Shared-memory
Multiprocessors. ACM Trans. Comput. Syst. 9, 1 (Feb. 1991), 21–65.

23. Pareek, A., and Woelfel, P. Rmr-efficient randomized abortable mutual exclusion. In Distributed Com-
puting (Berlin, Heidelberg, 2012), M. K. Aguilera, Ed., Springer Berlin Heidelberg, pp. 267–281.

24. Ramaraju, A. RGLock: Recoverable mutual exclusion for non-volatile main memory systems. Master’s
thesis, University of Waterloo, 2015.

25. Raoux, S., Burr, G. W., Breitwisch, M. J., Rettner, C. T., Chen, Y.-C., Shelby, R. M., Salinga, M.,
Krebs, D., Chen, S.-H., Lung, H.-L., et al. Phase-change random access memory: A scalable technology.
IBM Journal of Research and Development 52, 4/5 (2008), 465.

26. Scott, M. L. Non-blocking Timeout in Scalable Queue-based Spin Locks. In Proceedings of the Twenty-first
Annual Symposium on Principles of Distributed Computing (New York, NY, USA, 2002), PODC ’02, ACM,
pp. 31–40.

27. Scott, M. L., and Scherer, W. N. Scalable queue-based spin locks with timeout. In Proceedings of the
Eighth ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming (New York, NY,
USA, 2001), PPoPP ’01, ACM, pp. 44–52.

28. Scott, M. L., and Scherer, W. N. Scalable Queue-based Spin Locks with Timeout. In Proceedings of the
Eighth ACM SIGPLAN Symposium on Principles and Practices of Parallel Programming (New York, NY,
USA, 2001), PPoPP ’01, ACM, pp. 44–52.

29. Strukov, D. B., Snider, G. S., Stewart, D. R., and Williams, R. S. The missing memristor found. nature
453, 7191 (2008), 80.

30. Tehrani, S., Slaughter, J. M., Deherrera, M., Engel, B. N., Rizzo, N. D., Salter, J., Durlam, M.,
Dave, R. W., Janesky, J., Butcher, B., et al. Magnetoresistive random access memory using magnetic
tunnel junctions. Proceedings of the IEEE 91, 5 (2003), 703–714.

20 Prasad Jayanti, Anup Joshi

A Invariant proof

Lemma 8 The algorithm in Figure 1 satisfies the invariant (i.e., the conjunction of all the conditions) stated
in Figure 2, i.e., the invariant holds in every configuration of every run of the algorithm.

Proof By induction.
For the base case, we verify that the conditions hold in the initial configuration C0 of any run. Condition 1

holds in C0 because Token is initialized to 1. Condition 2 holds in C0 because Seq is initialized to 1 and CSStatus
is initialized to (0, 1). Condition 3 holds in C0 because PCp is initialized to 1, Go[p] to −1, and statusp to good.
Condition 4 holds in C0 because Registry[p] is initialized to (p,∞) and PCp is initially 1. Condition 5 holds
in C0 because initially PCp = 1, Go[p] = −1, and CSStatus = (0, 1). Conditions 6 through 11 hold trivially
because PCp = 1 initially. Conditions 12 and 13 also hold because the Registry is empty and CSStatus = (0, 1)
initially.

For the induction step, let C be an arbitrary configuration of an arbitrary run. The induction hypothesis
states that Conditions 1 through 13 hold in C. Let (C, σ,C′) be an arbitrary (normal or crash) step of a process
in P. We now establish the induction step by arguing that each of Conditions 1 through 13 holds in C′.

We use the following notation in the proof: (i) IH denotes the induction hypothesis and, for all i ∈ [1, 13],
IH:i is the part of IH that states that Condition i of the invariant holds in C, and (ii) If D is any configuration
and x is any variable, D.x is the value of x in D.

1. Proof that Condition 1 holds in C′

Token changes only when a process p executes Line 3. If the CAS operation at that line succeeds, Token
increases by 1; otherwise, it remains unchanged. Therefore, C′.Token ≥ C.Token. Since C.Token ≥ 1 by
IH:1, we have C′.Token ≥ 1. Thus, Condition 1 holds in C′.

2. Proof that Condition 2 holds in C′

(a) Lines 14 and 26 are the only lines of code that affect CSStatus.
(b) If PCp = 14, IH:6 implies that C.sp = C.Seq − 1. So, if a process p writes (0, sp + 1) in CSStatus at

Line 14, Condition 2 holds in C′.
(c) If PCp = 26 and p executes a successful CAS to change CSStatus to (1, peerp), IH:6 implies that

C.peerp ∈ P. So, Condition 2 holds in C′.

3. Proof that Condition 3 holds in C′

We establish each of the conjuncts of Condition 3.

(a) −1 ≤ C′.Go[p] < Token
We prove this statement through the following observations.

i. Lines 4, 16, 22, and 29 are the only lines of code that affect Go[p].
ii. If PCp = 4, IH:6 implies that 1 ≤ C.tokp < Token. So, if p executes Line 4, −1 ≤ Go[p] < Token

holds in C′.
iii. If p executes Line 16 or 22, Go[p] becomes −1, so −1 ≤ Go[p] < Token holds in C′.
iv. If some q ∈ P performs a successful CAS at Line 29 and peerq = p, Go[p] becomes 0. Furthermore,

IH:1 implies that 0 < C.Token. So, −1 ≤ Go[p] < Token holds in C′.

(b) C′.PCp = 5⇒ C′.Go[p] = C′.tokp
To prove this implication, assume that C′.PCp = 5.

In case C.PCp = 5, by IH:3 C.Go[p] = tokp and the step from C to C′ is by some q 6= p. If q exe-
cutes Line 29 with peerq = p, Go[p] remains unchanged because by IH:11, gq < Go[p] and hence the
CAS by p will fail. if q executes any other line or executes a crash step, Go[p] remains unchanged. There-
fore, C′.Go[p] = C.Go[p].

In case C.PCp = 4, p sets Go[p] to tokp at Line 4, we have C′.Go[p] = tokp.
(c) C′.PCp ∈ [6,8]⇒ C′.Go[p] ∈ {0, C′.tokp}

To prove this implication, assume that C′.PCp ∈ [6,8]. We consider two cases: (i) C.PCp 6∈ [6,8], or (ii)
C.PCp ∈ [6,8].
In Case (i), the step from C to C′ must be p’s execution of Line 5. By IH:3 C.Go[p] = tokp and the step
doesn’t change the value of Go[p], we have C′.Go[p] = tokp.
In Case (ii), we make two observations:

i. C.Go[p] ∈ {0, tokp} (by IH:3).
ii. C′.Go[p] ∈ {0, C.Go[p]}, as argued below.

If the step from C to C′ is by p, it must be an execution of one of Lines 6, 6::24 -6::28, or 7. Since
p does not change Go[p] at these lines, C′.Go[p] = C.Go[p]. Go[p] has the same value in C′ as it
does in C.

Recoverable Mutual Exclusion with Abortability 21

If the step from C to C′ is by some q and q executes Line 29, Go[p] either remains unchanged
or changes to 0; if q executes any other line or executes a crash step, Go[p] remains unchanged.
Therefore, C′.Go[p] ∈ {0, C.Go[p]}.

It is immediate from the above two observations that C′.Go[p] ∈ {0, tokp}.

(d) C′.PCp ∈ {9-16,18-22,24-29} ⇒ C′.Go[p] 6= −1:

To prove this implication, assume that in C′.PCp ∈ {9-16,18-22,24-29}. We consider two cases: (i)
C.PCp 6∈ {9-16,18-22,24-29}, or (ii) C.PCp ∈ {9-16,18-22,24-29}.
In Case (i), the step from C to C′ must be p’s execution of Line 8 or of Line 17 such that the step causes
PCp to become 18, or p’s calling of promotep() at one of Lines 6, 15, or 20, which causes PCp to become
24. We now consider each of these possibilities.

i. If p executes Line 8, it does not change Go[p], so C′.Go[p] = C.Go[p]. Furthermore, IH:3 implies
C.Go[p] ∈ {0, tokp} and IH:6 implies that C.tokp 6= −1. Hence, C′.Go[p] 6= −1.

ii. If p executes Line 17 such that C′.PCp = 18, the instruction at Line 17 implies that C′.Go[p] 6= −1.
iii. If p calls promotep() at Line 6, IH:3 implies that C.Go[p] ∈ {0, tokp} and IH:6 implies that C.tokp 6=
−1. Hence, C′.Go[p] 6= −1.

iv. If p calls promotep() at Line 15 or Line 20, IH:3 implies that C.Go[p] 6= −1. Hence, C′.Go[p] 6= −1.

Turning now to Case (ii), we make the following observations:
i. C.Go[p] 6= −1 (by IH:3).

ii. C′.Go[p] ∈ {0, C.Go[p]}, as argued below.

If the step from C to C′ is by p, since PCp ∈ {9-16,18-22,24-29} in both C and C′, the step must
be an execution of one of Lines 9-15, 18-21, or 24-29. These lines, with the exception of Line 29, do
not change Go[p]; and Line 29, if it changes Go[p], sets it to 0. Therefore, C′.Go[p] ∈ {0, C.Go[p]}.

If the step from C to C′ is by some q 6= p, if q executes Line 29, Go[p] either remains unchanged
or changes to 0; if q executes any other line or executes a crash step, Go[p] remains unchanged.
Therefore, C′.Go[p] ∈ {0, C.Go[p]}.

It is immediate from the above two observations that C′.Go[p] 6= −1.
(e) (C′.PCp ∈ {2-4,23} ∨ (C′.PCp ∈ {1,17} ∧ C′.statusp ∈ {good, recover-from-rem})) ⇒

C′.Go[p] = −1
We prove this implication in two parts.

i. C′.PCp ∈ {2-4,23} ⇒ C′.Go[p] = −1

Assume that C′.PCp ∈ {2-4,23}. Then, there are the following three subcases to analyze.

Subcase A: Either C.PCp = 1 ∧ C.statusp = good or C.PCp = 22, and p executes a normal step.

In this subcase, if C.PCp = 1 ∧ C.statusp = good, IH:3 implies that C.Go[p] = −1, so C′.Go[p] = −1.
In (A), if C.PCp = 22, p sets Go[p] to −1 in the step, so C′.Go[p] = −1.

Subcase B: C.PCp ∈ {2-4,23} and p executes Line 2 or 3.

In this subcase, IH:3 implies that C.Go[p] = −1 and p’s step does not affect Go[p], so C′.Go[p] = −1.

Subcase C: C.PCp ∈ {2-4,23} and some q 6= p executes a (normal or crash) step.

In this subcase, IH:3 implies that C.Go[p] = −1. The only line of code by which q can change
Go[p] is via a successful CAS at Line 29. However, IH:10 implies that C.gq ≥ 0, so C.gq 6= C.Go[p].
Therefore, q’s execution of Line 29 cannot affect Go[p]. Hence, C′.Go[p] = C.Go[p] = −1.

We conclude that PCp ∈ {2-4,23} ⇒ Go[p] = −1.

ii. (C′.PCp ∈ {1,17} ∧ C′.statusp ∈ {good, recover-from-rem})⇒ C′.Go[p] = −1

Assume that C′.PCp ∈ {1,17}∧C′.statusp ∈ {good, recover-from-rem}. Then, there are the following
four subcases to analyze:

Subcase A: C.PCp ∈ {1,17}∧C.statusp ∈ {good, recover-from-rem} and some process q 6= p executes
a (normal or crash) step.

In this case, IH:3 implies that C.Go[p] = −1. The only line of code by which q can change Go[p] is via
a successful CAS at Line 29. However, IH:10 implies that C.gq ≥ 0, so C.gq 6= C.Go[p]. Therefore,
q’s execution of Line 29 cannot affect Go[p]. Hence, C′.Go[p] = C.Go[p] = −1.

Subcase B: C.PCp is 16, 23, or 17 (and Go[p] = −1), and p executes a normal step (causing PCp

to become 1).

22 Prasad Jayanti, Anup Joshi

If C.PCp = 16 and p executes a normal step, p sets Go[p] to −1, so C′.Go[p] = −1.

If C.PCp = 23, IH:3 implies that C.Go[p] = −1; if p executes a normal step, Go[p] remains un-
changed. Hence, C′.Go[p] = −1.

If C.PCp = 17, C.Go[p] = −1, and p executes a normal step, it is immediate that C′.Go[p] = −1.

Subcase C: C.PCp = 1 ∧ C.statusp ∈ {good, recover-from-rem} and p invokes recoverp() (causing
PCp to become 17).

IH:3 implies that C.Go[p] = −1. Since p’s invocation of recoverp() does not affect Go[p], it follows
that C′.Go[p] = −1.

Subcase D: C.PCp = 17 ∧ C.statusp ∈ {good, recover-from-rem} and p executes a crash step (causing
PCp to become 1 and statusp to become recover-from-rem).

IH:3 implies that C.Go[p] = −1. Since p’s crash step does not affect Go[p], it follows that C′.Go[p] =
−1.

We conclude that (C′.PCp ∈ {1,17} ∧ C′.statusp ∈ {good, recover-from-rem})⇒ C′.Go[p] = −1.

From (a), (b), (c), (d), and (e), we conclude that Condition 3 holds in C′.

4. Proof that Condition 4 holds in C′

In the following, we establish each of the conjuncts of Condition 4.

(a) ∃t ∈ [1, C′.Token− 1] ∪ {∞}, C′.Registry[p] = (p, t)

We observe that Registry[p] is changed only by p and only at Lines 5, 11, and 19. If PCp = 5, p
writes (p, tokp) in Registry[p], and IH:6 implies that 1 ≤ C.tokp < C.Token; and if PCp is 11 or 19,
p writes (p,∞) in Registry[p]. Since C′.Token = C.Token, we conclude that ∃t ∈ [1, C′.Token − 1] ∪
{∞}, C′.Registry[p] = (p, t).

(b) C′.PCp ∈ [6,8]⇒ C′.Registry[p] = (p, C′.tokp))

When p executes Line 5, causing PCp to become 6, it writes (p, tokp) in Registry[p]. Furthermore, neither
Registry[p] nor tokp is changed by p at Lines 6 and 7, or by any other process at any line. Therefore,
we have C′.PCp ∈ [6,8]⇒ Registry[p] = (p, C′.tokp).

(c) (C′.PCp ∈ {5,12-16,20-22} ∨ C′.Go[p] = −1) ⇒ C′.Registry[p] = (p,∞)

We prove this implication in two parts.

i. C′.PCp ∈ {5,12-16,20-22} ⇒ C′.Registry[p] = (p,∞)

To prove this implication, assume C′.PCp ∈ {5,12-16,20-22}. There are the following two subcases
to analyze.

Subcase A: Assume that C.PCp 6∈ {5,12-16,20-22}
In this subcase, the step from C to C′ must be p’s execution of any of Lines 4, 11, or 19. If p executes
Line 4, IH:3 implies that C.Go[p] = −1, which together with IH:4, implies that C.Registry[p] =
(p,∞). Since p does not change Registry[p] at Line 4, we have C′.Registry[p] = C.Registry[p] =
(p,∞).

If p executes Line 11 or 19, since it writes (p,∞) in Registry[p] at these lines, we have C′.Registry[p] =
(p,∞).

Subcase B: Assume that C.PCp ∈ {5,12-16,20-22}
In this subcase, since p does not change Registry[p] at Lines 12 -15, and at Lines 20 and 21,
and any q 6= p does not change Registry[p] (regardless of q’s step, normal or crash), we have
C′.Registry[p] = C.Registry[p]. Furthermore, we have C.Registry[p] = (p,∞) by IH:4. It follows
that C′.Registry[p] = (p,∞).

ii. C′.Go[p] = −1⇒ C′.Registry[p] = (p,∞)

To prove this implication, assume C′.Go[p] = −1. There are the following two subcases to analyze.

Subcase A: Assume that C.Go[p] = −1.
In this subcase, IH:4 implies that C.Registry[p] = (p,∞). Furthermore, since C.Go[p] = −1, IH:3
and IH:6 implies that C.PCp 6= 5, so the step from C to C′ is not p’s execution of Line 5. Since
the execution of Line 5 by p is the only way to write a non-∞ value in Registry[p], it follows that
C′.Registry[p] = (p,∞).

Subcase B: Assume that C.Go[p] 6= −1.
In this subcase, since C.Go[p] 6= −1 and C′.Go[p] = −1, it follows that the step from C to C′ is p’s
execution of Line 16 or Line 22. Thus, C.PCp ∈ {16,22}. It follows from IH:4 that C.Registry[p] =

Recoverable Mutual Exclusion with Abortability 23

(p,∞). Furthermore, since Lines 16 and 22 don’t affect Registry[p], we have C′.Registry[p] =
C.Registry[p] = (p,∞).

From (a), (b), and (c), we conclude that Condition 4 holds in C′.

5. Proof that Condition 5 holds in C′

We establish Condition 5 in parts.

(a) Prove (C′.PCp ∈ [6,8] ∧ C′.Go[p] = 0)⇒ C′.CSStatus = (1, p)

To prove this implication, assume that C′.PCp ∈ [6,8] ∧ C′.Go[p] = 0. We consider the following cases.

– Case 1: C.PCp ∈ [6,8] ∧ C.Go[p] = 0
In this case, IH:5 implies that C.CSStatus = (1, p). The only lines of code that can potentially
change CSStatus are Lines 14 and 26. However, since C.CSStatus = (1, p), if any process executes
Line 26 from C, the CAS instruction at that line fails and CSStatus remains unchanged. Since
C.PCp ∈ [6,8], the step from C to C′ cannot be p’s execution of Line 14. Since C.CSStatus = (1, p),
we have CSStatus 6= (1, q) for any q 6= p. Then, IH:5 implies that PCq 6= 14. So, the step from C
to C′ cannot be q’s execution of Line 14. We conclude that C′.CSStatus = C.CSStatus = (1, p).

– Case 2: C.PCp ∈ [6,8] ∧ C.Go[p] 6= 0
Since C.Go[p] 6= 0 and C′.Go[p] = 0, the step from C to C′ must be the successful execution of
the CAS instruction at Line 29 by some process q with peerq = p, as Line 29 is the only line of
code where 0 is written into a Go variable. Then, IH:11 implies that C.CSStatus = (1, p). Since q’s
execution of Line 29 does not affect CSStatus, it follows that C′.CSStatus = C.CSStatus = (1, p).

– Case 3: C.PCp 6∈ [6,8]
Since C.PCp 6∈ [6,8] and C′.PCp ∈ [6,8], the step from C to C′ must be p’s execution of Line 5.
Thus, C.PCp = 5. Then, IH:3 implies that C.Go[p] = tokp and IH:6 implies that tokp ≥ 1. It
follows that C.Go[p] 6= 0. Since p’s execution of Line 5 does not modify Go[p], it follows that
C′.Go[p] = C.Go[p] 6= 0, contradicting our earlier assumption that C′.Go[p] = 0. We conclude that
Case 3 does not arise.

(b) Prove C′.PCp ∈ [10,14]⇒ C′.CSStatus = (1, p))

Assume that C′.PCp ∈ [10,14]. There are two cases to analyze.

– Case 1: C.PCp 6∈ [10,14]
Since PCp ∈ [10,14] is false in C and true in C′, the step from C to C′ must be p’s execution of
Line 8 with Go[p] = 0, or of Line 21 with CSStatus = (1, p). In the former case, IH:5 implies that
C.CSStatus = (1, p). Since Lines 8 and 21 do not modify CSStatus, it follows that C′.CSStatus =
C.CSStatus = (1, p).

– Case 2: C.PCp ∈ [10,14]
In this case, IH:5 implies that C.CSStatus = (1, p). The only lines of code that can potentially
change CSStatus are Lines 14 and 26. However, since C.CSStatus = (1, p), if any process executes
Line 26 from C, the CAS instruction at that line fails and CSStatus remains unchanged. Since
C′.PCp ∈ [10,14], the step from C to C′ cannot be p’s execution of Line 14. Since C.CSStatus =
(1, p), we have CSStatus 6= (1, q) for any q 6= p. Then, IH:5 implies that PCq 6= 14. So, the step from
C to C′ cannot be q’s execution of Line 14. We conclude that C′.CSStatus = C.CSStatus = (1, p).

(c) Prove (C′.statusp = recover-from-cs)⇒ C′.CSStatus = (1, p)

Assume that C′.statusp = recover-from-cs. There are two cases to analyze.

– Case 1: C.statusp 6= recover-from-cs
Since C.statusp 6= recover-from-cs and C′.statusp = recover-from-cs, it must be the case that p is in
CS (i.e., C.PCp = 10) in C and the step from C to C′ must be p’s crash step. Then, IH:5 implies
that C.CSStatus = (1, p). Since CSStatus is a non-volatile variable, C′.CSStatus = (1, p).

– Case 2: C.statusp = recover-from-cs
In this case, IH:5 implies that C.CSStatus = (1, p). The only lines of code that can potentially
change CSStatus are Lines 14 and 26. However, since C.CSStatus = (1, p), if any process executes
Line 26 from C, the CAS instruction at that line fails and CSStatus remains unchanged. Since
C.statusp = recover-from-cs, IH:6 implies that C.PCp 6= 14. Hence, the step from C to C′ cannot
be p’s execution of Line 14. Since C.CSStatus = (1, p), we have CSStatus 6= (1, q) for any q 6= p.
Then, IH:5 implies that PCq 6= 14. So, the step from C to C′ cannot be q’s execution of Line 14.
We conclude that C′.CSStatus = C.CSStatus = (1, p).

(d) Prove C′.PCp ∈ {5,22} ∪ [15,16]⇒ C′.CSStatus 6= (1, p)

Assume that C′.PCp ∈ {5,22} ∪ [15,16]. There are two cases to analyze.

– Case 1: C.PCp 6∈ {5,22} ∪ [15,16]

Since PCp ∈ {5,22} ∪ [15,16] is false in C and true in C′, the step from C to C′ must be p’s
execution of Line 4, Line 21 (with CSStatus 6= (1, p)), or Line 14.

24 Prasad Jayanti, Anup Joshi

If p executes Line 4, IH:3 implies that C.Go[p] = −1, which together with IH:5 implies that
C.CSStatus 6= (1, p). Since p does not modify CSStatus at Line 4, it follows that C′.CSStatus =
C.CSStatus 6= (1, p).

If p executes Line 21 with CSStatus 6= (1, p), then it is trivially the case that C′.CSStatus 6= (1, p).

If p executes Line 14, p writes (0, sp + 1) in CSStatus. Hence, C′.CSStatus 6= (1, p).
– Case 2: C.PCp ∈ {5,22} ∪ [15,16]

Since C.PCp ∈ {5,22} ∪ [15,16], IH:5 implies that C.CSStatus 6= (1, p). The only line of code
that can potentially change CSStatus’s value to (1, p) is Line 26. For a process q (possibly q = p)
to execute a successful CAS at Line 26 and change CSStatus to (1, p), it must be the case that
C.PCq = 26, CSStatus = (0, sq), and peerq = p. Then, IH:9 implies that C.PCp ∈ [6,8] ∪ {18 −
20,20::24,20::25,20::26,1,17}. This set of values for C.PCp is incompatible with the case we are
considering because C.PCp ∈ {5,22}∪ [15,16] in the case we are considering. We conclude that the
step from C to C′ cannot change the value in CSStatus to (1, p). Hence, C′.CSStatus 6= (1, p).

(e) Prove C′.Go[p] = −1⇒ C′.CSStatus 6= (1, p)

Assume that C′.Go[p] = −1. There are two cases to analyze.

– Case 1: C.Go[p] 6= −1
Since Go[p] is -1 in C′ but not in C, the step from C to C′ must be p’s execution of Line 16 or
Line 22. Thus, C.PCp ∈ {16,22}. Then, IH:5 implies that C.CSStatus 6= (1, p). Since p does not
change CSStatus in Line 16 or 22, it follows that C′.CSStatus 6= (1, p) = C.CSStatus 6= (1, p).

– Case 2: C.Go[p] = −1
Since C.Go[p] = −1, IH:5 implies that C.CSStatus 6= (1, p). The only line of code that can
potentially change CSStatus’s value to (1, p) is Line 26. For a process q (possibly q = p) to
execute a successful CAS at Line 26 and change CSStatus to (1, p), it must be the case that
C.PCq = 26, CSStatus = (0, sq), and peerq = p. This, together with IH:9 and C.Gop = −1,
implies that C.PCp ∈ [6,8] ∪ {18-20,20::24,20::25,20::26}. This set of values for C.PCp’s is in-
compatible with the case we are considering because IH:3, together with C.Go[p] = −1, implies
that C.PCp ∈ {1-4,17,23}. We conclude that the step from C to C′ cannot change the value in
CSStatus to (1, p). Hence, C′.CSStatus 6= (1, p).

6. Proof that Condition 6 holds in C′

This condition mostly concerns local variables—variables that are modified only when p executes a line of
code or a crash step. We establish the condition in parts.

(a) Proof of C′.PCp = 3⇒ 1 ≤ C′.tokp ≤ C′.Token

If C.PCp 6= 3, the step from C to C′ must be p’s execution of Line 2. Inspection of Line 2, together with
IH:1, implies that 1 ≤ C′.tokp ≤ C′.Token.

On the other hand, if C.PCp = 3, IH:6 implies that 1 ≤ C.tokp ≤ C.Token. Since PCp = 3 in both
C and C′, the only step from C to C′ that can affect the condition is the execution of Line 3 by some
process q 6= p. However, q’s execution of Line 3 does not decrease Token’s value. It follows that, since
1 ≤ tokp ≤ Token holds in C, it continues to hold in C′.

(b) Proof of C′.PCp ∈ [4,8]⇒ 1 ≤ C′.tokp < C′.Token

Assume that C′.PCp ∈ [4,8]. We consider two cases.

– Case 1: PCp ∈ [4,8] is false in C

Since PCp ∈ [4,8] is false in C and true in C′, the step from C to C′ must be p’s execution of Line 3.
Thus, C.PCp = 3 and IH:6 implies that either 1 ≤ C.tokp = C.Token or 1 ≤ C.tokp < C.Token.
In the former case, p’s execution of Line 3 increments Token by 1. Thus, in either case, we have
1 ≤ C′.tokp < C′.Token.

– Case 2: PCp ∈ [4,8] is true in C

Since PCp ∈ [4,8] is true in C, IH:6 implies that 1 ≤ tokp < Token holds in C. Since PCp ∈ [4,8]
in C and C′, if p takes a step from C, it executes one of Lines 4, 5, 6, or 7, which do not affect
tokp or Token. If a process q 6= p takes a step from C, it can possibly change Token by executing
Line 3, but the CAS instruction at Line 3 ensures that Token’s value does not decrease. Therefore,
since 1 ≤ tokp < Token holds in C, it continues to hold in C′.

(c) Proof of C′.PCp = 13⇒ C′.sp = C′.Seq

Assume that C′.PCp = 13.

Suppose that PCp 6= 13 in C. Then, the step from C must be p’s execution of Line 12. Hence, sp = Seq
in C′.

Suppose that PCp = 13 in C. Then, IH:6 implies that C.sp = C.Seq and IH:5 implies that C.CSStatus =
(1, p). Since PCp = 13 in both C and C′, the process that takes the step from C is some q 6= p. Since

Recoverable Mutual Exclusion with Abortability 25

Line 13 is the only line that changes Seq, if q changes Seq in its step from C, C.PCq must be 13. Then,
IH:5 implies that C.CSStatus = (1, q), contradicting that C.CSStatus = (1, p). We conclude that q’s
step does not change Seq. So, sp = Seq, which holds in C, remains true in C′.

(d) Proof of PCp = 14⇒ sp = Seq− 1

Assume that C′.PCp = 14.

Suppose that PCp 6= 14 in C. Then, the step from C must be p’s execution of Line 13. Hence, IH:6
implies that C.Seq = C.sp and the increment of sp at Line 13 ensures sp = Seq− 1 in C′.

Suppose that PCp = 14 in C. Then, IH:6 implies that C.sp = C.Seq − 1 and IH:5 implies that
C.CSStatus = (1, p). Since PCp = 14 in both C and C′, the process that takes the step from C is
some q 6= p. Since Line 13 is the only line that changes Seq, if q changes Seq in its step from C, C.PCq

must be 13. Then, IH:5 implies that C.CSStatus = (1, q), contradicting that C.CSStatus = (1, p). We
conclude that q’s step does not change Seq. So, sp = Seq− 1, which holds in C, remains true in C′.

(e) Proof of PCp ∈ [6::24,6::29] ∪ [15::24,15::29]⇒ flagp = false

This statement follows from the observation that promote() is called at Line 6 and at Line 15 with false
as the parameter.

(f) Proof of PCp ∈ [20::24,20::29]⇒ flagp = true

This statement follows from the observation that promote() is called at Line 20 with true as the parameter.
(g) Proof of PCp ∈ [26,29]⇒ peerp ∈ P

This statement follows from the observation that, as p enters Line 26 from Line 25, it sets peerp to either
p or the first component of the value it found in Registry[p]. In either case, peerp ∈ P.

(h) Proof of C′.PCp ∈ [2,16]⇒ C′.statusp = good

Assume that C′.PCp ∈ [2,16]. We consider two cases.

Suppose that C.PCp 6∈ [2,16]. Then, the step from C must be either p’s invocation of tryp() (from the
remainder section of Line 1) when statusp = good, or entry into the CS (Line 10) because recoverp()
returns IN CS at Line 18, simultaneously setting statusp to good. In either case, we have C′.statusp = good.

Suppose that C.PCp ∈ [2,16]. By IH:6, C.statusp = good. If p takes a crash step from C, PCp becomes
17, contradicting that C′.PCp ∈ [2,16]. If p takes a normal step from C or a different process takes a
(normal or crash) step from C, C′.statusp = good because C.statusp = good.

7. Proof that Condition 7 holds in C′

We prove this condition in two parts.

(a) Proof of C′.PCp = 8⇒ (C′.Go[p] = 0 ∨ abort was requested)

Assume that C′.PCp = 8. We consider two cases.

Suppose that C.PCp 6= 8. Then, the step from C must be p’s read of 0 in Go[p] or of true in AbortSignal[p]
at Line 7. Hence, we have C′.Go[p] = 0 ∨ abort was requested.

Suppose that C.PCp = 8. Then, IH:7 implies that C.Go[p] = 0 ∨ abort was requested. Since PCp = 8 in
both C and C′, the process that takes the step from C is some q 6= p. There is no line of code where q can
possibly change Go[p] to any non-zero value. Therefore, the condition Go[p] = 0 ∨ abort was requested,
which holds in C, continues to hold in C′.

(b) Proof of C′.PCp = 9⇒ abort was requested

When PCp = 8, IH:7 implies that Go[p] = 0∨abort was requested. So, when p executes the if statement
at Line 8 and enters Line 9, abort was requested is true.

8. Proof that Condition 8 holds in C′

We prove this condition in parts.

(a) Proof of PCp ∈ {25,26} ⇒ sp ≤ Seq

Suppose that p executes the step from C, and in the step, p executes Line 24 and enters Line 25. It
follows that at Line 24, p reads (0, sp) and, by IH:2, sp = C.Seq. Since IH:6 ensures that Line 13 does
not decrease the value of Seq, it follows that PCp ∈ {25,26} ⇒ sp ≤ Seq.

(b) ∀q ∈ P, (PCp ∈ {25,26} ∧ PCq ∈ {13,14})⇒ sp ≤ sq
Assume that C′.PCp ∈ {25,26} ∧ C′.PCq ∈ {13,14}, for an arbitrary q ∈ P. We consider two cases.

– Case 1: The condition PCp ∈ {25,26} ∧ PCq ∈ {13,14} is false in C.
Since the condition is true in C′, it must be the case that either PCq ∈ {13,14} is true in C and p
executes Line 24 from C (to enter Line 25), or PCp ∈ {25,26} is true in C and q executes Line 12
from C (to enter Line 13). In the former case, IH:5 implies that C.CSStatus = (1, q), so in its step
from C, p reads (1, q) at Line 24 and goes to Line 27, contradicting that p moves to Line 25. In
the latter case, q’s step from C sets sq to Seq, and IH:8 implies that C.sp ≤ C.Seq. Hence, we have
sp ≤ sq in C′.

26 Prasad Jayanti, Anup Joshi

– Case 2: The condition PCp ∈ {25,26} ∧ PCq ∈ {13,14} is true in C.
Since the condition is true in C, IH:8 implies that sp ≤ sq is true in C. Furthermore, since the
condition is true in both C and C′, it follows that the step from C is p’s execution of Line 25, or q’s
execution of Line 13, or an arbitrary step of a process different from p and q. In all these cases, sp
and sq are unaffected, so sp ≤ sq remains true in C′.

9. Proof that Condition 9 holds in C′

We prove this condition in parts.

(a) Assume C′.PCp = 25 ∧ C′.CSStatus = (0, sp).

Let q be any process in P (including possibly p), and assume that C′.Registry[q] 6= (q,∞). Since
C′.PCp = 25, C.PCp must be either 24 or 25. We analyze these cases below and show that in each case,
C′.PCq ∈ {6− 9,18,19} or C′.PCq ∈ {1,17} ∧ C′.Go[q] 6= −1.

– Case 1: C.PCp = 24
Since PCp is 24 in C and 25 in C′, the step from C to C′ must be p’s execution of Line 24, where
it finds (0, sp) in CSStatus. Since Line 24 does not change Registry, we have C.Registry[q] =
C′.Registry[q] 6= (q,∞). It follows from IH:4 that C.PCq 6∈ {5,12−16,20−22} and C.Go[q] 6= −1.
Furthermore, since C.CSStatus = (0, sp) 6= (1, q), it follows from IH:5 that C.PCq 6∈ [10,14]. Since
Go[q] 6= −1, it follows from IH:3 that C.PCq 6∈ {2 − 4,23}. Together, the above conditions imply
C.PCq ∈ {6− 9,18,19} or C.PCq ∈ {1,17} ∧Go[q] 6= −1. Regardless of whether q = p or not, the
same condition holds in C′, i.e., C′.PCq ∈ {6− 9,18,19} ∨ (C′.PCq ∈ {1,17} ∧Go[q] 6= −1).

– Case 2: C.PCp = 25 ∧ C.CSStatus 6= (0, sp)
In this case, since C.CSStatus 6= (0, sp) and C′.CSStatus = (0, sp), the step from C must be the
execution of Line 14 by some process r. However, IH:8 implies that C.sp ≤ C.sr. Since r writes
(0, sr + 1) in CSStatus, it follows that C′.CSStatus 6= (0, sp), contradicting our initial assumption.
We conclude that Case 2 cannot arise.

– Case 3: C.PCp = 25 ∧ C.CSStatus = (0, sp)
Suppose that C.Registry[q] = (q,∞). Then, since C′.Registry[q] 6= (q,∞), the step from C must
be q’s execution of Line 5. Hence, C′.PCq = 6.

Next, suppose that C.Registry[q] 6= (q,∞). Then, IH:9 implies that C.PCq ∈ {6 − 9,18,19} ∨
(C.PCq ∈ {1,17} ∧ C.Go[q] 6= −1). The only way that this condition becomes false in C′ is when
C.PCq = 19 and q executes a step. However, q’s step causes C′.Registry[q] to be (q,∞), contra-
dicting our assumption.

(b) Assume C′.PCp = 26 ∧ C′.CSStatus = (0, sp)

Since C′.PCp = 26, C.PCp must be either 25 or 26. We analyze by cases below.

– Case 1: C.PCp = 25
Since PCp is 25 in C and 26 in C′, the step from C to C′ must be p’s execution of Line 25,
where findmin() returns (peerp, tokp) and either tokp 6=∞ or C.flagp = true and C′.peerp = p. We
consider each of these possibilities below.
Suppose that findmin() returns (peerp, tokp) and tokp 6=∞. This implies that C.Registry[peerp] 6=
(peerp,∞). It follows from IH:9 that C.PCpeerp ∈ {6 − 9,18,19} ∨ (C.PCpeerp ∈ {1,17} ∧
C.Go[peerp] 6= −1). If peerp 6= p, the same condition holds for C′. If peerp = p, then the condition
implies that p’s step from C is the execution of Line 25, as part of promotep() called from Line 6,

and the condition remains true for C′. Thus, we have C′.PCpeerp ∈ {6−9,18,19}∨ (C′.PCpeerp ∈
{1,17} ∧ C′.Go[peerp] 6= −1).

Next, suppose that C.flagp = true and C′.peerp = p. Then, C′.PCpeerp = C′.PCp = 20::26, and
speerp = sp.

– Case 2: C.PCp = 26 ∧ C.CSStatus 6= (0, sp)
In this case, since C.CSStatus 6= (0, sp) and C′.CSStatus = (0, sp), the step from C must be the
execution of Line 14 by some process r. However, IH:8 implies that C.sp ≤ C.sr. Since r writes
(0, sr + 1) in CSStatus, it follows that C′.CSStatus 6= (0, sp), contradicting our initial assumption.
We conclude that Case 2 cannot arise.

– Case 3: C.PCp = 26 ∧ C.CSStatus = (0, sp)
IH:9 implies that C.PCpeerp ∈ {6−8,18,19,20,20::24}∨(C.PCpeerp ∈ {20::25,20::26}∧speerp =
sp)∨(C.PCpeerp ∈ {1,17}∧C.Go[q] 6= −1). Even if peerp takes a step from C, this condition remains
true in C′, as we explain below.

– Suppose that PCpeerp changes from 8 in C to 10 in C′. Then, IH:5 implies that C′.CSStatus =
(1, peerp), which is impossible because C.CSStatus = (0, sp) and the step from C is the execu-
tion of Line 8.

– Suppose that peerp takes a step from C when C.PCpeerp = 20::24. Since C.CSStatus = (0, sp),
it follows that C′.PCpeerp = 20::25 and C′.speerp = C′.sp.

Recoverable Mutual Exclusion with Abortability 27

– Suppose that peerp takes a step from C when C.PCpeerp = 20::26. Then, since C.CSStatus =
(0, sp) and IH:9 implies that C.speerp = C.sp, it follows that C′.CSStatus = (1, peerp), contra-
dicting our assumption that C′.CSStatus = (0, sp).

– Suppose that peerp takes a step from C when C.PCpeerp = 1. Then, IH:9 implies that Go[peerp] 6=
−1, which together with IH:3 implies that statuspeerp 6= good. It follows that, in its step from
C, peerp invokes recoverpeerp () method; so, C′.PCpeerp = 17 (and C′.Go[peerp] 6= −1).

10. Proof that Condition 10 holds in C′

Assume that C′.PCp ∈ {28,29}. We consider two cases.

– Case 1: C.PCp 6∈ {28,29}
Since C.PCp 6∈ {28,29}, the step from C must be p’s execution of Line 27 and C′.gp = C.Go[peerp] 6∈
{0,−1}. Since IH:3 implies that −1 ≤ C.Go[peerp] < C.Token, it follows that 1 ≤ C′.gp < C′.Token.

– Case 2: C.PCp ∈ {28,29}
In this case, IH:10 implies that 1 ≤ gp < Token in C. Since Token is possibly modified only at Line 3,
where the CAS instruction ensures that the value of Token does not decrease, the inequality continues
to hold in C′, i.e., 1 ≤ C′.gp < C′.Token.

11. Proof that Condition 11 holds in C′

Assume that C′.PCp = 29 and consider the following cases.

– Case 1: C.PCp 6= 29
Since PCp is 29 in C′ but not in C, it follows that the step from C must be p’s execution of Line 28
and C.CSStatus = (1, peerp). IH:5, together with C.CSStatus = (1, peerp), implies that C.PCpeerp 6∈
{5,22} ∪ [15,16] and C.Go[peerp] 6= −1. IH:3, together with C.Go[peerp] 6= −1, implies that PCpeerp 6∈
{2-4,23}. Taken together, the above facts imply that C′.PCpeerp 6∈ {3,4,5}. This, together with
C′.CSStatus = C.CSStatus = (1, peerp), trivially implies Condition 11 in C′.
Case 2: C.PCp = 29
In this case, by the induction hypothesis, the consequent of Condition 11’s implication holds in C. We
argue below that a step from C cannot invalidate the consequent.

– Suppose that peerp takes a step from C when C.PCpeerp = 2. Then, PCpeerp becomes 3 in C′, but
then 1 ≤ gp < tokpeerp will hold in C′ because peerp’s execution of Line 2 sets tokpeerp to Token,
and IH:10 implies that 1 ≤ gp < Token.

– Suppose that peerp takes a step from C when C.PCpeerp = 4. Then, PCpeerp becomes 5 in C′,
but then 1 ≤ gp < Go[peerp] will hold in C′ because peerp’s execution of Line 4 sets Go[peerp] to
tokpeerp , while IH:11 and IH:6 imply 1 ≤ gp < tokpeerp < Token.

– Suppose that peerp takes a step from C when C.PCpeerp = 5. Then, PCpeerp becomes 6 in C′, but
then IH:11 ensures gp < Go[peerp] in C′.

– Suppose that C.PCpeerp ∈ {6,7,8} and C.gp 6= C.Go[peerp], and some process q takes a step from
C where it changes Go[peerp] to gp. This scenario is impossible because gp is non-zero (by IH:10)
and Line 29, which is the only line of code where q could possibly change Go[peerp], can only change
Go[peerp] to 0.

– Suppose that C.PCpeerp ∈ {6,7,8}∧C.CSStatus = (1, peerp). Since peerp is the only process that
can change the value in CSStatus and that too only at Line 14, C.PCpeerp ∈ {6,7,8} implies that
will continue to have the value (1, peerp) in C′.

12. Proof that Condition 12 holds in C′

We argue the correctness of the condition for the case when min(Registry) = (∗,∞) in C. In that case the
step changes the Registry so that min(Registry) 6= (∗,∞) in C′. Since the step is by p, it could only be
the case that p took a step to write to Registry[p], otherwise Registry cannot change from an empty array
to the one containing an element since a process writes only to its own cell in the Registry. Such a write
could happen only at Line 5 because at Lines 11, 19 p could write only (p,∞). It follows that PCp = 6 in
C′, which satisfies the condition.

Next we argue the correctness of the condition for the case when min(Registry) 6= (∗,∞) in C as below
Case A ∃q,CSStatus = (1, q) in C.

Suppose CSStatus = (1, q) in C′, it follows that the step didn’t affect the truth value of the condition
because the step was by a process r 6= q. Therefore assume CSStatus 6= (1, q) in C′. CSStatus could
change from (1, q) only due to the write operation by some process at Line 14. This process could only
be q itself, because if it were some process r 6= q, then by IH:5 and PCr = 14, CSStatus = (1, r) 6= (1, q)
in C, a contradiction. It follows that PCq = 15 in C′ and the condition holds in C′.

Case B ∀q,CSStatus 6= (1, q) in C.
By IH:2, CSStatus = (0,Seq) in C.

Suppose ∃r,CSStatus = (1, r) in C′. It follows that the execution of Line 26 by some process changed
the value of CSStatus to (1, r) and the condition holds in C′.

28 Prasad Jayanti, Anup Joshi

Assume ∀q,CSStatus 6= (1, q) in C. By IH:12, ∃q, (PCq ∈ {1,17}∧Go[q] 6= −1)∨PCq ∈ {6,15,18-20,24}
∨ (PCq ∈ {25,26} ∧ CSStatus = (0, sq)) in C.
Suppose the step changing C to C′ was not because of q, the condition continues to hold in C′ as it held
in C.
Suppose the step changing C to C′ was a crash step of q. In the case when PCq ∈ {6,15,18-20,24}
∨ (PCq ∈ {25,26} ∧ CSStatus = (0, sq)) in C, by IH:3, Go[q] 6= −1 in C, PCq = 1 in C′ and Go[q]
remains unchanged. Otherwise PCq ∈ {1,17} ∧ Go[q] 6= −1 in C, PCq = 1 in C′ and Go[q] remains
unchanged. In either case the step wouldn’t change Go[q], and the condition would continue to hold in
C′.
Suppose the step changing C to C′ was a normal step of q. In that case, if PCq ∈ {1,17}∧Go[q] 6= −1 in C,
PCq ∈ {17,18} in C′ and Go[q] 6= −1. Therefore, the condition holds in C′. Otherwise, PCq ∈ {6,15,20}
and q makes a call to promoteq() so that changing PCq to 24 and the condition being held in C′. In

another case, PCq ∈ {18,19} in C and PCq ∈ {19,20} in C′. Otherwise, PCq = 24 in C and q reads
CSStatus during the step, so that CSStatus = (1, sq) (here sq is initialized to the second component of
CSStatus by q during the step) and PCq = 25 in C′. In another case, PCq = 25 in C and it changes
to 26 in C′ (without modifying CSStatus). In yet another case PCq = 26 in C and the CAS changes
CSStatus to (1, peerq). By IH:6, peerq ∈ P. In all these cases it follows that the condition holds in C′.

13. Proof that Condition 13 holds in C′

We first argue the correctness of the condition for the case when CSStatus 6= (1, p) in C and CSStatus = (1, p)
in C′. Since the step changes CSStatus 6= (1, p) to (1, p), it happens because some process q executed Line 26.
Therefore, PCq = 26 in C and changes to 27 because the CAS succeeds. Since q wrote (1, p) into CSStatus
due to the CAS by an inspection of the algorithm it follows that peerq = p in C, which remains the same in
C′. It follows that in C′ ∃q, PCq = 27 ∧ peerq = p. Thus, the condition holds in C′.

Next we argue the correctness of the condition for the case when CSStatus = (1, p) and Go[p] 6= 0 in C. By
IH:13, ∃q, (PCq ∈ {18-20,24} ∨ (PCq = 27 ∧ peerq = p) ∨ (PCq ∈ {28,29} ∧ peerq = p ∧ gq = Go[p])
∨ (PCq ∈ {1,17} ∧ Go[q] 6= −1)). Suppose C changes to C′ due to a crash step of q. In that case, if
(PCq ∈ {18-20,24} ∨ (PCq = 27 ∧ peerq = p) ∨ (PCq ∈ {28,29} ∧ peerq = p ∧ gq = Go[p]), in all of
these cases, by IH:3, Go[q] 6= −1 in C. Since the crash doesn’t change Go[q], it follows that PCq = 1 and
Go[q] 6= −1 in C′. Therefore, the condition holds in C′. Suppose C changes to C′ due to a normal step of
q. In that case, if PCq ∈ {1,17,18,19} in C, it is the case that PCq ∈ {17,18,20} in C′. Otherwise, a
call from Line 20 to promoteq() changes PCq to 24. If PCq = 24 in C, then since CSStatus = (1, p) in
C, the step changes PCq to 27 while setting peerq = p. Suppose PCq = 27 and peerq = p in C, and as
we already assumed above that CSStatus = (1, p) and Go[p] 6= 0. From IH:5, we have Go[p] 6= −1 in C,
because otherwise CSStatus 6= (1, p). It follows that the step changes PCq to 28 while setting gq to Go[p].
Since CSStatus = (1, p) in C, if PCq = 28, peerq = p, and gq = Go[p], PCq changes to 29 because the if
condition is met at Line 28. If PCq = 29, peerq = p, and gq = Go[p] in C, the CAS at Line 29 by q succeeds
and Go[p] changes to 0 in C′ thereby satisfying the condition vacuously. It follows that in all of the above
cases the condition continues to hold in C′.

Thus, by induction it follows that the invariant holds in every configuration of every run of the algorithm.

