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Abstract. This paper puts forward a new notion of a proof based on computational complexity
and explores its implications for computation at large.

Computationally sound proofs provide, in a novel and meaningful framework, answers to old
and new questions in complexity theory. In particular, given a random oracle or a new complexity
assumption, they enable us to

1. prove that verifying is easier than deciding for all theorems;
2. provide a quite effective way to prove membership in computationally hard languages (such

as Co-NP-complete ones); and
3. show that every computation possesses a short certificate vouching its correctness.

Finally, if a special type of computationally sound proof exists, we show that Blum’s notion of
program checking can be meaningfully broadened so as to prove that NP-complete languages are
checkable.
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1. Introduction.
CS proofs. Proofs are fundamental to our lives, and as for all things fundamental

we should expect that answering the question of what a proof is will always be an on
going process. Indeed, we wish to put forward the new notion of a computationally
sound proof (CS proof) which achieves new and important goals, not attained or even
addressed by previous notions.

Informally, a CS proof of a statement S consists of a short string, σ, which (1) is as
easy to find as possible, (2) is very easy to verify, and (3) offers a strong computational
guarantee about the verity of S. By “as easy to find as possible” we mean that a CS
proof of a true statement (i.e., for the purposes of this paper, derivable in a given
axiomatic theory) can be computed in a time close to that needed to Turing-accept
S. By “very easy to verify” we mean that the time necessary to inspect a CS proof
of a statement S is substantially smaller than the time necessary to Turing-accept S.
Finally, by saying that the guarantee offered by a CS proof is “computational” we
mean that false statements either do not have any CS proofs, or such “proofs” are
practically impossible to find.

Implementations of CS proofs. The value of a new notion, of course, cru-
cially depends on whether it can be sufficiently exemplified. We provide two main
implementations of our notion. The first is based on a random oracle and provably
yields a CS proof system without any unproven assumption. The second relies on a
new complexity conjecture: essentially, that it is possible to replace the random oracle
of the first construction with a cryptographic function and obtain, mutatis mutandis,
similar results.

Applications of CS proofs. In either implementation, CS proofs provide, in a
new and meaningful framework, very natural answers to some of our oldest questions
in complexity theory. In particular, they imply not only that the time necessary to ver-
ify is substantially smaller than the time necessary to accept, but, more importantly,
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that this “speed-up” occurs for all theorems (rather than just a few theorems). In ad-
dition, they provide a quite effective way for proving membership in computationally
hard languages (e.g., Co-NP complete ones).

CS proofs also possess novel and important implications for computational cor-
rectness. In particular, in either implementation, they imply that every computation
possesses a short certificate vouching for its correctness. In addition, if implementable
in the second manner, CS proofs also imply that any heuristic or program for an NP-
complete problem is cryptographically checkable. This application at the same time
extends and demonstrates the wide applicability of Blum’s [11] original framework for
checking program correctness.

Origins of CS proofs. In conceiving and constructing CS proofs, we have ben-
efited from the research effort in interactive and zero-knowledge proofs. In particular,
the notion of a probabilistically checkable proof [3, 17] and that of a zero-knowledge
argument [13] have been the closest sources of inspiration in conceiving the new no-
tion itself. In exemplifying the new notion, most relevant has been a construction of
Kilian’s [23], and, to a lesser extent, the works of [18] and [9].

Naturalness of CS proofs. We wish to emphasize that, from the above starting
point, the mentioned applications of CS proofs to computation at large have been
obtained by means of surprisingly simple arguments. Indeed, after setting up the
stage for the new notion, the results about computational correctness follow quite
naturally. This simplicity, in our opinion, lends support to our new perspective.

2. New goals for efficient proofs.
Proofs without demands for efficiency: Semirecursive languages. Truth

and proofs have been traveling hand in hand. As formalized in the first half of this
century by a brilliant series of works, the classical notion of a proof 1 is inseparable
from that of a true statement. Given any finite set of axioms and inference rules, the
corresponding true statements form a semirecursive set.2 In the expressive and elegant
approach of Turing, such sets possess two equivalent characterizations particularly
important for our enterprise, one in terms of accepting algorithms and one in terms
of verifying algorithms.

1. A language (set of binary strings) L is semirecursive if and only if there exists
an (accepting) Turing machine A such that

L = {x : A(x) = Y ES}.
2. A language L is semirecursive if and only if there exists a (verifying) Turing

machine V, halting on all inputs, such that

L = {x : ∃σ ∈ {0, 1}∗ such that V (x, σ) = Y ES}.
Establishing the verity of a statement is thus a purely algorithmic process, and (at
least formally) classical proofs—the σs of the second definition—are just strings. Be-
cause in this paper a “true” theorem simply is one derivable in a given theory, for

1Thinking that the intuitive notion of a proof has remained unchanged from the times of classic
Greece (i.e., thinking that people like Peano, Zermelo, Frankel, Church, Turing, and Gödel have
only contributed its rigorous formalization and the discovery of its inherent limitations) is certainly
appealing, but unrealistic. Personally, we believe that no notion so fundamental and so human can
remain, not even intuitively, the same across so different spiritual experiences and historical contexts.
No doubt, our yearning for permanence (dictated by our intrinsically transient nature) predisposes
us to perceive more continuity in our endeavors than may actually exist.

2Again, throughout this work, true is considered equivalent to derivable.
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variety of discourse we may call a member of a semirecursive language a theorem or a
true statement, and a classical proof a derivation.

Finally, we also wish to recall the definition of a recursive language. Namely,
3. a language L is recursive (decidable) if and only if there exists a (deciding)

Turing machine D, halting on all inputs, such that

L = {x : D(x) = Y ES}.

Most of the semirecursive languages considered later on are actually recursive, in
which case we may refer to their accepting algorithms as deciding algorithms.

Prior demands for efficiency: NP, IP, and PCP. The two classical
definitions of semirecursiveness are syntactically different, but they are not formally
distinct from the point of view of “computational efficiency.” Indeed, though in many
natural cases verifying a classical proof is computationally preferable to finding it,
classical proofs are more a way of expressing what is in principle true rather than
a way of capturing what is efficiently provable. Providing a derivation is certainly a
way to convince someone that a given theorem is true but not necessarily an efficient
one: a classical proof may be arbitrarily long, or its relative verifying algorithm may
take arbitrarily many computational steps to verify it.

Therefore, the now familiar notions of NP (due to Cook [16] and, independently,
to Levin [24]) and IP (due Goldwasser, Micali, and Rackoff [21] and, independently,
to Babai and Moran [4]) have been put forward in an effort to capture the essence of
an efficient proof. Despite the notable differences between NP and IP, in both cases
this effort consists of demanding that verifying be easy.

Our notion too demands ease of verification (and in a stronger sense), but also
broadens the perceived essence of an efficient proof by demanding some novel prop-
erties.

Another type of “proof efficiency” is provided by the notion of PCP [3, 17] (which
we shall discuss in some detail later on). Quite succinctly, this notion consists of an
explicit algorithm transforming an NP-witness, σ, into a new proof (i.e., string), τ,
which is polynomially longer, but whose correctness can be detected in probabilistic
polylogarithmic time by random accessing (at unit cost) selected bits of τ . This
immediately yields the following NP-like proof system: the prover transforms an
NP-witness σ into a longer but samplable proof-string τ, and sends τ to the verifier,
who then will verify τ by selectively sampling its bits.

In terms of overall verifying time, however, such a proof system is not more
efficient than its NP counterpart (i.e., than just sending σ). Indeed, though few
chosen bits of τ will be “truly checked,” to ensure that he is truly dealing with, say,
the ith bit of τ , the verifier must read/receive every bit of τ and keep precise track of
the order in which it is read/received. And such read/receiving operations, according
to any natural measure, have in themselves a cost proportional to τ ’s length, which
is greater than the length of σ.3

(Notice that having the prover not send τ at all, but rather having him answer
any question the verifier may ask about specific bits of τ , does not work: a dishonest
prover may cheat successfully with probability 1.)

Our demands for efficiency. Our notion of an efficient proof system is ex-
pressed in relation to Turing acceptability. We believe this to be a necessary step.

3This continues to be true if the prover sends to the verifier a piece of randomly-accessible
hardware containing τ, if such a transmission is deemed preferable.
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Indeed, we perceive accepting as the solitary process of determining what is true and
proving as the social process of conveying to others the results of this determination.

Let us begin with the desideratum common to prior notions of our proof: ease of
verification. Both NP and IP interpret ease of verification in absolute terms, namely,
by requiring that verifiers run in polynomial-time. This interpretation automatically
and strictly narrows the class of the efficiently provable theorems. By contrast, we
believe that efficient verifiability should be expressed in relative rather than absolute
terms, namely, by comparing the complexities of (1) verifying the proof of a given
statement S and (2) accepting S (i.e., establishing S’s verity without any help).

In addition, we perceive two new desiderata. First, because a proof system spec-
ifies (implicitly or explicitly) two processes, that of verifying and that of proving, we
believe that proving too should be efficient, and this latter efficiency should again be
relative to the complexity of accepting. Second, while NP and IP narrow the prov-
able theorems to a small subset of all true statements (e.g., PSPACE), we believe
that all true statements (i.e., all Turing-acceptable languages) should be efficiently
provable.

Our main goals. In sum, at the highest and informal level, the objective of
our new notion of a proof is finding the right relationship between accepting, efficiently
proving, and efficiently verifying a true statement. We articulate this general objective
in the following goals.

1. (Relative) efficiency of verifying. Construct proof systems so that, for all
theorems, the complexity of verifying is substantially smaller than that of
accepting.

2. (Relative) efficiency of proving. Construct proof systems so that the prover’s
complexity is close to that of accepting.

3. (Recursive) universality. Construct proof systems capable of efficiently prov-
ing membership in every semirecursive language.

As we shall point out in what follows, our notion of a CS proof system also achieves
additional goals, but we do not consider them essential to the “right” notion of an
efficient proof.

2.1. Efficiency of verifying.
The relative nature of efficient verifiability. As outlined above, we regard

a proof system to be efficient if it makes verifying a given statement easier than
Turing accepting it (i.e., easier than establishing its verity without the help from
any prover). Ignoring a small, fixed polynomial, we demand that the complexity
of verifying be polylogarithmic in that of accepting. Though somewhat arbitrary,
the latter choice stems from two simple reasons: “logarithmic” because we wish the
advantage of verifying over accepting to be substantial (whenever the accepting time
is substantial!), and “poly” because we wish such an advantage to be reasonably
independent from any specific computational model.

The ubiquitous nature of efficient verifiability. There is an additional and
novel aspect to our goal of efficient verifiability, namely, that such efficiency should
arise for all theorems and not for just some of them. Let us explain this point focusing
on the NP proof system.

To begin with, within P, the NP mechanism does not guarantee that verification
is computationally easier than acceptance (which in this case coincides with decision).
For instance, in principle, for infinitely many positive constants c there could be a
language Lc decidable in time O(nc) but for which any type of NP-witness needs
Ω(nc) steps to be verified. If this were the case, the NP proof system could not make
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verifying membership in these languages any easier than deciding them.
In addition, in principle again, assuming P �= NP only entails the existence of a

superpolynomial gap between the complexities of Turing accepting and verifying for
some, but possibly rare, inputs, such as certain instances of satisfiability. By contrast,
according to our present point of view, a proof system does not make verification
sufficiently efficient unless it makes it polylogarithmically easier than accepting for
essentially all theorems.

2.2. Efficiency of proving.
The relative nature of efficient provability. As mentioned already, implicitly

or explicitly, proofs involve two agents, a prover and a verifier. We thus believe that
the right notion of a proof should require efficiency for both agents and that the
efficiency of a prover should not be measured in absolute terms but relatively to the
complexity of Turing accepting the problem at hand.

Measuring prover efficiency relative to the complexity of accepting is a quite
natural choice. Indeed, based on our intuition that the complexity of convincing
someone else cannot be lesser than that of convincing ourselves (and based on our
view that accepting is the process of convincing ourselves), the complexity of proving
cannot be lower than that of accepting, while it could be much greater. We thus
demand that our proof systems satisfy the following two properties.

(i) The prover must succeed in convincing the verifier whenever the theorem at
hand is true (the old completeness property of an interactive proof system).

(ii) The amount of computation needed by the prover to convince the verifier
must be polynomially close to that needed to accept that the given theorem
is true.

In property (ii), we demand that the two amounts of computation be polynomially
close to ensure a reasonable robustness.

We refer to the simultaneous holding of these two properties as feasible complete-
ness. Feasible completeness is a novel requirement for proof systems. But do any of
the prior proof systems “happen” to enjoy it anyway? Quite possibly, the answer is
no. Consider, for instance, an NP language L (preferably not NP-complete4) decid-
able by an algorithm D in, say, nlogn time. Then, in the NP mechanism, proving that
a given string x belongs to L entails finding a polynomially long and polynomial-time
inspectable witness wx. But the complexity necessary to find such an insightful string
may vastly exceed that of running algorithm D on input x for |x|log |x| steps! Indeed,
finding such an insightful string wx might in the worst case require O(2|x|) steps. In
other words, while a few months of hard work may suffice for proving to ourselves
(i.e., for accepting) that a given mathematical statement is true, it is conceivable that
a lifetime may not be enough for finding an explanation followable by a verifier with
a limited attention span.

Efficient provability might also not hold for the IP proof mechanism. Indeed,
often the best way to prove membership in an IP language consists of invoking
the general IP = PSPACE protocol [26, 33], which is extremely wasteful of prover
resources.

Realizing the importance of feasible completeness in a proof system allows us

4Above, we assume that L is not NP-complete to avoid raising two issues at once. Indeed, due
to our current complexity measures, NP-proving membership in an NP-complete language appears
feasible. In fact, because of self-reducibility, if L isNP-complete and decidable in nlogn time, then an
NP-witness of x ∈ L is findable in poly(|x|)·|x|log |x| time. However, as we shall see in subsection 5.8,
NP may not enjoy feasible completeness even when one focuses solely on NP-complete languages.
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to raise a variety of intriguing questions about NP and IP.5 But our point is not
determining which proof systems happen to enjoy feasible completeness. Our point
is that feasible completeness must be required from any notion of a proof system that
aims at achieving an adequate level of generality and meaningfulness.

Related notions of feasible provability. Related notions of “feasible” prov-
ability have been considered in the past. In particular, Bellare and Goldwasser [6]
discuss demonstrating membership in certain languages L by provers working in poly-
nomial time and having access to an oracle for membership in L. Their notion, how-
ever, is weaker than ours because, in order to demonstrate membership in L of some
given input x, their prover can query the oracle about other inputs x′ for which ac-
cepting membership in L might be “much harder” than for x (despite the fact that
such x′ have been polynomial-time computed from x). Thus, if accessing the oracle
for L were to be substituted with running an algorithm deciding L, then their provers
may work much harder than needed for accepting that a specific x belongs to L.

Less relevantly, the protocols of [20] and [13] show that, if a prover were given
for free an NP witness that an input x belongs to an NP-complete language L, then
proving in zero-knowledge that x ∈ L only requires polynomial (in |x|) work. (In a
sense, therefore, theirs is an example of feasible provability, but relative to the “nonde-
terministic complexity of x.” That is, the prover complexity of a zero-knowledge proof
system for NP is shown to be feasible relative to the prover complexity of another
proof system: the NP one.) Such notion is nonetheless adequate when the prover is
not handed the statement of a theorem (e.g., x ∈ L) as an input, but rather generates
it together with suitable auxiliary information (e.g., an NP-witness of x ∈ L) that
enables feasible proving.

By contrast, our notion of feasible completeness refers to (1) individual inputs
and (2) the deterministic complexity of these inputs.

2.3. Recursive universality. The previous proof systems discussed above have
only a limited “range of action.” For instance, an interactive proof system (P, V ) is
defined only with respect to proving membership in a specific language L. Different
languages have, therefore, different interactive proof systems, or none. Moreover, as
mentioned above, even considering the classes of all languages having an interactive
proof system, one obtains a set of languages, IP, that is quite small with respect to
the set of all semirecursive languages.

We instead consider universality (i.e., the capability of handling the entire range
of semirecursive languages) to be a necessary property of a “sufficiently right” proof
system. By this we do not just mean that every semirecursive language should admit
a proof system of the “right” type. We actually mean that a “right” proof system
should be able to prove membership in any semirecursive language. That is, for any
language L and any member x of L, on input x and a suitable description of L, a
right proof system should be able to prove, efficiently, that x belongs to L. (As will
be seen, we consider an accepting algorithm for L to be a suitable description of L

5For instance, in an intuitive language,
Q1: What is the computational complexity required from any IP-prover of unsatisfiability?
Q2: (In light of better-than-exhaustive-search algorithms for graph isomorphism) What is the

complexity required from any NP-prover of, say, graph isomorphism?
Q3: Are there NP-languages L, such that proving membership in L may require much less

computation from an IP-prover than from an NP-prover?
(i.e., can giving a prover “more freedom” save him much work?) In particular,

Q3′: What is the computational complexity required from any IP-prover of satisfiability?
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and one that facilitates our establishing the efficient provability and verifiability of a
proof system.)

3. CS proofs with a random oracle. To approximate our new goals, we put
forward the notion of a CS proof system. As we shall see, this actually is a family of
closely related notions. The first of such notions, that of a CS proof with a random
oracle, will be presented and implemented in detail in this section; the others will be
more briefly discussed in section 4. All these proof systems aim at proving membership
in the following special language.

3.1. The CS language.
Encodings. Throughout this paper, we assume usage of a standard binary encod-

ing, and often identify an object with its encoding. (In particular, if A is an algorithm,
we may—meaningfully, if informally—give A as an input to another algorithm.) The
length of an (encoded) object x is denoted by |x|. If q is a quadruple of binary strings,
q = (a, b, c, d), then our quadruple encoding is such that, for some positive constant
c,

1 + |a|+ |b|+ |c|+ |d| < |q| < c(1 + |a|+ |b|+ |c|+ |d|).

Steps. IfM is a Turing machine and x an input, we denote by #M(x) the number
of steps that M takes on input x.

Definition 3.1. We define the CS language, denoted by L, to be the set of all
quadruples q = (M,x, y, t), such that M is (the description of) a Turing machine, x
and y are a binary strings, and t a binary integer such that

1. |x|, |y| ≤ t;
2. M(x) = y; and
3. #M(x) = t.

Notice that, as long asM reads each bit of its inputs and writes each bit of its outputs,
the above property 1 is not a real restriction. Notice too that, due to our encoding, if
q = (M,x, y, t) ∈ L, then t < 2|q|.

3.2. The notion of a CS proof-system with a random oracle.
Oracles and oracle-calling algorithms. We denote the set of all binary strings

having length i by Σi, and the set of all functions from a-bit strings to b-bit strings
by Σa → Σb. By an oracle we mean a function in Σa → Σb, for some choice of a and
b.

We consider algorithms making calls to one or two oracles. To emphasize that an
algorithm A makes calls to a single oracle, we write A(·). If A is such an algorithm and
f an oracle, we write Af to denote the algorithm obtained by answering A’s queries
according to function f, that is, by answering each query α with f(α). Similarly, to
emphasize that an algorithm A makes calls to two oracles, we write A(·,·). If A is such
an algorithm and (f1, f2) a pair of oracles, we write A(f1,f2) to denote the algorithm
obtained by answering A’s queries to the first oracle according to function f1, and
those to the second oracle according to function f2.

For complexity purposes, in a computation of an oracle-calling algorithm, the
process of writing down a query and receiving its answer from the proper oracle f is
counted as a single step. No result of this paper would change in any essential way if
this process costed poly(a, b) steps whenever f ∈ Σa → Σb.

An algorithm that, in any possible execution, makes exactly N calls to each of its
oracles will be referred to as a N-call algorithm.
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Integer presentation. If x is an integer given as an input to an algorithm
A, unless otherwise clarified it is assumed that x is presented in binary to A. We
only make an exception for the security paramenter, denoted by k, that is always
presented in unary to all our algorithms: accordingly, we shall denote by 1k (i.e., the
concatenation of k 1s) the unary representation of integer k.6

Definition 3.2. Let P (·) and V (·) be two oracle-calling Turing machines, the
second of which is running in polynomial time. We say that (P, V ) is a CS proof sys-
tem with a random oracle if there exists a sequence of six positive constants, c1, . . . , c6
(referred to as the fundamental constants of the system), such that the following two
properties are satisfied.

1′. Feasible completeness. For all q = (M,x, y, t) ∈ L, for all k, for all f ∈ Σkc1 →
Σkc1

, (1′.i) P f (q, 1k) halts within (|q|kt)c2 computational steps, outputting a
binary string C whose length is ≤ (|q|k)c3 , and (1′.ii) V f (q, 1k, C) = Y ES.

2′. Computational soundness. For all q̃ �∈ L, for all k such that 2k > |q|c4 , and
for all (cheating) deterministic 2c5k-call algorithm P̃ , for a random oracle
ρ ∈ Σkc1 → Σkc1

,

P robρ[V
ρ(q̃, 1k, P̃ ρ(q̃, 1k)) = Y ES] ≤ 2−c6k.

Thus, an execution of (P, V ) requires a common oracle f and two common inputs: a
quadruple of binary strings q (allegedly a member of L) and a unary-presented integer
k. We refer to q as the CS input, and to k as the security parameter. Such an execution
consists of first running P f on inputs q and 1k, so as to produce a binary output C,
and then running V f on inputs q, 1k and C. If q = (M,x, y, t) and V f (q, 1k, C) = Y ES,
we may call string C a random-oracle CS proof of M(x) = y, or, more precisely, a
random-oracle CS proof, of security k, of M(x) = y in less than t steps. For variation
of discourse, we may sometimes refer to such a C as a CS witness or a CS certificate. If
it is clear from the context that we are dealing with CS proof systems with a random
oracle, we may simplify our language by dropping the qualification “random-oracle.”

Discussion.
Controlled inconsistency. CS proofs (similarly to zero-knowledge arguments

discussed later on) allow the existence of false proofs but ensure that these are com-
putationally hard to find. That is, false CS proofs may exist, but they will “never” be
found.

Equivalently, CS proof systems are deliberately inconsistent but practically in-
distinguishable from consistent systems. Indeed, each CS proof specifies a security
parameter, controlling the amount of computing resources necessary to “cheat” in the
proof, so that these resources can be made arbitrarily high. Accordingly, CS proofs
are meaningful only if we believe that the provers who produced them, though more
powerful than their corresponding verifiers, are themselves computationally bounded.7

From a practical point of view, this is hardly a limitation. As long we restrict our at-
tention to physically implementable processes, no prover in our universe can perform
21,000 steps of computation, at least during the existence of the human race. Thus,
“practically speaking” all provers are computationally bounded.

6This is to ensure that a polynomial-time algorithm is guaranteed to be able to make “poly(k)”
steps when the security parameter is k.

7The transition from an interactive proof system to a CS proof system is analogous to the
transition from a perfect zero-knowledge proof system to a computational zero-knowledge proof
system [21], which has proved to be a more flexible and powerful notion [20].
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Deterministic cheating. In the above definition of a CS proof system with a
random oracle, we have considered cheating provers P̃ to be deterministic because
probabilism does not help in our context. Indeed, since we are not concerned about
the size of the description of P̃ , nor about its running time (except for the number

of oracle calls it may make), P̃ may easily have built in any “lucky” sequence of coin
tosses.

Security parameters. Informally, the security parameter k controls the proba-
bility of something going wrong, and CS proofs become more meaningful as k grows.
But, at a minimum, we require that k be large enough so that 2k > |q|c4 . This “mild”
lower-bound is relied upon in our proof of Theorem 3.8.8 At the same time, it is also
reasonable in that, on input a quadruple q, the honest prover P is allowed at least
poly(|q|) steps of computation, and it would thus be strange not to assume that a
cheating prover can make a similar number of steps.

Running time. A member of L, q = (M,x, y, t), includes the exact number of
steps, t, in which M outputs y on input x. More simply, however, we could have
demanded that t upperbounds #M(x). But since the CS proof system with a random
oracle of section 3.4.2, (P,V), actually proves the exact value of #M(x), it would
have been a pity to loose this exact information.9

A paradox. CS proofs are paradoxical in that a computationally bounded prover
appears able to “prove more theorems” than an unbounded one. Indeed, if we choose
k’s value as a suitable function of the input length, then a properly-bounded CS prover
can demonstrate membership in any EXPT IME language to a verifier whose running
time is upperbounded by a fixed polynomial in the input length alone. By contrast,
the unbounded prover of an interactive proof system can only prove membership
in PSPACE languages to a polynomial-time verifier, and it is widely believed that
PSPACE is a proper subset of EXPT IME .

However, at a second thought, there is no paradox. Indeed, a prover, being
someone more powerful than us, may be a potentially useful ally (willing to enlarge
our state of knowledge by letting us verify that some very difficult theorems are
indeed true), but may also be a potentially dangerous enemy (wishing to trick us into
believing some false statements). It is thus not too surprising that, when a prover is
powerful but not-too-powerful, we can “trust him to a larger extent” and can thus
“critically receive” from him more theorems than before.

Achieving our goals. Let us now point out how CS proofs achieve our main
goals for the notion of an efficient proof.

1. Efficient verifiability. Our first goal required that, for every theorem, ver-
ifying should be polylogarithmically easier than accepting. This goal is ap-
proximated by a CS proof system (P, V ) in the following sense. Let L be
a semirecursive language, x a member of L, and A an accepting algorithm
for L. Then the theorem x ∈ L can be verified by running A on input x
and verifying that A(x) = Y ES. Assume now that the latter computation
takes t steps and that (P, V ) is a CS proof system with a random oracle.
Then, by choosing a proper security parameter k and running P on inputs

8Roughly, for proving Theorem 3.5 it suffices that 2k > poly(|t|), which it is implied by 2k >
poly(|q|), because |t| < |q|.

9In any case, he who considers more natural choosing t as an upperbound to #M(x) may notice
that with minor changes all of the results of this paper, including those about CS checking, remain
true. In particular, a CS proof that some q = (M,x, y, T ) belongs to the modified CS language is
computable in poly(|q|k#M(x)) even when #M(x) << T .
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q = (A, x, Y ES,#A(x)) and 1k, and access to a random oracle ρ, one obtains
a CS certificate of x ∈ L, C that (a) is length-bounded by a fixed polynomial
in |q| and k, and (b) is accepted by V ρ running on additional inputs q and 1k.
Therefore, because V is polynomial time (and because k is unary-presented),
V accepts within a number of steps that are bounded by a fixed polynomial
in |q| and k. Thus, because #A(x) enters q in binary representation and be-
cause of our quadruple-encoding conventions, V accepts in time polynomial
in |x| and k (as well as in |A|) but polylogarithmic in #A(x).

2. Efficient provability. Our second goal called for the complexity of proving
being polynomially close to that of accepting. This property is immediately
guaranteed by the feasible completeness of a CS proof system. Feasible com-
pleteness in fact states that there exists a fixed constant c2 such that, if an
algorithm A accepts that a string x belongs to a semirecursive language L
(in #A(x) steps), then a CS prover can, on inputs q = (A, x, Y ES,#A(x))
and 1k and with access to a random oracle, find a CS proof of x ∈ L within
(|q|k#A(x))c2 steps. That is, a CS prover can find a CS proof of x ∈ L in a
time that is polynomial in #A(x) and k (as well as in |A| and |x|).

3. Recursive universality. Our third goal called for proof systems capable of
proving membership in all possible semirecursive languages. In apparent con-
trast with this requirement, a CS proof system is defined to prove membership
only in the CS language L. But L is designed so as to encode membership
questions relative to any possible semirecursive language. In fact, to each
semirecursive language L corresponds a Turing machine ML so that x ∈ L if
and only if ML, on input x, outputs Y ES in some number of steps t. Thus
x ∈ L if (ML, x, Y ES, t) ∈ L, thus achieving the third goal.

Efficient verifiability within P. Note that a CS proof system with a random
oracle makes verifying computationally preferable to accepting even for polynomial-
time languages.

The process behind the curtains. In a classical proof system, what con-
vinces us of the verity of a given statement is the existence of a string satisfying a
proper syntactic property. By contrast, in an interactive proof system there are no
strings that do the convincing: the “proof is in the process.” Differently from both
scenarios, in a noninteractive CS proof system, proofs are strings possessing a special
property, but such strings may exist also for false statements. Therefore, what is con-
vincing is not the existence of such strings but our belief that the process behind the
generation/selection of such strings had computationally limited resources.10

Comparison with zero-knowledge arguments. Goldwasser, Micali, and Rack-
off [21] introduced and first exemplified the notion of a zero-knowledge proof system,
and Goldreich, Micali, and Wigderson[20] showed that all languages in NP possess

10Indeed, when debating whether a given statement is true, we do not have “serendipitous” access
to some CS proof of it, if any. Thus, if we are given such a string, then there must have been an active
process that generated/selected it. For instance, assume that, while walking on a beach pondering
our favorite statement S, we encounter a sand pattern that looks like the sequence of bits of a CS
proof, σ, of S. Then, we may consider that the grains of sand have been arranged in such a σ-shape
by natural elements (such as wind, waves, and sun), and view the universe as a computer and its
age as computing time, so that, in a final analysis, our σ has been found in a few billion years: an
unlikely event if we have chosen our parameters so that the age of the universe is negligible with
respect to the time necessary to find a good-looking CS proof of a false statement.
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a (computationally) zero-knowledge proof, under a general complexity assumption.11

Brassard, Chaum, and Crépeau [13] then put forward a related notion, that of a
zero-knowledge argument for NP, and proved a related theorem: under a specific
complexity assumption, there exist zero-knowledge arguments for all NP languages.12

We wish to disregard the zero-knowledge component of the latter protocols and
focus instead on their proof-system component, which we call the argument (proper).
Such arguments in fact provide an earlier example of proof systems which (as our CS
proofs) are “convincing if its provers are computationally bounded.” Let us explain.

In a (zero-knowledge) argument system for an NP language L, all agents, the

prover P, the verifier V, and any possible malicious prover P̃ , are assumed to be
polynomial-time machines. Before proving that a given input x belongs to L, P is
assumed to have available, on a special tape inaccessible by V, anNP-witness of x ∈ L,
w. (Without this assumption, such a w might be uncomputable by the polynomial-
time P .) During the protocol, P is provided by V with a special encryption scheme
and uses it so as to convince V of the existence of w (without revealing it) by means of
an interactive process that is less efficient than merely sending w. Vice versa, if x �∈ L,
no such w exists, and it is hard for a malicious P̃ to convince V of the opposite. In fact,
succeeding in such a malicious convincing entails “breaking” the provided encryption
scheme, and the chance that a polynomial-time P̃ may do that is quite remote.

Arguments, therefore, do not enlarge (nor aim at enlarging) the class of theorems
that are efficiently provable. Rather, they constitute an alternative way of proving
membership in NP, a way that is less efficient than simply providing the witness but
satisfies an additional property, zero-knowledgeness (which is in fact an integral part
of their very definition).

Note that, leaving aside zero-knowledgeness and interaction (there are, after all,
interactive CS proof systems), our CS proofs with a random oracle differ from the
arguments of Brassard, Chaum, and Crépeau in the following ways.

• Their arguments for NP may not enjoy efficient verifiability. As discussed
above, such NP arguments are less efficient than classical NP proof systems,
and, as pointed out in subsection 2.1, the latter systems may not satisfy
(ubiquitous efficiency, and thus) efficient verifiability.

• Their arguments for NP may not enjoy efficient provability. As discussed
above, on input a member x of an NP language L, the prover of an NP
argument is assumed to have “for free” (as an additional input) an NP-
witness w of x ∈ L. But, as we have pointed out in subsection 2.2, the
time necessary for a prover to find such a witness w may vastly exceed that
necessary to accept that x ∈ L.

• Their arguments for NP do not enjoy recursive universality. NP languages
are a proper subset of all recursive languages.

3.3. The intuition behind our CS proof-system with a random oracle.
Our construction is based on an earlier one of Kilian’s [23], which is itself based on

11Informally, they exhibit interactive protocols enabling a prover to convince a polynomial-time
verifier that an input belongs to an NP language L, but without conveying any more knowledge
than the mere fact that a given witness of such a membership exists. Their protocols privilege the
“proof aspect” rather than the “zero-knowledge aspect”. Indeed, even if endowed with unbounded
computational power, their provers cannot convince their verifiers that inputs outside L are in L
(but with a negligible probability). However, for their verifiers to gain no information about inputs
of L (other than their belonging to L) it is crucial that they be time-bounded.

12Differently from Goldreich, Micali, and Rackoff, rather then the proof aspect, they privilege the
zero-knowledge aspect (see previous footnote).
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Merkle’s trees [27] and probabilistically checkable proofs [3, 17]. Let us thus start by
recalling the latter two notions.

3.3.1. Probabilistically checkable proofs. Babai, Fortnow, Levin, and
Szegedy [3], and Feige, Goldwasser, Lovasz, Safra, and Szegedy [17] have put forward,
independently and with different aims,13 some related and important ideas sharing
a common technique: proof-samplability.14 In essence, they present two algorithms.
The first transforms an NP-witness, w, into a slightly longer “samplable proof,” w′.
The second algorithm can check the correctness of such a string w′ by “random” ac-
cessing (i.e., accessing at unit cost) selected few of its bits. In our paper, we refer to
these two algorithms as the (sampling-enabling) prover and the (sampling) verifier,
which we, respectively and consistently, denote by SP and SV, so as to differentiate
them from other types of provers and verifiers.

The following version of their result has proved useful in most applications so far.
Theorem 3.3 (samplable proofs: Version 0). For all NP languages L there

exist two polynomial-time algorithms, a deterministic SP , a probabilistic SV, and a
polynomial Q, such that

(a) For all n-bit strings x ∈ L and for all NP-witness w of x ∈ L, SP (x,w) = w′,
wherein string w′ is such that, on input x and access to any Q(log n) bits of
w′ of its choice, algorithm SV accepts; and

(b) for all x �∈ L and for all w′, algorithm SV, on input x and access to any
Q(log n) bits of w′ of its choice, rejects with probability ≥ 1/2.

We shall, however, rely on a more precise and general version of their result,
namely the following theorem.

Theorem 3.4 (samplable proofs: Version 1). For any polynomial-time relation
R over Σ∗ × Σ∗, there exist a deterministic polynomial-time algorithm SP (·, ·), a
probabilistic polynomial-time algorithm SV (·, ·), and two polynomials L(·) and Λ(·),
such that the following hold.

1. For all strings x and y such that R(x, y) holds, SP (x, y) outputs a string y′

such that
1.1. y′ < L(|x|+ |y|), and
1.2. SV (x, |y′|), having a random tape of length Λ(log |y′|) and random access

to y′, accepts.
2. For all strings x such that for all y R(x, y) = 0, and for any string σ, the

probability (computed over SV ’s coin tosses) that SV (x, |σ|), having a random
tape of length Λ(log |σ|), having random access to σ, and actually accessing
Λ(log |σ|) bits of σ, accepts is ≤ 1/2.

In the statement of Theorem 3.4, as customary, inputs |y′| and |σ| are presented
to SV in binary. (Thus the second input of SV is polylogarithmically shorter than
|x|+ |y|.) Note that, unlike in the case of NP, R(x, y) = 1 may not imply any a priori

13The authors of [3] focus on proofs of membership in NP languages and show that it is possible
to construct verifiers that work in time poly-logarithmic in the length of the input. (Since in such
a short time the verifier could not even read the whole input—and thus check that the proof he is
going to sample actually relates to the “right” theorem—these authors have devised a special error-
correcting format for the input and assume that it is presented in that format. An input that does
not come in that format can be put into it in polynomial-time.)

The authors of [17] use proof-samplability to establish the difficulty of finding approximate
solutions to important NP-complete problems. (With this goal in mind, these other authors do not
mind verifiers working in time polynomial in the length of the input and do not use or need the fact
that inputs appear in any special format.)

14Though improved in [2, 1, 35, 29], the original proof-samplability techniques of [3] and [17]
suffice for our purposes.
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bound for the length of y relative to that of x.

3.3.2. Merkle’s trees. Recall that a binary tree is a tree in which every node
has at most two children, hereafter called the 0-child and the 1-child. A collision-
free hash function is, informally speaking, a polynomial-time computable function H
mapping binary strings of arbitrary length into reasonably short strings, so that it
is computationally infeasible to find any collision (for H), that is, any two different
strings x and y for whichH(x) = H(y). (Popular candidate collision-free hash function
is the standardized secure hash function [32] and Rivest’s MD4 [31].)

A Merkle tree [27] then is a binary tree whose nodes store (i.e., are associated to)
values, some of which are computed by means of a collision-free hash function H in a
special manner. A leaf node can store any value, but each internal node should store
a value that is the one-way hash of the concatenation of the values in its children.15

Thus, if the collision-free hash function produces k-bit outputs, each internal node of
a Merkle tree, including the root, stores a k-bit value. Except for the root value, each
value stored in a node of a Merkle tree is said to be a 0-value if it is stored in a node
that is the 0-child of its parent, and a 1-value otherwise.

The crucial property of a Merkle tree is that, unless one succeeds in finding a
collision for H, it is computationally hard to change any value in the tree (and, in
particular, a value stored in a leaf node) without also changing the root value. This
property allows a party A to “commit” to n values, v1, . . . , vn (for simplicity assume
n = 2a for some integer a), by means of a single k-bit value. That is, A stores value vi
in the ith leaf of a full binary tree of depth d, and uses a collision-free hash function
H to build a Merkle tree, thereby obtaining a k-bit value, rv, stored in the root.
This root value rv “implicitly defines” what the n original values were. Assume in
fact that, as some point in time, A gives rv, but not the original values, to another
party B. Then, whenever, at a later point in time, A wants to “prove” to B what
the value of, say, vi was, he may just reveal all n original values to B, so that B can
recompute the Merkle tree and then verify that the newly computed root-value indeed
equals rv. More interestingly, A may “prove” what vi was by revealing just d+1 (i.e.,
log n+1) values: vi together with its authentication path, that is, the values stored in
the siblings of the nodes along the path from leaf i (included) to the root (excluded),
Y1, . . . , Yd. Party B verifies the received alleged leaf-value vi and the received alleged
authentication path Y1, . . . , Yd as follows. She sets X1 = vi and, letting i1, . . . , id
be the binary expansion of i, computes the values X2, . . . , Xd as follows: if ij = 0,
she sets Xj+1 = H(YjXj); otherwise, she sets Xj+1 = H(XjYj). Finally, B checks
whether the computed k-bit value Xd equals rv.

3.3.3. Kilian’s construction. In [23], Kilian presents a special zero-knowledge
argument for NP, (P, V ), exhibiting a polylogarithmic amount of communication,
where prover P uses a Merkle tree in order to provide to V “virtual access” to a
samplable proof.16

In essence, disregarding zero-knowledge aspects, the polynomial-time prover P,
as in any zero-knowledge argument, possesses a polynomially long witness, w, proving

15i.e., if an internal node has a 0-child storing the value U and a 1-child storing a value V, then it
stores the value H(UV ). If a child of an internal node does not exist, we assume by convention that
it stores a special value, denoted by EMPTY.

16Essentially the same construction (minus its zero-knowledge aspects) was independently discov-
ered by the author and privately comunicated to Shafi Goldwasser prior to Kilian’s publication that
same year. (It was not, however, written up or circulated until after Kilian’s publication, and then
only in the context of a broader notion of an efficient proof.)



1266 SILVIO MICALI

that a given input x belongs to a given NP-language L. In virtue of Theorem 3.3,
P then transforms w into a longer, but still polynomially long in the length of x,
“samplable proof” w′ by running on inputs x and w the algorithm SP of Theorem
3.3. In order to yield more efficient verifiability, P cannot send V witness w, nor can
he send him the longer samplable proof w′. Rather, P uses a Merkle tree with a
collision-free hash function H, producing k-bit outputs, as above, to compute a k-bit
string, rv, that commits him to w′ and then sends rv to the verifier V . (For instance,
disregarding further efficiency considerations, if w′ is n-bit long and, for simplicity,
n is a power of 2, the ith bit of w′ is set to be the value vi in the above described
construction, the Merkle tree is a full binary tree of depth logn, and rv is the k-bit
value stored in its root.)

Verifier V runs as a subroutine the algorithm SV of Theorem 3.3. When SV
wishes to consult the jth bit of w′, V asks P for it, and P responds by providing
the original value bj together with its authentication path. V then checks whether
bj ’s authentication path is correct relative to rv, and, if so, he is assured that bj
is the original value because he trusts that P, being polynomial-time, cannot find a
collision for H. V then feeds bj to SV . The computation proceeds this way until V
finds that an authentication path is incorrect, in which case it halts and rejects, or
until SV halts, in which case V rejects if SV does and accepts otherwise. Because
SV “virtually” accesses a polylogarithmic (in n) number of bits of w′, and because
each such a virtual access is answered by k poly(log n) bits of authentication path, the
overall amount of communication is polylogarithmic in n and thus in the length of x.

Notice that the above construction only shows how a verifier can be given vir-
tual access to w′. Let us reiterate that, in order to obtain a communication efficient
zero-knowledge argument, Kilian’s construction is actually more complicated, but the
additional zero-knowledge constraint is irrelevant for our goals.

3.3.4. Our modifications. Like all prior argument systems, Kilian’s is not a CS
proof system (nor even an interactive one, as defined later on). To begin with, it only
proves membership in NP languages and thus does not satisfy recursive universality.
Further, even relative to the NP languages, it may not satisfy feasible completeness.
Indeed, in his construction, in order to convince verifier V that x belongs to an NP
language L, prover P needs an NP-witness, w, of x ∈ L. But, again, the time
necessary to compute w on input x may vastly exceed that necessary to accept (in
this case, decide) that x ∈ L (in a way that does not produce an NP-witness).

We do, however, obtain a CS proof system with a random oracle, (P,V), by
modifying his argument system. First, as a necessary step towards recursive univer-
sality, we assume that an input to (P,V) consists of a member of the CS language L,
(M,x, y, t).17 On such a CS input, (P,V) works as follows. First, P runs machine M
on input x so as to generate, in t steps, the history (i.e., sequence of instantaneous
configurations), σ, of a computation of M(x) in which string y is produced as an
output. Such a history σ is then thought of as a proof that M(x) = y. This proof
will not be insightful, and, because no restriction is put on M, can be arbitrarily long
relative to x. (Notice that P’s computation so far satisfies, by definition, feasible
completeness.)

Next, P will put such a proof σ in samplable form. Consider in fact the following
relation R.

17Again, in order to prove membership in a given semirecursive language L, M will then be a
Turing machine accepting L, and y will be the special string YES.
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R(q, σ) = 1 if and only if σ is the t-step history of a computation of M outputting y
on input x.

Then, notice that R is poly(|q|, |σ|)-time computable. Thus, due to Theorem 3.4 proof
σ can be put in a probabilistically checkable form τ by algorithm SP within poly(|q|)
—and thus poly(t)— steps. Given random access to the so obtained τ, algorithm SV,
on inputs q and τ, then efficiently checks its correctness using polylog(|τ |) queries and
a random tape, RT, whose length is polylog(|τ |). (Notice that also this second piece
of P’s computation satisfies feasible completeness.)

Though proving that “M(x) = y in t steps,” such τ is again too long. Thus,
P “Merkle hashes” τ as in [23] using a collision-free hash function H and gives V
only virtual access to it (something that still preserves feasible completeness). The
verifier is thus guaranteed that he is properly accessing τ (i.e., that P is not choosing
on-line the bits of τ based on the bit-locations that V wishes to access) provided
that P is computationally incapable of finding a collision in H.18 To provide such
a “guarantee,” for a specific input q = (M,x, y, t) ∈ L, it is possible to choose the
security parameter k big enough so that finding a collision in a k-bit-outputH requires
a number of steps enormously bigger than those required above from P on the input
q at hand, but not too big so as to violate feasible completeness.19 In sum, therefore,
we propose to keep honest a prover working on a given individual problem by means of
another much harder individual problem, that of finding a collision for H (though the
latter problem may belong to a “much lower” complexity class than the first one20).

So far, our (P,V) satisfies both recursive universality and feasible completeness
but still is interactive. Indeed, recall that, to give V virtual access to τ, P uses function
H to Merkle-hash the samplable proof τ and sends V the resulting root value RV .
In response, V runs the sampling verifier SV with a random tape RT . During this
execution SV computes which bits of τ it wishes to see; CS verifier V then sends these
requests to CS prover P; and prover P replies with both the requested bits and their
authentication paths relative to RV . Because RT is genuinely random, if the input
(M,x, y, t) �∈ L and if V interacts with a malicious prover P̃ that does not succeed in
finding a collision for H, then SV (and thus V) accepts with probability at most 1/2.

Let us now introduce further modifications in order to dispense with any interac-
tion between P and V during the proving process. We first decrease the probability
of SV accepting a false statement to less than 2−k by repeating the above process k
times, each time using an independently-selected random tape RT . We then use a ran-
dom oracle, as follows, to retain more or less this same probability, while eliminating
any interaction between P and V.

In some sense, we have the CS prover P “choose” the k random tapes of SV, so
that V is no longer needed. In fact, given these tapes, V runs deterministically, and

18In Kilian’s case such guarantee stemmed from the fact that the prover was polynomial-time,
while collision finding is assumed not to be (and to enable him to prove membership in NP-complete
languages it was assumed that he had access to an NP witness for free). In our case, however, P
cannot be assumed to be polynomial-time, because it ought to be able to run M on x for t steps for
all possible (M,x, y, t) ∈ L, and t may vastly exceed |(M,x, y, t)|.

19Assume, for instance, that the complexity of finding an H-collision for a k-bit outputH is Ω(2k
d
)

for some constant d between 0 and 1. Then, because the honest prover works in time polynomial
in t, setting k = (log t)2/d seems a reasonable choice. This choice in fact increases only by a
poly((log t)2/d) factor the amount of work of the honest prover but forces any malicious prover to

work in time 2(log t)2 .
20Accordingly, we view a prover working on a given input as an individual device, endowed with a

fixed amount of computational resources, rather than a mechanism capable of handling all members
of a given complexity class.
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thus a prover P who knows them can simulate perfectly V’s actions (and in particular
compute the bit locations of τ that SV wishes to see). Of course, however, this a
dangerous way of proceeding. In fact, it is already dangerous having a malicious CS
prover P̃ simply know these k random tapes (let alone choose them), or even just
predict the bit locations that SV wishes to see in its k runs. In fact:

Letting λ denote the number of bit-locations of τ SV wishes to access in a
single run, the total number of such bit-locations will be kλ. Now, if kλ is
sufficiently small with respect to the total number of bits in τ (which we would
like to be our case in order to satisfy efficient verifiability), it is not hard to

see that if P̃ knows in advance these kλ bit-locations, then he could provide
(1) a root value RV for the Merkle tree, (2) bit values for said locations, and
(3) authetication paths for these values relative to RV , so as to cheat V with
probability 1.

Notice too, however, that, if the k random tapes are selected after P̃ provides the
root value RV, then, roughly said, unless he succeeds in finding at least one collision
for H, his probability of cheating still is < 2−k. (This continues to be true even if P̃
knows the so-selected k tapes in their entirety, rather than just the bit-requests that
the sampling verifier computes from them.) This suggests replacing interaction in the
above proof system as follows. On input (M,x, y, t) ∈ L, prover P, as before, (a)
computes a classical proof of it by running M on input x and costructing a history
σ of such computation, (b) puts σ in a samplable form τ, and (c) stores τ in the
leaves of a suitable binary tree and constructs a corresponding Merkle tree, using a
collision-free hash function H, so as to compute a root value RV . At this point, P
uses the random oracle on input RV so as to compute k suitably-long random tapes,
RT1, . . . , RTk. He then runs (“in his head”) verifier V and its subroutine SV as in the
whole process described above for k times, using RTi as SV ’s random tape in the ith
iteration. Therefore, he computes (in his head) all the bit-locations of the samplable
proof that SV requests to access. Then, it outputs, as a CS proof with a random
oracle for (M,x, y, t) ∈ L, the value RV and the requested bits, each with its own
authentication path relative to RV . Such proof can be verified, in the obvious way,
by using verifier V (with subroutine SV ) and the same random oracle.

The intuition that this strategy works is quite strong. Consider a malicious prover
trying to “CS-prove with a random oracle” a false statement. Of course, he can choose
a root value RV ′ of his liking and consult the oracle so as to see whether he can
produce a good-looking CS proof relative to RV ′. However, roughly said, because for
each RV ′ (as long as he does not succeed in finding a collision for the random oracle),
his chance of finding a good-looking proof is at most 2−k, we expect that he tries
2k times before he succeeds. Thus, if k is large enough, and the running time of the
malicious prover is properly and meaningfully upperbounded, his chance of finding a
CS proof of a false statement is negligible. (Despite this simple and strong intuition,
however, formally proving that this strategy works appears to be more difficult.)

Our strategy is reminiscent of a step used by Fiat and Shamir [18]. Indeed, they
construct their digital signature scheme by starting with an interactive two-party
protocol, in which the first party sends a first message to the second party and the
second party responds with a random string, and then replacing the random message
of the second party by evaluating a collision-free hash function on the first party’s
message. (By now, similar strategies have been discussed in the literature in many a
context.)

As a final modification, in lieu of k-bit-output collision-free hash function H,



COMPUTATIONALLY SOUND PROOFS 1269

we construct our Merkle tree using a random oracle mapping 2k-bit strings to k-
bit ones. Indeed, finding collisions for random oracles is provably hard in a precisely
quantifiable way, and adoption of such oracles also for this task dispenses us for relying
on additional complexity assumptions (i.e., the existence of a collision-free H).

Note that the random oracle used for removing the interaction between prover
and verifier and that used for building the Merkle tree had better be different. Alter-
natively, using standard techniques, one may use a single random oracle to “extract”
two independent ones: one for each of these two tasks.

3.4. Description of (P,V): Our CS proof-system with a random oracle.
Having presented all the ideas entering in our construction at an intuitive level, let
us now proceed more formally.

3.4.1. Preliminaries.
From one oracle to two oracles. According to our definition, in a CS proof

system with a random oracle, prover and verifier have oracle access to a single function
f, where feasible completeness holds for any f, and computational soundness for a
random f .

It will be easier, however, to exhibit a CS proof system with a random oracle
(P,V) by having P and V have oracle access to two distinct functions, f1 and f2, where
feasible completeness holds for any possible choice of f1 and f2, while computational
soundness holds when f1 and f2 are random and independent.

Oracle access to these two functions can be simulated by accessing a single, prop-
erly selected, function f : to ensure that f1 and f2 are randomly and independently
selected when f is random, it suffices to arrange that whenever (i, x) �= (j, y), no
query made to f in order to compute fi(x) coincides with a query made to f in order
to compute fj(y).

21

From k runs to one run: Sampling proof systems and their length bounds. Rather
than having the probability of successful cheating be less than 1/2, let us restate
Theorem 3.4 so as to reduce this probability to 2−k by means of a sampling verifier
that (at least formally) still uses a single random tape but receives an additional,
independent security parameter.

Theorem 3.5 (samplable proofs: Version 2). There exists a deterministic polynomial-
time algorithm SP (·, ·), a probabilistic polynomial-time algorithm SV (·, ·, ·), and two
polynomials L(·) and Λ(·) such that, for any polynomial-time relation R over Σ∗×Σ∗,
the following two properties hold.

1. For all strings x and y such that R(x, y) holds, SP (x, y) outputs a string y′

such that
1.1. y′ < L(|x|+ |y|), and
1.2. for every security parameter k, SV (x, |y′|, 1k), having a random tape of

length k · Λ(log |y′|) and random access to y′, accepts.
2. For all strings x such that for all y R(x, y) = 0 and for any string σ, the

probability (computed over SV ’s coin tosses) that SV (x, |σ|, 1k), having a
random tape of length k · Λ(log |σ|), having random access to σ, and actually
accessing k · Λ(log |σ|) bits of σ, accepts is ≤ 2−k.

The CS-history relation. In what follows we shall use Theorem 3.5 only for a
specific relation H, the CS-history relation, defined as follows.

21For instance, if, for i = 1, 2, fi : {0, 1}ai → {0, 1}bi (for some positive integer values ai and bi,
i = 1, 2), letting f map {0, 1}1+max(a1+a2) into {0, 1}max(b1+b2) allows us to achieve our goal quite
straightforwardly.
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H(q, h) = 1 if and only if string q = (M,x, y, t) ∈ L and string h is an
encoding of the history of the execution of M on input x.

Notice that, assuming the use of a proper encoding for these histories, not only is
H polynomial-time computable, but there also is a fixed polynomial Q such that
H(q, h) = 1 implies |h| ≤ Q(2|q|). (In fact, our quadruple conventions imply that
|t| < |q|, and thus that t < 2|q|.) Let us now use the CS-history relation to restate
Theorem 3.5 in the following form more directly useful to us.

Theorem 3.6 (samplable proofs: Version 3). There exists a deterministic polynomial-
time algorithm SP (·, ·), a probabilistic polynomial-time algorithm SV (·, ·), and two
polynomials 1(·) and λ(·) such that, letting H be the history relation, the following two
properties hold.

1. For all strings q and h such that H(q, h) = 1, SP (q, h) halts within 1(|q|)
steps outputting a string h′ such that
1.1. log |h′| < 1(|q|), and
1.2. for every security parameter k, SV (q, |h′|, 1k), having a random tape of

length k · λ(|q|) and random access to h′, accepts.
2. For all strings q such that for all h H(x, h) = 0, for any security parameter
k, and for any string σ, the probability (computed over SV ’s coin tosses) that
SV (q, |σ|, 1k), having a random tape of length k ·λ(|q|), having random access
to σ, and actually accessing k · λ(|q|) bits of σ, accepts is ≤ 2−k.

Definition 3.7. Let SP, SV, 1, and λ be as in Theorem 3.6. Then, we shall
refer to (SP, SV ) as a sampling proof system (for the CS-history relation), and to 1
and λ as its length bounds (respectively, for the samplable proof produced by SP and
the number of queries and length of the random tape used by SV ).

Notation.
• Basics. We denote the empty word by ε, the set {0, 1} by Σ, the set of all nat-
ural numbers by N , the set of all positive integers by Z+, the concatenation
of two strings x and y by x|y (or more simply by xy), and the complement of
a bit b by b̄.

• Strings. If α is a binary string, then |α| denotes α’s length; α1 · · ·αi de-
notes α’s i-bit prefix; and α1 · · · ᾱi denotes α’s i-bit prefix with the last bit
complemented.

• Labeled trees. If N is a power of two, we let TN denote the complete binary
tree with N leaves, whose vertices are labeled by binary strings whose lengths
range from 0 to logN as follows. Vertex vε is the root, v0 and v1 are, respec-
tively, its the left and right child, and, more generally, for all i ∈ [0, logN) and
for all α ∈ Σi , vα0 and vα1 are, respectively, the left and right child of node
vα. (Consequently, vα1···αj and vα1···ᾱj are siblings whenever 0 < |α| ≤ logN
and 0 < j ≤ |α|.)
The leaves of TN are thought to be ordered “from left to right.” Within the
context of a tree TN , we denote by [j] the (log2N)-bit binary representation
of integer j, with possible leading 0s. (Accordingly, the jth leaf of TN is node
v[j].)

3.4.2. Algorithms P and V. Let us now describe two oracle-calling algo-
rithms, P and V, and then prove that they are, respectively, the prover and verifier
of a CS proof system with a random oracle, (P,V).

Common inputs: q = (M,x, y, t), an n-bit (alleged) member of L, and 1k, a security
parameter.
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{Comment: For the purpose of the code of (honest) prover P, q = (M,x, y, t) ∈
L and thus t = #M(x).}

Common subroutines: (SP, SV ), a sampling proof system—as per Definition 3.7—with
length bounds 1 and λ.

Common oracles:f1 ∈ Σ2k → Σk and f2 ∈ Σk+n → Σk·λ(n).
{Comment: The first oracle, when randomly selected, is used as a collision-
free hash function of a Merkle tree, by which P commits to a samplable proof
of q ∈ L. The second oracle, when randomly selected, is used to generate the
random tape of sampling verifier SV .}

P’s output: C, a CS certificate that q ∈ L.
V’s additional input: C.

Algorithm P
P1. (Commit to a samplable proof of q ∈ L.)

P1.1 (Find a proof, denoted by σ, of x ∈ L.)
Run machine M on input x so as to output y in #M(x) steps and
generate an encoding, σ, of M ’s computational history.
{Comment: σ can be considered a proof that x ∈ L.}

P1.2 (Compute a samplable form, denoted by τ, of proof σ.)
τ ← SP (q, σ).
{Comment: Theorem 3.6, our quadruple encoding, and n = |q| imply
|τ | ≤ 1(n).}

P1.3 (Commit to τ by means of a k-bit value Rε.)
Assume, for simplicity only, that |τ |/k = N, where N is an integral
power of 2. Then, we shall associate to (figuratively speaking, “store
in”) each node vα of a labeled tree TN a value Rα computed as follows.
Subdivide τ into the concatenation of N substrings, each k-bit long,
τ = τ1 · · · τN , and for 0 ≤ j < N, assign to the jth leaf, v[j], the k-bit
value

R[j] = τj .(3.1)

Then, in a bottom-up fashion, assign to each interior node vα of TN the
k-bit value

Rα = f1(Rα0|Rα1).(3.2)

{Comment: Rε thus is the k-bit value assigned to the root of TN . Rε is
considered a commitment to all values stored in the vertices of TN and
thus a comitment to all of τ .}

P2. (Build a CS certificate, C, of q ∈ L.)
P2.1 (Start building the CS certificate with the k-bit commitment Rε as prefix.)

C ← Rε.
P2.2 (Choose a random tape, T, for SV .)

T ← f2(q |Rε).
P2.3 (Run SV with random tape T and virtual access to τ .)

Run SV with random tape T, inputs q and |τ |, and virtual access to τ .
Whenever SV wishes to access bit-location i of τ, perform the following
instructions.

P2.3.1 (Find the index, I, of the substring of τ containing bi.)
I ← �i/k�;
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P2.3.2 (Add leaf I to the CS certificate.)
C ← C|R[I]; and

P2.3.3 (Add to the certificate the authentication path of leaf I.)
Set α = [I];
{Comment: |α| = log2N .}
Set AUTHPATHI = Rα1···ᾱlog N

| · · · |Rα1ᾱ2
|Rᾱ1

;
{Recall: The authentication path of leaf I consists of the values stored
in the siblings of the vertices of the path from leaf I to the root.}
C ← C|AUTHPATHI .
{Example: if N = 8 and I = 3, then [I] = 011 and AUTHPATHI =
(R010, R00, R1).}

P3. (Output a certificate for q ∈ L.)
Output C.
{Comment: C’s k-bit prefix is Rε.}

Algorithm V
V 1. (Read and delete Rε from certificate C, and compute SV ’s random tape T .)

ALLEGEDROOT ← C1 · · · Ck;
C ← Ck+1 · · ·; and
T ← f2(q|Rε).

V 2. (Run SV with random tape T, inputs q, 1(n) and 1k, and virtual access to
samplable proof τ .)
Execute SV (q, 1(n), 1k) with random tape T . Whenever SV wishes to access
bit-location i of the samplable proof, do the following.
V 2.1 (Find the index, I, of the k-bit segment of τ containing bi, and read the

value of leaf I from the certificate.)
I ← �i/k�; α← [I]; and Rα ← C1 · · · Ck.
Provide SV with the (i− kI)th bit of Rα.

V 2.2 (Delete the value of leaf I from the certificate.) C ← Ck+1 · · ·.
V 2.3 (Check and remove from the certificate the authentication path of leaf I.)

For m = 1 to logN,
Rα1···ᾱm ← C1 · · · Ck and
C ← Ck+1 . . . .

For m = logN, . . . , 1, compute Rα1···αm−1
as follows:

Rα1···αm−1
←

{
f1(Rα1···αm

|Rα1···ᾱm
) if αm = 1,

f1(Rα1···ᾱm
|Rα1···αm

) if αm = 0

and check whether the computed value Rε equals the value
ALLEGEDROOT .
{Example: If N = 8 and I = 3, then [I] = 011 and the verifier computes

R01 = f1(R010|R011),

R0 = f1(R00|R01), and

Rε = f1(R0|R1),

where values R011, R010, R00, and R1 are retrieved from C.}
V 3. (Accept if and only if SV accepts and the authentication path of each leaf is

correct.)
If SV accepts and each V 2.3 check is passed, output Y ES. Otherwise, output
NO.
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3.5. (P,V) works.
Theorem 3.8. (P,V) is a CS proof system with a random oracle.
As per our Definition 3.2, to prove Theorem 3.8 we need to prove that (P,V)

satisfies both feasible completeness and computational soundness.

3.5.1. Proof of feasible completeness. Adopting the two-oracle formulation
of Definition 3.2 and recalling the domain and range of each of the two oracles in our
construction of (P,V), what we need to prove is the following.

There exists c1, c2, c3 > 0 such that for all q = (M,x, y, t) ∈ L, for all k, for
all f1 ∈ Σ2k → Σk, and for all f2 ∈ Σk+|q| → Σk·λ(|q|):
(i) Pf1,f2(q, 1k) halts within (|q|kt)c2 computational steps, outputting a binary
string C whose length is ≤ (|q|k)c3 , and
(ii) Vf1,f2(q, 1k, C) = Y ES.

It is immediately seen that subproperty (ii) of feasible completeness holds. That
is, for all q = (M,x, y, t) ∈ L, for all security parameter k, and for all oracles f1 and
f2, the certificate output by P convinces V. Subproperty (i), that is, the fact that P
performs only polynomially many (in n, k, and t) steps for producing a certificate,
follows as easily. Indeed, prover P performs the following operations: (1) initially
invests t steps of computation for running M on input x; (2) takes a number of
steps polynomial in q’s length (i.e., n) and t for computing the samplable proof τ ;
(3) makes less than t log t queries (each at unit cost) to the second random oracle
for generating the Merkle tree; and, finally, (4) makes additional polynomially many
steps for running V “in his head” and answering its queries so as to build the desired
CS certificate.

Finally, let us argue that the length of (P,V)’s certificates are in accordance to
Definition 3.2. Namely, letting q = (M,x, y, t) be a member of L and C = Pf1,f2(q, 1k),
then C’s length is polynomial in |q| and k. To this end, notice that C contains a k-bit
root value, plus one authentication path (in the constructed Merkle tree) for each bit
that the samplable verifier SV wishes to access when run on inputs q and |τ | and
(virtual) access to the samplable proof τ of “M(x) = y in t steps.” Now, because
τ can be computed in a number of steps upperbounded by a fixed polynomial in |q|
and t, and because according to our conventions t < 2|q|, it follows that the length
of the binary representation of |τ | is upperbounded by some other fixed polynomial
in |q| alone. Therefore, because SV runs in polynomial time, the number of bits of
τ it accesses (i.e., the number of authentication paths included in C) is polynomial
in |q| alone. The claim about the length of C then follows from the fact that each
authentication path contains a k-bit value for each level of the constructed Merkle
tree and thus k log τ < k|q| bits overall.

3.5.2. Proof of computational soundness. Adopting the two-oracle formu-
lation of Definition 3.2 and recalling the domain and range of each of the two oracles
in our construction of (P,V), what we need to prove is the following.

There exist positive constants c4, c5, and c6 such that for all q̃ �∈ L, for all k
such that 2k > |q̃|c4 , and for all (cheating) deterministic 2c5k-call algorithm

P̃ , for random oracles ρ1 ∈ Σ2k → Σk and ρ2 ∈ Σk+|q̃| → Σk·λ(|q̃|),

P robρ1;ρ2
[V ρ1,ρ2(q̃, 1k, P̃ ρ1,ρ2(q̃, 1k)) = Y ES] ≤ 2−c6k.

We shall actually prove the following theorem.
Theorem 3.9. (P,V) satisfies the above condition for the following choice of c4,

c5, and c6:
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c4
def
= 64c, c5

def
= 1/8, and c6

def
= 1/16,

where c
def
= the smallest positive integer C such that nC > 1(n) for all integers n > 1.

Recall that 1 is the first length-bound of our underlying sampling proof system
(SP, SV ).

Proof idea. In essence, the proof is by contradiction. Assume that q �∈ L,
and that, nonetheless, we are given a cheating prover P̃ that has a nonnegligible
probability of outputting a CS proof for q ∈ L. Then, we derive a contradiction by
using such P̃ to build a samplable proof for q ∈ L. Let us explain.

By hypothesis, for many oracles ρ1 and ρ2, P̃ should be able to produce a CS proof
Cρ1,ρ2

for q ∈ L. Such string Cρ1,ρ2
allegedly includes the contents of a few bit-locations

of an underlying samplable proof, τρ1,ρ2
. By varying ρ1 and ρ2, and looking at their

corresponding Cρ1,ρ2 , we obtain the contents of more and more bit-locations, until we
discover the bits in all the locations having a nonnegligible probability of being queried
by the sampling verifier on input q. Despite the fact that such contents are pieced
together from different CS proofs (and thus potentially from different underlying
samplable proofs), we shall prove that, with high probability, the discovered contents
are consistent with a single samplable proof τ .

Local definition 1.
• Probabilities. Let S1, S2, . . . , be finite sets, and let E be an event. Then, by
PROBx1∈S1;x2∈S2;...[E] we denote the probability of E in the experiment con-
sisting of selecting elements x1 ∈ S1, x2 ∈ S2, . . . randomly and independently.
If, for some xi, it is already clear that xi ranges in Si, we may omit specifying
Si and more simply denote the same probability by PROB...;xi;...[E].

• Pseudoexecutions. We shall consider executing a cheating, N -call, prover
P̃(·,·) by answering its queries to the first oracle by means of a function f,
and its queries to the second oracles by means of a predetermined, N -long,
sequence S (i.e., the ith query to the second oracle will be answered with the

ith element of S). We shall call such a process a pseudoexecution (of P̃), or an

execution of algorithm P̃f,S . When P̃f,S is run on an n-bit input (q �∈ L) and
security parameter k, then each element of S will consist of a kλ(n)-bit string
(i.e., a possible random tape for V). If σ is a string and m an integer between

1 and N, by the expression P̃f,Sm=σ we denote the algorithm identical to
P̃f,S , except that the mth query to the second oracle is answered by σ (i.e.,
the mth element of S—no matter what it originally was—is “forced” to be
σ). By the expression P̃f,Sm=σ1,σ2 we denote the algorithm that first executes
Pf,Sm=σ1 and then Pf,Sm=σ2 .

• Collisions. Let f be an oracle, A(·) an oracle-calling algorithm, and z an
input. Then, by the expression an f-collision in Af (z), we mean that execut-
ing A on z with oracle f, A queries f about two distinct strings a and b and
obtains the same string, c (= f(a) = f(b)), in response.

• Pseudocertificates and pseudoroots. Without loss of generality, we assume
that a cheating prover P̃ never asks the same query twice to the same oracle.
Again, without loss of generality, we assume that each cheating prover P̃
verifies all its nonempty outputs. That is, if C̃ is a nonempty string and

P̃f1,f2(q̃, 1k̃) = C̃, then, prior to outputting C̃, P̃ runs V making all required

calls to f1 and f2 so as to verify that Vf1,f2(q̃, 1k̃, C̃) = Y ES, and thus that

C̃ is a CS certificate for q̃. If q̃ does not belong to the CS language L, to
emphasize this fact we refer to C̃ itself as a pseudocertificate (for q̃) and to
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its k̃-bit prefix as a pseudoroot.
In an execution of a cheating prover P̃ producing a pseudocertificate C̃ for
q̃, we say that C̃ is relative to tape-number m if (1) the pseudoroot of C̃ is a

string R̃ε such that the mth query of P̃ to its second oracle consists of the
pair (q̃, R̃ε).

To indicate a generic pseudocertificate having pseudoroot R̃ε, we write R̃ε . . . .
A proof by contradiction. We proceed by contradiction. Assume that Theo-

rem 3.9 is incorrect; then, because P̃ verifies all its nonempty outputs, the following
proposition holds.

Proposition 3.10. There exist an integer ñ > 1, a ñ-bit string q̃ �∈ L, an integer

k̃ such that 2k̃ > ñ64c, and a deterministic, 2k̃/8-call, cheating prover P̃ such that, for

random oracles ρ1 ∈ Σ2k̃ → Σk̃ and ρ2 ∈ Σk̃+ñ → Σk̃·λ(ñ),

(P1) PROBρ1;ρ2 [P̃ρ1,ρ2(q̃, 1k̃) �= ε] > 2−k̃/16.
We now show that Proposition 3.10 contradicts the fact that (P,V)’s subroutine

(SP, SV ) is a sampling proof system. We start by stating without proof some easy
probabilistic facts.

Basic lemmas. Let A and B be finite sets, A×B their Cartesian product, and
E a subset of A×B. Then, in the following two lemmas PROBa;b[(a, b) ∈ E] denotes
the probability that (a, b) belongs to E by selecting uniformly and independently a
in A and b in B, and PROBb[(a, b) ∈ E] denotes the probability that (a, b) belongs
to E by selecting uniformly b in B.

Lemma 3.11. Assume PROBa;b[(a, b) ∈ E] > x, and let G = {a : PROBb[(a, b) ∈
E] > 2−1 · x}. Then,

PROBa[a ∈ G] > x/2.

Lemma 3.12. Assume PROBa;b[(a, b) ∈ E] < x, and let L = {a : PROBb[(a, b) ∈
E] < nx}. Then,

PROBa[a ∈ L] > 1− n−1.

Lemma 3.13. For all positive integers k and N, for all N -call algorithms A(·),
and for all inputs z,

PROBf∈Σ2k→Σk [ an f -collision in Af (z)] < N22−k.
Note that Lemma 3.13 continues to hold if A has additional inputs and oracles,

provided that f is randomly selected independently of them.
An averaging argument.
Lemma 3.14. Let ñ, q̃, and k̃ be as in Proposition 3.10. Then, there exist an

oracle f1 ∈ Σ2k̃ → Σk̃, a 2k̃/8-long sequence S of k̃ · λ(ñ)-bit strings, an integer

m ∈ [1, 2k̃/8], and a k̃-bit (pseudoroot) R̃ε such that

(L1.1) PROB
σ∈Σk̃·λ(̃n)

[P̃f1,Sm=σ(q̃, 1k̃) = R̃ε · · ·] > 2−1 · 2−3k̃/16, and

(L1.2) PROB
σ1,σ2∈Σk̃·λ(̃n)

[P̃f1,Sm=σ1(q̃, 1k̃) = R̃ε · · · = P̃f1,Sm=σ2(q̃, 1k̃) ∧ f1-collision
in Pf1,Sm=σ1,σ2(q̃, k̃)] < 32 · 2−9k̃/16.

Proof. Let ρ1 and ρ2 be oracles as in Proposition 3.10. Then, because P̃ρ1,ρ2

verifies its nonempty outputs (and because it is 2k̃/8-call), each of its pseudocertificates
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is relative to some tape-number between 1 and 2k̃/8. Thus, inequality P1 implies that

there exists a positive integer m ∈ [1, 2k̃/8] such that

(L1.3) PROBρ1;ρ2 [P̃ρ1,ρ2(q̃, 1k̃) �= ε ∧ P̃ρ1,ρ2(q̃, 1k̃) is relative to tape-number m] ≥
2−k̃/16/2k̃/8 = 2−3k̃/16.

Therefore, by focusing our attention on tape-numberm (i.e., on themth answer of our

random oracle ρ2 ∈ Σk̃+ñ → Σk̃·λ(ñ)) and by averaging, inequality L1.3 implies that

there exists a 2k̃/8-long sequence, S, of k̃·λ(ñ)-bit strings (i.e., of possible second-oracle
answers), such that

(L1.4) PROB
ρ1;σ∈Σk̃·λ(̃n)

[P̃ρ1,Sm=σ(q̃, 1k̃) �= ε ∧ P̃ρ1,Sm=σ(q̃, 1k̃) is relative to tape-

number m] > 2−3k̃/16.

Define now an oracle ρ1 : Σ2k̃ → Σk̃ to be good if

PROB
σ∈Σk̃·λ(̃n)

[P̃ρ1,Sm=σ(q̃, 1k̃) �= ε ∧ P̃ρ1,Sm=σ(q̃, 1k̃) is relative to tape-number

m] > 2−1 · 2−3k̃/16.
Then, inequality L1.4 and Lemma 3.11 imply that

(L1.5) PROBρ1
[ρ1 good ] > 2−1 · 2−3k̃/16.

Note now that because both P̃ρ1,Sm=σ1 and P̃ρ1,Sm=σ2 make at most 2k̃/8 or-
acle calls, algorithm P̃ρ1,Sm=σ1,σ2 makes at most twice as many calls to ρ1. Thus,
Lemma 3.13 implies that

(L1.6) PROB
ρ1∈Σ2̃k→Σk̃;σ1,σ2∈Σk̃·λ(̃n)

[ρ1-collision in P̃ρ1,Sm=σ1,σ2(q̃, 1k̃)] < 4 · 2k̃/4 ·
2−k̃ = 4 · 2−3k̃/4.

Define now an oracle ρ1 : Σ2k̃ → Σk̃ to be lucky if
PROB

σ1,σ2∈Σk̃·λ(̃n)
[ρ1-collision in

P̃ρ1,Sm=σ1,σ2(q̃, 1k̃)] < (8 · 23k̃/16) · (4 · 2−3k̃/4) = 32 · 2−9k̃/16.
Then, inequality L1.6 and Lemma 3.12 imply that

(L1.7) PROBρ1
[ρ1 lucky ] > 1− 8−1 · 2−3k̃/16 > 1− 2−1 · 2−3k̃/16 ≥ 1−PROBρ1

[ρ1
good] = PROBρ1 [ρ1 not good].

Because inequality L1.7 implies that there exist oracles in Σ2k̃ → Σk̃ that are both
good and lucky, let f1 be one such oracle. Then, because F1 is good, letting F1 be
oracle f1 of Lemma 3.14 satisfies inequality L1.1. In fact, L1.1 simply states that f1
is a good oracle. Let us now show that there exists a k-bit value R̃ε such that letting
F1 be oracle f1 of Lemma 3.14 satisfies inequality L1.2. In fact, notice that, for any

possible choice of σ, the computation of P̃F1,Sm=σ(q̃, 1k̃) is always identical up to its

mth query to the second oracle, and thus that there exists a k̃-bit value R̃ε such that
all mth queries consist of the same pair (q̃, R̃ε). Therefore, whenever an execution of

P̃f1,Sm=σ(q̃, 1k̃) produces a nonempty pseudocertificate with respect to tape-number

m, R̃ε will be the pseudoroot of this certificate. Now, because F1 is lucky, we have

PROB
σ1,σ2∈Σk̃·λ(̃n)

[P̃F1,Sm=σ1(q̃, 1k̃) = R̃ε · · · = P̃F1,Sm=σ2(q̃, 1k̃) ∧ F1-

collision in P̃F1,Sm=σ1,σ2(q̃, 1k̃)]

< PROB
σ1,σ2∈Σk̃·λ(̃n)

[F1-collision in P̃F1,Sm=σ1,σ2(q̃, 1k̃)] < (because F1 is

lucky) 32 · 2−9k̃/16.
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A collision argument.
Local definition 2. If C̃ is a pseudocertificate, we write C̃ � (i, b) if C̃ indicates that

location i (in the samplable proof that is allegedly Merkle-hashed to the pseudoroot

of C̃) contains bit b.
Lemma 3.15. Let ñ, q̃, k̃, P̃, f1, S, m, and R̃ε be as in Lemma 3.14, let σ0 and

σ1 be two distinct k · λ(ñ)-bit strings, and let E0 be the execution of P̃f1,Sm=σ0(q̃, 1k̃)

and E1 the execution of P̃f1,Sm=σ1(q̃, 1k̃). Now, if E0 and E1 produce two pseudocer-

tificates, respectively, C0 and C1, such that (1) both C0 and C1 have pseudoroot R̃ε and
(2) for some common location i, C0 � (i, 0) and C1 � (i, 1), then an f1-collision occurs

in P̃f1,Sm=σ0,σ1(q̃, 1k̃).
Proof. Recall that, supposedly, the underlying samplable-proof of q̃ ∈ L has

been divided into N substrings, each k̃-bit long and stored in a separate leaf of a
Merkle tree of depth logN . Thus bit-location i should be stored in the Ith leftmost
leaf of the Merkle tree, where I = �i/k̃�, or, equivalently, in the node whose logN -
bit name is [I] = α1 · · ·αlogN . According to our notation, the value stored in this
node is denoted by R[I]. Now, because they indicate different bit-values for location

i, pseudocertificates C0 and C1 also indicate different k̃-bit values for the content of
node [I], respectively, R0

[I] and R
1
[I].

Pseudocertificates C0 and C1 also include two authentication paths for these values.
Let them be, respectively,

R0
α1···αlog N−1ᾱlog N

|R0
α1···ᾱlog N−1

| · · · |R0
ᾱ1
|R̃ε

and
R1

α1···αlog N−1ᾱlog N
|R1

α1···ᾱlog N−1
| . . . , R1

ᾱ1
|R̃ε.

Because cheating prover P̃ verifies all its outputs, for each j ∈ [1, logN ] it queries
oracle f1 about string S0

j in the first execution, and about string S1
j in the second

execution, where S0
j = R0

α1···αj
|R0

α1···ᾱj
and S1

j = R1
α1···αj

|R1
α1···ᾱj

.

This implies that there exists a value j ∈ [1, logN ] such that S0
j and S1

j are
different queries but oracle f1 returns the same answer on them. In fact, for j = 1,
the two queries S0

1(= R
0
α1
|R0

ᾱ1
) and S1

1(= R
2
α1
1|R1

ᾱ1
) are both answered by R̃ε, and

for j = logN the two queries S0
logN (= R0

[I]) and S
1
logN (= R1

[I]) are different, because
they coincide with the two different values for leaf I.

Reaching the desired contradiction.
Local definition 3. Letting ñ, q̃, k̃, S, m, and R̃ε be as in Lemma 3.14, define the

following.
• Conditional probabilities Pi,0 and Pi,1. For each bit-location i ∈ [1, 1(ñ)],
define

Pi,0 = PROB
σ∈Σk̃·λ(̃n)

[P̃f1,Sm=σ(q̃, 1k̃) = R̃ε · · · ∧ R̃ε · · · � (i, 0)]

and
Pi,1 = PROB

σ∈Σk̃·λ(̃n)
[P̃f1,Sm=σ(q̃, 1k̃) = R̃ε · · · ∧ R̃ε · · · � (i, 1)].

• String τ . For each location i ∈ [1, 1(ñ)], define
τi = 0 if Pi,0 ≥ Pi,1 and τi = 1 otherwise.

• Probabilities Pi and P ī. For each bit-location i ∈ [1, 1(ñ)], define
Pi = Pi,τi and P ī = Pi,τ̄i .

• Event “all queries answered by τ .”

If σ ∈ Σk̃·λ(ñ), in a pseudoexecution of P̃f1,Sm=σ(q̃, 1k̃) with no f1-collision

and producing a pseudocertificate C̃ with pseudoroot R̃ε, “all queries answered
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by τ” denotes the event that, for all bit-locations i ∈ [1, 1(ñ)] and for all bit

b, C̃ � (i, b) implies b = τi.

Lemma 3.16. Let ñ, q̃, k̃, P̃, f1, S, m, and R̃ε be as in Lemma 3.14 Then,

PROB
σ∈Σk̃·λ(̃n)

[P̃f1,Sm=σ(q̃, 1k̃) = R̃ε · · · ∧ all queries answered by τ ] > 2−k̃.

Proof. We start by claiming that

(L3.1) P ī < 4 · 2−9k̃/32.

To prove our claim, consider selecting two k̃ · λ(ñ)-bit strings, σ0 and σ1, and then

executing P̃f1,Sm=σ0,σ1(q̃, 1k̃). That is, consider executing first P̃f1,Sm=σ0(q̃, 1k̃) and

then P̃f1,Sm=σ1(q̃, 1k̃). Then, by definition of Pi and P ī, with probability ≥ 2PiP ī,
one of the latter two executions outputs a pseudocertificate C0 and the other a
pseudocertificate C1 such that (1) C0 and C1 are nonempty pseudocertificates hav-

ing pseudoroot R̃ε, and (2) C0 � (i, 0) and C1 � (i, 1). By Lemma 3.15, (1) and
(2) imply that, with probability ≥ 2PiP ī (taken over the choices of σ1 and σ2),

(3) an f1-collision occurs in P̃f1,Sm=σ0,σ1(q̃, 1k̃). Thus, by Lemma 3.14 (inequality

L1.2), we have 2PiP ī < 32 · 2−9k̃/16. Now, because P ī ≤ Pi by definition, we have

2P 2
ī
≤ 2PiP ī < 32 · 2−9k̃/16, and thus P ī < 4 · 2−9k̃/32 as initially claimed.

Define now Pτ̄ as the probability that “P̃f1,Sm=σ(q̃, 1k̃) = R̃ε · · · , but not all
queries answered by τ”, that is,

Pτ̄
def
= PROB

σ∈Σk̃·λ(̃n)
[P̃f1,Sm=σ(q̃, 1k̃) = R̃ε · · · ∧ ∃iR̃ε · · · � (i, τ̄i)].

Then, because there are at most 1(ñ) bit-locations i, and because (due to Propo-

sition 3.10 and our definition of c) 1(ñ) < (ñ)c < 2k̃/64, we have

(L3.2) Pτ̄ ≤
∑�(ñ)

i=1 P ī < 4 · 2−9k̃/32 · 1(ñ) < 4 · 2−9k̃/32 · 2k̃/64 = 4 · 2−17k̃/64.
Thus

(L3.3) PROB
σ∈Σk̃·λ(̃n)

[P̃f1,Sm=σ(q̃, 1k̃) = R̃ε · · · ∧ all queries answered by τ ]

≥ PROB
σ∈Σk̃·λ(̃n)

[P̃f1,Sm=σ(q̃, 1k̃) = R̃ε · · ·]−Pτ̄ ≥ (by inequalities L1.1 and

L3.2) 2−1 ·2−3k̃/16−4 ·2−17k̃/64 > (because 2k̃ > n64c, n ≥ 2 and c ≥ 1 imply

k̃ > 64) 2−k̃.
Notice now that Lemma 3.16 contradicts the fact that the underlying (SP, SV )

is a sampling proof system according to Definition 3.7. In fact, because P̃ verifies all
its nonempty outputs, we have

2−k̃ < (because of inequality L3.3) PROB
σ∈Σk̃·λ(̃n)

[P̃f1,Sm=σ(q̃, 1k̃) = R̃ε · · ·
∧ all queries answered by τ ] = PROB

σ∈Σk̃·λ(̃n)
[Vf1,Sm=σ(q̃, 1k̃, R̃ε · · ·) =

Y ES ∧ all queries answered by τ ].
But, by our construction of V, the last inequality implies that, by running sam-

pling verifier SV on inputs q̃ (�∈ L), |τ | (i.e., ñ), and k̃, having a random tape of

length k̃ · λ(|τ |), and having random access to τ, SV accepts with probability > 2−k̃.
Because q̃ �∈ L, the existence of τ contradicts property 2 of Theorem 3.6. The

contradiction establishes Theorem 3.9, and thus that our (P,V) enjoys computational
soundness, completing our proof of Theorem 3.9.

3.6. The significance of CS proofs with a random oracle. Random oracles
may be quite theoretical, and, as discussed later on, one might consider implementing
CS proofs cryptographically (with or without interaction). But the latter implemen-
tations would be meaningless if it turned out that P = NP. This would not be too
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bad, one might say, because, if P = NP, the very notion of an “efficient” proof system
would be meaningless, at least in any broad sense.22

Personally, we disagree: fundamental intuitions such as proofs being a notion that
is both meaningful and separate (from that of accepting23) could not be shaken by a
formal result such as P = NP. Indeed, the author’s inclination to believe that P �=
NP is only based on (1) his a priori certainty that proofs are a meaningful and separate
notion, and (2) his inclination to believe that NP is a reasonable approximation of
the notion of a proof. But if it turned out that P = NP, to the author this would
only mean that NP did not provide such a reasonable approximation after all.

It is thus important to establish meaningful models for which we can show that
proofs do exist as an independent notion. CS proofs with a random oracle provide us
with such a model: indeed, they guarantee that

even if NP = P, given a sufficient amount of randomness in the proper form,
fundamental intuitions like verification being polylogarithmically easier than
decision are indeed true.

4. Other types of CS proofs. Many variants of the basic notion of a CS
proof exist. Below, we confine ourselves to briefly presenting just two additional ones:
that of an interactive CS proof (because it can be implemented based on standard
cryptographic assumptions) and that of a noninteractive CS proof (because it implies
the existence of CS checkers for NP-complete problems).

4.1. Interactive CS proofs.
The notion of an interactive CS proof system. Let us first quickly recall

interactive Turing machines (ITMs) as defined by Goldwasser, Micali, and Rackoff
[21]. Informally, an ITM is a probabilistic Turing machine capable of “sending and
receiving messages.” An ITM is meant to be run a number of times, each time starting
with the internal configuration reached at the end of the previous run. Each run of
an ITM starts by reading one incoming message—i.e., reading a string on a special
tape—and ends by sending one outgoing message—i.e., writing a string on another
special tape. (In an initial run we assume that the incoming message is the input,
and that the internal configuration consists of a blank work tape and a distinguished
start state.) An ITM halts when, in a given run, it enters a special halting state, from
which it takes no further action. ITMs are meant to be executed in pairs. If A and B
are ITMs, an execution of (A,B) on input x is obtained by having x be both A’s and
B’s input and by running alternatively A and B, so that each outgoing message of A
is B’s incoming message in the next run of B, and vice versa. The number of rounds
in an execution of (A,B) is the number of times in which either of the two ITMs
sends a message. By convention, an execution of (A,B) starts and ends with a run
of B. In its last run, B may accept by outputting the special symbol YES, or reject
by outputting the special symbol NO. Except for their exchanged messages, in an
execution of (A,B) neither ITM has access to the internal computation (in particular
the coin tosses) of the other. The probability that, after a random execution of (A,B)
on a given input x, B accepts is taken over all coin tosses of A and B.

22Though concurring with us that properly capturing efficient verification may require more than
P = NP, one might also believe that if P = NP, there would be little or no notion of efficient
verification to be captured.

23Again, he who is concerned about truth but not about time does not need proofs and provers:
he may be equally happy to run a decision algorithm whenever he wishes to establish whether a given
statement holds. Proofs cannot properly exist as a separate notion unless they succeed in making
verification of truth much easier than accepting truth.



1280 SILVIO MICALI

Slightly more generally, we shall also consider ITM pairs (A,B), where A actually
is an interactive circuit. This allows us to use the size of A to bound more effectively
the number of “steps” A may make in an execution with B.24 Recall that a circuit of
size ≤ s is a finite function computable by at most s Boolean gates, where each gate
is either a NOT-gate (with one binary input and one binary output) or an AND-gate
(with two binary inputs and one binary output).

Notice that an interactive circuit A may be taken to be deterministic, because
it might have wired in any finite lucky sequence of coin tosses. (In this case the
probability that B is convinced in a random execution with A on input x solely
depends on B’s coin tosses.)

Definition 4.1. Let (P, V ) be a pair of ITMs, the second of which running in
polynomial time, and let L be the CS language. We say that (P, V ) is an interactive CS
proof system if there are four positive constants a, b, c, and d such that the following
two properties are satisfied.

1′′. Feasible completeness. For all q = (M,x, y, t) ∈ L, and for all integers k, in
every execution of (P, V ) on inputs q and 1k,
(1′′.i) P halts within (|q|kt)a computational steps, and
(1′′.ii) V outputs YES.

2′′. Computational soundness. For all q̃ �∈ L, for all k such that 2k > |q|b, and
for all (cheating) interactive circuit P̃ of size ≤ 2ck, in a random execution

of P̃ with V on inputs q̃ and 1k,
P rob[V outputs Y ES] < 2−dk.

The constructability of interactive CS proof systems. Let us make the
mentioned notion of a collision-free hash function a bit more formal.

Definition 4.2. Let KG (for key generator) be a probabilistic polynomial-time
algorithm, KG : 1∗ → Σ∗, and let E (for evaluator) be a polynomial-time algorithm,
E : Σ∗ × 1∗ → Σ∗ (more precisely, E : Σ∗ × 1k → Σk for all positive integers k).
We say that the pair (KG,E) is a collision-free hash function if there exist positive
constants r, s, and t such that for all k > r and for all (collision-finding) circuits CF
of size < 2sk, letting h be a random output of KG on input k,

Probh[CF (h, 1
k) = (x, y) such that x �= y ∧ E(h, x) = E(h, y)] < 2−tk.

From the proof of Theorem 3.9 (indeed, even from the informal arguments of
subsection 3.4) the reader can easily derive a proof of the following corollary.

Corollary 4.3. Interactive CS proof systems exist if collision-free hash func-
tions exist.

(Notice that such CS proof systems would actually be four-round ones: in essence,
the verifier runs KG to generate a random h and sends it to the prover as the first
message; the prover uses h to construct the Merkle tree and sends its root to the

24An ITM making, say, at most s steps, may de facto make “many more steps” if it has a large
description—e.g., by encoding a large finite function in its state control. For instance, factoring a
randomly chosen k-bit integer appears to be computationally intractable when k is large, but not
for an algorithm whose description is about 2k-bit long! Indeed, the finite state control of such
a Turing machine could easily encode the factorization of all k-bit integers. For this reason, in a
cryptographic CS proof system, a cheating prover is envisaged to be an algorithm whose running
time and description, in some standard encoding, are both bounded. Having a cheating prover be a
Boolean combinatorial circuit with a bounded number of gates is actually just a specific but simple
way to accomplish this.
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verifier as the second message; the verifier runs the sampling algorithm SV to compute
a sequence of bit-positions and sends them to the prover as the third message; and
the prover returns to the verifier the bit-values of those positions—together with their
authenticating paths—as the fourth message.)

Two-round CS proof systems. Informally, a two-round CS proof system is
an interactive CS proof system (P, V ) in every execution of which only two messages
are sent: the first by V and the second by P . Such proof systems appear signif-
icantly more difficult to implement than general interactive ones. Nonetheless they
could be constructed based on Cachin, Micali, and Staedler’s new computationally
private information-retrieval system [14]. Their construction relies on the difficulty of
deciding, given a prime p and an integer n (whose factorization is unknown), whether
p divides φ(n).

4.2. CS proof-systems sharing a random string.
The notion of a CS proof system sharing a random string. In a CS

proof system sharing a random string, prover and verifier are ordinary (as opposed
to oracle-calling) algorithms, sharing a short random string r. That is, whenever the
security parameter is k, they share a string r that both believe to have been randomly
selected among those having length kc, where c is a positive constant. If string r is
universally known, it can be shared by all provers and verifiers. (CS proof systems
sharing a random string are a special case of one-round CS proof systems because r
could be the message sent by the verifier to the prover.)

Definition 4.4. Let (P, V ) be a pair of Turing machines, the second of which
runs in polynomial time. We say that (P, V ) is a CS proof system sharing a random
string if there exists a sequence of five positive constants, c2, . . . , c6 (referred to as
the fundamental constants of the system25), such that the following two properties are
satisfied.

1′′′. Feasible completeness. For all q = (M,x, y, t) ∈ L and for all binary string r,
(1′′′.i) on inputs q and r, P halts within (|q| · |r| · t)c2 computational steps
outputing a binary string C, whose length is ≤ (|q| · |r|)c3 , such that
(1′′′.ii) V (q, r, C) = Y ES.

2′′′. Computational soundness. For all q̃ �∈ L, for all k such that 2k > |q|c4 , and
for all (cheating) circuits P̃ whose size is ≤ 2c5k, for a random kc1-bit string
r

Probr[P̃ (q̃, r) = C̃ ∧ V (q̃, r, C̃) = Y ES] ≤ 2−c6k.

We refer to the above strings r and C as, respectively, a reference string and a CS
certificate (of q ∈ L, relative to r and (P,V)).

The constructability of CS proof systems sharing a random string.
We conjecture that CS proof systems with a random string exist. In particular,
their existence is guaranteed by an ad hoc (and stronger) assumption: informally the
“replaceability,” in Theorem 3.6’s (P,V), of random oracles with (hopefully) adequate
functions (e.g., collision-free hashing ones). Such replacements have been advocated,

25The “numbering” of these constants has been chosen to facilitate comparison with CS proof
systems with a random oracle.
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in more general contexts, by Bellare and Rogaway [7].26

5. Computationally sound checkers. CS proofs have important implications
for validating one-sided heuristics for NP. Generalizing a prior notion of Blum’s, we
put forward the notion of a CS checker and show that CS proofs with a random string
imply CS checkers for NP.

To begin with, we state the general problem of heuristic validation we want to
solve, explain why prior notions of checkers may be inadequate for solving it, discuss
the novel properties we want from a checker, and convey in a simple but wishful
manner what our checkers are. Then we shall approximate this wishful version of a
CS checker by a more formal definition and construction.

Warning. Approaching meaningfully the problem of validating efficient heuris-
tics for NP-complete problems is nontrivial (as we shall see, it entails reconciling
“two opposites”), and our particular approach to it may prove quite subjective (if not
outright controversial). Nonetheless, the problem at hand is so crucial that we might
be excused for putting forward some quite preliminary contributions and ideas.

5.1. The problem of validating one-sided heuristics for NP.
A general problem. NP-complete languages contain very important and useful

problems that we would love to solve. Unfortunately, it is extensively believed that
P �= NP and NP �= Co-NP, and thus that our ability of successfully handling NP-
complete problems is severely limited. Indeed, if P �= NP, then no efficient (i.e.,
polynomial-time) algorithm may decide membership in an NP-complete language
without making any errors. Moreover, if NP �= Co-NP, then no efficient algorithm
may, in general, prove nonmembership in an NP-complete language by means of
“short and easy-to-verify” strings.

In light of the above belief, the “best natural alternative” to deciding NP-
complete languages efficiently and conveying efficiently to others the results of our de-
terminations consists of tackling NP-complete languages by means of efficient heuris-
tics that are one-sided. Here by “heuristic” we mean a program (emphasizing that no
claim is made about its correctness) and by “one-sided” we mean that such a program,
on input a string x, outputs either (1) a proper NP-witness, thereby proving that x
is in the language, or (2) the symbol NO, thereby claiming (without proof) that x is
not in the language.

But for an efficient one-sided heuristic to be really useful for tacklingNP-complete
problems we should know when it is right. Of course, when such an heuristic outputs
an NP-witness, we can be confident of its correctness on the given input. However,
when it outputs NO, skepticism is mandatory: even if the heuristic came with an a
priori guarantee of returning the correct answer on most inputs, we might not know
whether the input at hand is among those. Thus, in light of the importance of NP-

26A word of caution is now due about such replacements. For certain tasks, it is now known how
to replace random oracles successfully with ordinary algorithms based on traditional assumptions.
For instance, a random oracle provably is “collision-free,” but collision-free hash functions can be
built, say, under the assumption that the integer factorization or the discrete logarithm problems
are computationally intractable. On the other hand, “random-oracle replacement” does not always
work: Canetti, Goldreich, and Halevi [15] show that it is possible to construct special algorithms
that behave very differently when given access to a random oracle than they do when given access
to any pseudorandom function. (In light of their result, it should be possible to construct, somewhat
artificially, some CS proof systems sharing a random oracle that can never be transformed into CS
proof systems sharing a random string by replacing their oracle with a pseudorandom function. But
this does not imply that the same holds for every CS proof system with a random oracle, in particular
for the (P,V) of Theorem 3.9).
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complete languages and in light of the many efficient one-sided heuristics suggested
for these languages, a fundamental problem naturally arises.

Given an efficient one-sided heuristic H for an NP-complete language, is
there a meaningful and efficient way of using H so as to validate some of its
NO outputs?

Interpreting the problem. The solvability of the above general problem criti-
cally depends on its specific interpretation.

One such interpretation was proposed by Manuel Blum when, a few years ago, he
introduced the beautiful notion of a checker [11]27, and asked whether NP-complete
languages are checkable. Under this interpretation, the general problem still is to-
tally open. Moreover, as we shall argue below, unless this interpretation is suitably
broadened, even a positive solution might have a limited usefulness.

In this paper we thus propose a new interpretation of the general problem and,
assuming the existence of CS proofs with a random string, provide its first (and
positive) solution.

5.2. Blum checkers and their limitations.
The notion of a Blum checker. Intuitively, a Blum checker for a given function

f is an algorithm that either (a) determines with arbitrarily high probability that a
given program, run on a given input, correctly returns the value of f at that input,
or (b) determines that the program does not compute f correctly (possibly, at some
other input). Let us quickly recall Blum’s definition.

Definition 5.1. Let f be a function and C a probabilistic oracle-calling algorithm
running in expected polynomial time. Then, we say that C is a Blum checker for f if,
on input an element x in f ’s domain and oracle access to any program P (allegedly
computing f), the following two properties hold.

1. If P (y) = f(y) for all y (i.e., if P correctly computes f for every input), then
CP (x) outputs YES with probability 1.

2. If P (x) �= f(x) (i.e., if P does not compute f correctly on the given input x),
then CP (x) outputs YES with probability ≤ 1/2.

The probabilities above are taken solely over the coin tosses of C whenever P is
deterministic, and over the coin tosses of both algorithms otherwise.

The above notion of a Blum checker slightly differs from the original one.28 In
particular, according to our reformulation any correct program for computing f im-
mediately yields a checker for f, though not necessarily a useful one (because such a
checker may be too slow, or because its correctness may be too hard to establish).29

Despite their stringent requirements, Blum checkers have been constructed for a
variety of specific functions (see, in particular, the works of Blum, Luby, and Rubinfeld
[12] and Lipton [25]).

Note that the notion of a checker is immediately extended to languages: an algo-
rithm C is a Blum checker for a language L if it is a Blum checker for L’s characteristic
function. Indeed, the interactive proof systems of [26] and [33] yield Blum checkers

27We shall call his notion a Blum checker to highlight its difference from ours.
28Disregarding minor issues, Blum’s original formulation imposes an additional condition, roughly,

that C run asymptotically faster than the fastest known algorithm for computing f—or asymptoti-
cally faster than P when checking P . This additional constraint aims at rebuffing a natural objection:
who checks the checker? The condition is in fact an attempt to guarantee, in practical terms, that
C is sufficiently different from (and thus “independent” of) P, so that the probability that both C
and P make an error in a given execution is smaller than the probability that just P makes an error.

29Thus, running a checker C (as defined by us) with a program P may be useful only if C is much
faster than P, or if C’s correctness is much easier to prove—or believe—than that of P .
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for, respectively, any #P- or PSPACE-complete language.30

Blum checkers vs. efficient heuristics for NP-complete problems. We
believe that the question of whether Blum checkers for NP-complete languages exist
should be interpreted more broadly than originally intended. We in fact argue that,
even if they existed, Blum checkers for NP-complete languages might be less relevant
than desirable.

Definition 5.2 (informal). We say that a Blum checker A for a function f is
irrelevant if, for all efficient heuristics H for f, and for all x in f ’s domain, with high
probability AH(x) = NO without ever calling H on input x.

Note that, if P �= NP, then no efficient heuristic for an NP-complete language
is correct on all inputs. Thus it is quite legitimate for a Blum checker for an NP-
complete language to output NO whenever its oracle is an efficient heuristic, without
ever calling it on the specific input at hand: a NO-output simply indicates that the
efficient heuristic is incorrect on some inputs (possibly different from the one at hand).
However, constructing an irrelevant Blum checker for the characteristic function of
SAT (the language consisting of all Boolean formulae in conjunctive normal form)
under the assumption that P �= NP is not trivial. The difficulty lies in the fact
that a checker does not know whether it is accessing a polynomial-time program (in
which case, if P �= NP, it could always output NO), or an exponential-time program
that is correct on all inputs (in which case it should always output YES). We can,
however, construct such an irrelevant Blum checker under the assumption that one-
way functions exist. This assumption appears to be stronger than P �= NP but is
widely believed and provides the basis of all modern cryptography.

Definition 5.3 (informal). We say that a function f mapping binary strings
to binary strings is one-way if it is length-preserving, polynomial-time computable,
but not polynomial-time invertible in the following sense: for any polynomial-time
algorithm A, if one generates at random a sufficiently long input z and computes
y = f(z), then the probability that A(y) is a counter-image of f is miniscule.

Theorem 5.4 (informal). If one-way functions and Blum checkers for NP-
complete languages exist, then there exist irrelevant Blum checkers for NP-complete
languages.

Proof (informal). Let SAT be the NP-complete language of all satisfiable for-
mulae in conjunctive normal form, let P be a program allegedly deciding SAT, let C
be a Blum checker for SAT, let f be a one-way function, and let C be the following
oracle-calling algorithm.

On input an n-variable formula F in conjunctive normal form, and oracle access
to P, C works in two stages. In the first stage, C randomly selects a (sufficiently long)
string z and computes (in polynomial time) y = f(z). After that, C utilizes the
completeness of SAT to construct, and feed to P, n formulae in conjunctive normal
form, F1, . . . , Fn, whose satisfiability “encodes a counter-image of y under f .”

(For instance, F1 is constructed so as to be satisfiable if and only if there exists a
counter-image of y whose first bit is 0. The checker feeds such an F1 to P . If P outputs
“F1 is satisfiable,” then C constructs F2 to be a formula that is satisfiable if and only
if there exists a counter-image of y whose 2-bit prefix is 00. If, instead, P responds

30In fact, the definition of a Blum checker for a language L is analogous to a restricted kind of
interactive proof for L: one whose prover is a probabilistic polynomial-time algorithm with access to
an oracle for membership in L. Indeed, whenever a language L possesses such a kind of interactive
proof system, a checker C for L is constructed as follows. On inputs P (a program allegedly deciding
membership in L) and x, the checker C simply runs both prover and verifier on input x, giving the
prover oracle access to program P . C outputs YES if the verifier accepts, and rejects otherwise.
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“F1 is not satisfiable,” then C constructs F2 to be a formula that is satisfiable if and
only if there exists a counter-image of y whose 2-bit prefix is 10. And so on, until all
formulae F1, . . . , Fn are constructed and all outputs P (F1), . . . , P (Fn) are obtained.)

Because string y is, by construction, guaranteed to be in the range of f, at the
end of this process one either finds (a) a counter-image of y under f, or (b) a proof
that P is wrong (because if no f -inverse of y has been found, then P must have
provided a wrong answer for at least one of the formulae Fi). If event (b) occurs,
C halts outputting NO. Otherwise, in a second phase, C runs Blum checker C on
input the original formula F and with oracle access to P . When C halts so does C,
outputting the same YES/NO value that C does.

Let us now argue that C is a Blum checker for SAT. First, it is quite clear that C
runs in probabilistic polynomial time. Then there are two cases to consider.

1. P correctly computes SAT’s characteristic function. In this case, a counter-
image of y is found, and thus CP does not halt in the first phase. Moreover, in
the second phase, C runs Blum checker C with the same correct program P .
Therefore, by property 1 of a Blum checker, CP will output YES no matter
what the original input formula F might be, and, by construction, so will CP .
This shows that C enjoys property 1 of a Blum checker for SAT.

2. P (F ) provides the wrong answer about the satisfiability of F . In this case,
either CP halts in phase 1 outputting NO, or it executes phase 2 by running
CP (F ), that is, the original Blum checker for SAT, C, on the same input
F and the same oracle P . Therefore, by property 2 of a Blum checker, the
probability that CP (F ) will halt outputting YES is no greater than 1/2. By
construction, the same holds for CP (F ). This shows that C enjoys property 2
of a Blum checker for SAT.

Finally, let us argue that, for any input F and any efficient P (no matter how
well it may approximate SAT’s characteristic function), almost always CP (F ) = NO,
without even calling P on F . In fact, because C runs in polynomial time, whenever
P is polynomial-time, so is algorithm CP . Therefore, CP has essentially no chance of
inverting a one-way function evaluated on a random input. Therefore, C will output
NO in phase 1, where it does not call P on F .

In sum, differently from many other contexts, the notion of a Blum checker may
not be too useful for handling efficient heuristics for NP-complete languages, either
because no such checkers exist31 or because they may exist but not be too useful.

Blum checkers are not complexity-preserving. The lesson we derive from
the above sketched proof of Theorem 5.4 is that Blum’s notion of a checker lacks a
new property that we name complexity preservation. Intuitively, a Blum checker for
satisfiability, when given a “not-so-difficult” formula F, may ignore it altogether and
instead call the to-be-tested efficient heuristic on very special and possibly much harder
inputs, thus forcing the heuristic to make a mistake and justifying its own outputting
NO (i.e., “the heuristic is wrong”).

The possibility of calling a given heuristic H on inputs that are harder than
the given one essentially erodes the chances of meaningfully validating H’s answer
whenever it happens to be correct.32 Such a possibility may not matter much if “the

31Notice that this possibility does not contradict the fact that NP is contained in both #P and
PSPACE and that #P- and PSPACE-complete languages are Blum checkable!

32Note that such possibility not only is present in the definition of a Blum checker but also in
all known examples of a Blum checker. Typically, in fact, a Blum checker works by calling its given
heuristic on random inputs, and these may be more difficult than the specific, original one.
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difference in computational complexity between any two inputs of similar length” is
somewhat bounded. But it may matter a lot if such a difference is enormous—which
may be the case for NP-complete languages, as they encode membership in both easy
and hard languages. We thus wish to develop a notion of a “complexity-preserving”
checker.

5.3. New checkers for new goals.
The old goal. Blum checkers are very useful to catch the occasional mistake of

programs believed to be correct on all inputs. That is, they are ideally suited to check
fast programs for easy functions (or slow program for hard functions). In fact, if f
is an efficiently computable function, then we know a priori that there are efficient
and correct programs for f . Therefore, if a reputable software company produces a
program P for f, it might be reasonable to expect that P is correct. In this framework,
by running a Blum checker for f, with oracle P, on a given input x we have nothing to
lose33 and something to gain. Indeed, if the checker answers YES, we have “verified
our expectations” about the correctness of P at least on input x (a small knowledge
gain), and if the checker answers NO, we have proved our expectations about P to be
wrong (a big knowledge gain).

The new goal. We instead want to develop checkers for a related but different
goal: validating efficient heuristics that are known to be incorrect on some inputs.
That is, we wish to develop checkers suitable for handling fast programs for hard
functions. Now, if f is a function hard to compute, then we know a priori that no
efficient program correctly computes it. Therefore, obtaining from a checker a proof
that such an efficient program does not compute f correctly would be quite redundant.
We instead want checkers that, at least occasionally, if an efficient heuristic for f
happens to be correct on some input x, are capable of convincing us that this is the
case.

Interpreting the new goal. Several possible valid interpretations of this general
constraint are possible. In this paper we focus on a single one: namely, we want
checkers that are complexity-preserving. Let f be a function that is hard to compute
(at least in the worst case). Then, intuitively, a complexity-preserving checker for f
will, on input x, call a candidate program for f only on inputs for which evaluating
f is essentially as difficult as for x.

Our point is that, while a given heuristic for satisfiability, H, may make mistakes
on some formulae, it may return remarkably accurate answers on some class of formu-
lae (e.g., those decidable in O(2cn) time, for some constant c < 1, by a given deciding
algorithm D). Intuitively, therefore, checkers should be defined (and built!) so that,
if the input formula belongs to that class and H happens to be correct on the input
formula, they call H only on additional formulae in that class.

5.4. The wishful version of a CS checker. The spirit of a CS checker is best
conveyed wishfully assuming (for a second) that NP equaled Co-NP. In that case,
our CS checkers would take the following simple and appealing form.

Wishful checkers. Define a wishful checker to be a polynomial-time algorithm
C that, on input a Boolean formula F, outputs a Boolean formula F satisfying the
following two properties.

1. Membership reversion. F ∈ SAT if and only if F �∈ SAT.

33Blum checkers are often so fast (e.g., running in time sublinear in that of the algorithm they
check) that not even this is much of a concern.
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2. Complexity preservation. “The satisfiability of F is as hard to decide as that
of F .”

How to use a wishful checker. We interpret the above algorithm C as a kind
of checker because it immediately yields the following algorithm C ′ (more closely
matching our intuition of a checker).
C ′ : Given an efficient one-sided heuristic for SAT, H, and an input formula, F,

compute F = C(F ). Then, call H so as to obtain the two values H(F )
and H(F). If either value is different than NO, then (H being one-sided)
a satisfying assignment has been computed either proving that F ∈ SAT or
that F �∈ SAT. Otherwise, H(F ) = H(F) = NO proves that H is incorrect.

Note that, by the very definition of a wishful checker, the above proof that H is
incorrect has been obtained without querying H on formulae harder than the original
input F .

5.5. The notion of a CS checker. Let us now informally explain how, without
assuming NP = Co-NP, CS checkers may approximate wishful ones to a sufficiently
close extent. Renouncing to achieving greater generality, we limit our discussion to
CS checkers for SAT.

CS checkers. Informally speaking, a CS checker is a polynomial-time algorithm
C that, on input a formula F, outputs a Boolean formula F , called the coinput,
satisfying the following properties.

1. Membership semireversion.
1.1. At least one of F and F is satisfiable.
1.2. If F is satisfiable, then no efficient algorithm has a nonnegligible chance

of finding a satisfying assignment for F .
2. Complexity semipreservation. If F �∈ SAT, then the satisfiability of F is as

hard to decide as that of F .
(Note: We explain why complexity preservation is restricted to the “F �∈
SAT” case a few lines below.)

How to use CS checkers. We interpret the above C as a checker because
it immediately yields the following algorithm C′ (that better matches what we may
intuitively expect from a checker).

C′ : Given an efficient one-sided heuristic for SAT, H, and an input formula, F,
do the following.

– Compute the coinput F = C(F ).
– Call H so as to obtain H(F ).
– If H(F ) �= NO, HALT.
– If H(F ) = NO, call H so as to obtain H(F) and HALT.

The usefulness of CS checkers. The usefulness of the above C′ stems from
the following two properties.

(a) C′ is informative about the satisfiability of F or the correctness of H.
(b) If H is correct on F , then C′ never calls H on a formula harder than F .

Indeed, a computation of C′ results in (1) showing a satisfying assignment of F, (2)
showing a satisfying assignment of F , or (3) showing that H(F ) = H(F) = NO.

A type-1 result clearly proves that F ∈ SAT.
A type-2 result is interpretable as saying that F is unsatisfiable. This is so because

if F belonged to SAT, then either a satisfying assignment of coinput F does not exist,
or (by the very definition of a CS checker) the probability that it can be obtained in
polynomial time is negligible. (Notice, in fact, that C′ is efficient because both C and
H are.)
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A type-3 result proves that H is wrong. In fact, if H(F ) = NO is correct, then
(by property 1.1 of a CS checker) F �∈ SAT, and thus H(F) = NO is incorrect. Let us
now argue that if H is correct on F , our proof of H’s incorrectness has been obtained
in a complexity-preserving manner. We distinguish two cases.

1. If H is correct on F and H(F ) �= NO, then H(F ) is an (easy-to-verify)
satisfying assignment of F, and thus C′ does not call H on any coinput.
Therefore, C vacuously does not call H on any F harder than F .

2. If H is correct on F and H(F ) = NO, then F �∈ SAT, in which case (by
property 2 of a CS checker) F is guaranteed to have the same complexity as
F .

If instead H is not correct about our original input F, then H(F ) = H(F) = NO
still is a proof of H’s incorrectness, but not necessarily one obtained in a complexity-
preserving manner. Notice, however, that lacking complexity preservation in this case
is of no concern: if H happens wrong about our own original input, we are happy to
prove that H is wrong in any manner. Recall that in checking we care about our own
original input x more than about H. Thus if H(x) is correct, we aim at “proving”
this fact, and we do not want to throw H away by calling it on much harder inputs.
But if H(x) is wrong, we do not mind dismissing H in any way. Least of all, we want
to be convinced that H(x) is right!

The complexity preservation of a CS checker. To complete our informal
discussion of CS checkers we must explain in what sense, whenever F �∈ SAT, the
complexity of F is close to that of F . That is, we must explain (1) how we measure
the complexity of the original input, and (2) how the coinput preserves this complexity.

1. Complexity meters. The complexity of the original input F is defined to be
the number of steps made by a chosen deciding algorithm for SAT, D, on
input F . That is, when a CS checker for SAT is given an input formula F,
it is also given as an additional input the description of this chosen D. We
refer to D as the complexity meter. In fact, by specifying D, we (implicitly)
pin down the complexity of the original formula F . By insisting that D be a
decider for SAT (i.e., that D be correct) we insist that the complexity of the
original input be a “genuine” one.34

By properly choosing the complexity meter, one may be able to force the
complexity of the original input to be small (and thus force the checker to
query its given heuristic on a coinput of similarly small complexity). Choosing
D to be the algorithm that tries all possible satisfying assignments for F is
certainly legitimate but not too meaningful. (Because any formula would
have “maximum complexity” relative to such a complexity meter, the checker
would essentially be free to call its given heuristic on any possible coinput.)
Quite differently, if the original input F is known to belong to a class of
formulae for which a given SAT algorithm performs very well (e.g., runs in
subexponential time), by specifying that algorithm as our complexity meter,
we force the checker to call its given heuristic only on a coinput of similarly
low complexity.
Let us stress that we do not require that the checker, or someone choosing
a complexity meter D, know how many steps D takes on the original input
F . Nor do we require that one distinguish (somehow) for which inputs, if
any, algorithm D (slow in the worst case) may be reasonably fast. Rather, we
require that, if F happens to belong to those inputs on which D is fast, then

34In particular, if D were allowed to make errors, all formulae F could have constant complexity.
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it is this lower (and possibly unknown) complexity that should be preserved
by a CS checker.

By specifying D one specifies implicitly the complexity of F, whatever it
happens to be.

For technical reasons, however, we require that D’s running time be upper-
bounded by 22n, a bound that essentially poses no real restrictions. Within
these bounds, any algorithm for satisfiability could always be “timed-out”
and then converted to an exhaustive search for a satisfying assignment).

2. Complexity cometers. The complexity of a coinput F is defined to be the
number of steps taken on input F by a decider for SAT, D, specified before
hand. We refer to such a D as the complexity cometer.
Thus a complexity cometer is independent of the chosen complexity meter:
the first is fixed once and for all (in fact, it could be made part of the very
definition of a CS checker), while the second is chosen afresh each time a
CS checker is run. Under these circumstances, at first glance, it may appear
surprising that a CS checker may succeed in keeping the complexity of the
coinput close to that of the original input. But the fixed cometer D includes
the code of the universal algorithm, so that, in a sense, the complexity of a
coinput is measured relative to a “decider for SAT that is easily constructed
on input D.”
Notice that one could conceive stating complexity preservation by simply
saying that the number of steps taken by a chosen D on the original input
is polynomially close to the number of steps taken by the same D on the
coinput. This would be a simpler way of having the cometer easily depend
on the meter. However, we needed to endow CS checkers with a bit more
room to maneuver than that. In any case, we believe it preferable to have the
meter that is a fixed component of the CS checker to be a universal meter.

5.6. The actual definition of a CS checker.
Preliminaries.
• We let CNF denote the language of all formulae in conjunctive normal form,
and SAT the set of all satisfiable formulae in CNF. If F ∈ SAT, then we denote
by SAT(F ) the set of all satisfiable assignments of F . For any positive integer
n, CNFn and SATn will denote, respectively, all formulae in CNF and SAT
whose binary length is n.

• By an SAT decider we mean an algorithm that (correctly) decides the lan-
guage SAT. (Deciders need not output a satisfying assignment in case the
input formula is satisfiable.) We say that an SAT decider D is reasonable if,
for all F ∈ CNF, #D(F ) ≤ 2|F |.

• If A is a probabilistic algorithm and E an event (involving executions of A
on specified inputs), by ProbA[E] we denote the probability of E, taken over
all possible coin tosses of A.

Definition 5.5. Let Φ be a probabilistic polynomial-time algorithm, D an SAT
decider, and Q(. , . , . , .) a positive polynomial. We say that (Φ,D,Q) is a CS checker
if, for all positive constant c, for all CNF formulae F, for all reasonable SAT deciders
D, and for all sufficiently large k, on input (F,D, 1k) Φ outputs a formula F such
that:

1. F ∨ F ∈ SAT;
2. F ∈ SAT ⇒ for all kc-size circuits A, ProbΦ[A(F) ∈ SAT(F)] < 2−k; and
3. F �∈ SAT⇒ #D(F) < Q(|F |, |D|, 1k,#D(F )).
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If C = (Φ,D,Q) is a CS checker, we refer to Φ as the reducer, to D as the
complexity cometer, and to Q as the complexity slackness.

Remark. Note that even the existence of triplets (Φ,D,Q) satisfying just prop-
erties 1 and 2 alone constitutes a surprising statement about SAT. Informally, they
say that any formula F can be efficiently transformed to a formula F such that (1) at
least one of them is satisfiable, while (2) every efficient algorithm can find a satisfying
assignments for at most one them. That is,

properties 1 and 2 “almost” say that NP = Co-NP,
in the sense that, to convince a verifier V that a formula F is not satisfiable, a prover
P may first run Φ on input (F,D, 1k) so as to compute F , and then (because if F �∈
SAT, then, by property 1, F is satisfiable) produce a satisfying assignment for F . The
verifier is convinced because, if also F were satisfiable, then a satisfying assignment
for F could be found in less than 2k steps, which would violate property 2 whenever
P is poly(k) size, and k is large enough!

5.7. Implementing CS checkers for SAT. Let us recall some known proper-
ties of Cook’s [16] and Levin’s [24] NP-completeness constructions.

Key properties of Cook’s and Levin’s constructions. Given a polynomial-
time predicate A(· , ·) and a positive constant b, these constructions consist of a
polynomial-time algorithm that, on input a binary string x, outputs a CNF formula
φ that is satisfiable if and only if there is a binary string σ such that |σ| ≤ |x|b and
A(x, σ) = Y ES. We refer to such a string σ as a witness (for x). The construction
further enjoys the following extra properties (which are actually required by Levin’s
definition of NP-completeness):

(i) x is polynomial-time retrievable from φ;
(ii) a proper witness for x is polynomial-time computable from any satisfying

assignment for φ (if one exists); and
(iii) a satisfying assignment for φ is polynomial-time computable from any proper

witness for x (if one exists).
Theorem 5.6. If CS proof systems sharing a random string exist, then CS

checkers for SAT exist.
Proof. Let (P, V ) be a CS proof system sharing a random string with fundamental

constants c2, . . . , c6, and consider the following algorithm.

Algorithm Φ
Inputs: F, a CNF formula, D, a reasonable SAT solver, and 1k, a security
parameter.
Subroutines: P and V .
Output: a CNF formula F .

Code: Randomly select a k-bit (reference) string r for (P, V ), and use Cook’s
(or Levin’s) construction to compute a CNF formula F that is satisfiable
if and only if there exist two binary strings t and σ such that, setting
q = (F,D,NO, t), the following three properties hold: (1) |t| ≤ 2|F |,35
(2) |σ| ≤ (|q| · k)c3 , and (3) V (q, r, σ) = Y ES.
{Comment: If it exists, σ is a CS certificate of (D,F,NO, t) ∈ L, relative to
(P, V ) and reference string r. The existence of such a σ, however, does not
guarantee that D(F ) = NO.36}

35i.e., because D is reasonable, considering t as an integer, t = #D(F ) ≤ 2|F |.
36In fact, we “expect” that σ exists (and thus that F is satisfiable) with “overwhelming probabil-

ity,” even when F is satisfiable. But σ is hard to find.
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Let us now show that there exist an SAT decider D and a positive polynomial Q such
that C = (Φ,D,Q) is a CS checker.

To begin with, notice that, because of the polynomiality of V and of Cook’s
construction, Φ is polynomial-time.37

Further, because properties 1 and 2 of a CS checker (as per Definition 5.5) only
depend on its reducer, let us show that they hold for our Φ prior to defining D and Q.

Property 1 holds trivially if F ∈ SAT. Assume therefore that F �∈ SAT. Then,
because of the correctness and running time of the complexity meter D, we have
D(F ) = NO within t ≤ 22n steps. Thus, by the (feasible) completeness of (P, V ) for
any possible reference string r there is a CS certificate σ of q = (D,F,NO, t) ∈ L.
Thus, F ∈ SAT, proving that property 1 holds in all cases.

Property 2 is established by contradiction. Assume that there exists an input
formula F ∈ SAT and a poly(k)-size circuit A that, with nonnegligible probability,
computes a satisfying assignment of a so-constructed coinput F . Then, by property (ii)
of Cook’s construction, from such a satisfying assignment (if it exists and is found) one
computes in polynomial time both t and a CS certificate σ of q = (D,F,NO, t) ∈ L.
But if F ∈ SAT, then for no t is q = (D,F,NO, t) ∈ L. Therefore, this contradicts
the computational soundness of (P, V ).

Let us finally show that there exist an SAT decider D and a positive polynomial
Q such that, for all formulae F �∈ CNF, for all complexity meters D, and for all
security parameters k, if D, on input F, takes t (≤ 22|F |) steps to decide that no
satisfying assignment for F exists, then, given any coinput F of F, D finds a satisfying
assignment for F in at most Q(|F |, |D|, k, t) steps.

Algorithm D works in four phases as follows.
D1. Computes F, D, and r from F .

(Due to property (i) of Cook’s construction, D can execute this phase in
time polynomial in |F|. Thus, because F has been computed by C in time
polynomial in |F |, |D|, and k, this phase is executable in time polynomial in
|F |, |D|, and k.)

D2. Runs D on input F to find the exact number of steps, t, taken by D to output
NO on input F .
(Because D can be simulated with a slow-down polynomial in |D|, this phase
takes time polynomial in |D| and t.)

D3. Run prover P on input q = (D,F,NO, t) and reference string r to produce a
CS certificate, σ, of q ∈ L.
(Due to the feasible completeness of (P, V ), this phase is executable in time
polynomial in |q|, k, and t; and thus in time polynomial in |F |, |D|, k, and
t.)

D4. Use σ to compute a satisfying assignment for F .
(Due to property (iii) of Cook’s construction, this phase also can be imple-
mented in time polynomial in |F |, |D|, and k.)

Because each phase is implementable in time polynomial in |F |, |D|, k, and t, there ex-
ists a polynomialQ such that D(F) outputs a satisfying assignment of F in Q(|F |, |D|,
k, t) steps.

37Indeed, define A(·, ·) as follows: A((F,D, r), (t, σ)) def
= V ((D,F,NO, t), r, σ). Notice now that

A is polynomial-time: in fact, V is the verifier of a CS proof system with a random string. Notice
also that |σ| is polynomially bounded in |F |, |D|, and |r|: in fact q = (D,F,NO, t), |t| ≤ 2|F |, and
|σ| ≤ (|q|k)c3 .
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Finally, notice that the above four-phase procedure can be converted to an SAT
decider by interleaving two different computations. In the first, an exhaustive search
is conducted for deciding whether F is satisfiable. In the second, F is interpreted as
a coinput of F, and the above four-phase procedure is run. The so-modified D halts
when either computation halts and outputs what the halting computation does.

5.8. Remarks.
An alternative formulation. As we said, any CS checker C (as per Definition

5.5) immediately yields an oracle-calling algorithm that, on input a formula F (a
complexity meter D, and a security parameter k) and access to a one-sided efficient
heuristic H, computes a coinput F and obtains H(F ) and H(F).

With this in mind, we can rephrase Theorem 5.6 as follows (and obtain—implicitly—
a definition of a CS checker that is more closely tailored to our implemetation).

Corollary 5.7. If CS proof systems sharing a random string exist, then there
exist (1) a polynomial-time oracle-calling algorithm C(·)(· , · , ·) that, whenever its first
input is a CNF formula F, queries its oracle at most twice: once about F, and possibly
a second time about a second CNF formula F ; (2) an SAT decider D and a polynomial
Q(. , . , . , .) such that

for all one-sided heuristics H for SAT, for all F ∈ CNF, for all reasonable
SAT deciders D solving F in ≤ 22|F | steps, for all sufficiently long random
binary strings r, the following two properties hold.

rm 1. Individual-complexity preservation. If H is correct on F and CH(F,D, r)
queries H about a second CNF formula F , then

#D(F) ≤ Q(|F |, |D|, |r|,#D(F )).

2. Computational meaningfulness. CH(F,D, r) produces one of the following
three outputs:
(a) a satisfying assignment for F

(i.e., a proof that F is satisfiable),
(b) a CS proof, relative to (P, V ) and reference string r, of D(F ) = NO

(i.e., evidence that F is not satisfiable),
(c) a formula F such that, by construction, either F or F is satisfiable, and

yet H(F ) = H(F) = NO
(i.e., a proof that H is not correct).

Unlike Blum checkers, the above oracle-calling algorithm C does not provide an-
swers that are correct with arbitrarily high probability (computed over its possible
coin tosses). The type-(a) and type-(c) outputs of C are errorless, at least in the sense
that any error here can be efficiently detected. But a type-(b) output of C, interpreted
as a (computationally) meaningful explanation that F is nonsatisfiable, may be wrong
in a noneasily detectable manner: if F is satisfiable, C could output a “false” CS proof
of D(F ) = NO with positive probability. However, this probability is reasonably high
only if an enormous amount of computation is performed; whereas, in our applica-
tion, all computation is performed by C which is polynomial-time and by oracle H
which is also polynomial-time. Therefore, the probability of a false type-(b) output
is absolutely negligible.

Another advantage of one-sided heuristics. Our CS checkers only deal with
one-sided heuristics for SAT. As already discussed, given the one-sided nature of NP,
this is a natural choice. On the other hand, could we have dealt with heuristics just
outputting YES (i.e., “satisfiable, but with no proof”) or NO?

So far, because of the self-reducibility property of NP-complete problems, choos-
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ing between either type of heuristics has often been a matter of individual taste.
Indeed, it is well known that a decision oracle for SAT can, in polynomial time, be
converted to a search oracle for SAT . As we explain below, however, this “equiva-
lence” between decision and search relative to NP-complete languages may cease to
hold when one demands, as we do, that our reductions preserve the complexity of
individual inputs, rather than just that of complexity classes.

When dealing with one-sided efficient heuristics H for SAT, assuming that H is
correct on F, we need only to take care of complexity preservation when H(F ) �= NO.
In fact, if H(F ) ∈ SAT (F ), then there is no need to call H on any coinput F , and
thus there is no complexity to be preserved. Presumably, however, if H outputs just
YES and NO, we would care about preserving F ’s complexity also when H(F ) is
correct and H(F ) = Y ES. Now, to convince ourselves that H(F ) = Y ES is correct,
we could run the self-reducibility algorithm, calling H on a sequence of formulae
F1, . . . , Fn (obtained by “fixing” a new variable each time), so as to find a satisfying
assignment of F, or prove that H is wrong (on either F or some Fi). The problem
is, however, that this self-reducibility process may not be complexity-preserving: It
may be the case that our F is relatively easy, while some of the Fi’s are very hard.
Indeed, it is conceivable that it is the “degree of freedom” of the variables of the
original formula F that make it easy to decide (without finding any NP-proof of it)
that F is satisfiable. However, after sufficiently many variables of F have been fixed,
the difficulty of deciding satisfiability may grow dramatically high (though later on,
when sufficiently many variables have been fixed, it will dramatically drop).

Extra complexity preservation. Notice that, in the implementation of the
proof of Theorem 5.6, the CS checker preserves the complexity of the original input
F in a much closer manner than demanded by our definition. Indeed, the coinput F
consists of the very encoding of the computation of the complexity meter D on input
F (and we wonder whether this may yield a preferable formulation of complexity
preservation).

Additional applications. We believe that complexity preservation, in different
formulations, will be useful to other contexts as well. In particular, it will enhance
the meaningfulness of many reductions in a complexity setting. For instance, using
complexity preservation, [22] presents a more refined notion of a proof of knowledge
[21, 36, 18, 6].

An open problem. Is it possible to (define and) construct CS checkers that,
when given an heuristic H and an input x, also receive a concise algorithmic repre-
sentation of a (“nontrivial”) set S and call H only on x and elements of S? Such
checkers could still be allowed to output a proof that the given heuristic H is wrong.
But, if H happens to be correct on S, and the given input happens to belong to S,
they should output a “validation” for H(x) (rather than a proof that H is wrong).

6. Certified computation. In this section we reinterpret the results of sections
3 and 4 in terms of computation rather than proofs. More precisely, we aim at ob-
taining certificates ensuring that no error has occurred in a given execution of a given
algorithm on a given input.

That is, certified computation does not deal with semantic questions such as “is
algorithm A correct?” Rather it addresses the following syntactic question.

Is string y what algorithm A should output on input x (no matter what A is
supposed to do)?

This question is quite crucial whenever we are confident in the design of a given algo-
rithm A but less so in the physical computer that runs it. For instance, the computer
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hardware may be defective. Alternatively, the hardware may function properly, but
the operating system may be flawed. Alternatively yet, the hardware and software
may be fine, but some α rays may succeed in flipping a bit together with its controls,
so that the original bit value is not restored.

Moreover, even assuming that the physical computer is correct, after running A
on input x so as to obtain a result y, can we convince someone else that y is indeed
equal to A(x) without having him redo the computation himself?

Certified computation provides a special way to answer these basic questions for
any algorithm and for any input.

Defining certified computation. In view of our work so far, formalizing and
exemplifying (at least given a random oracle) the notion of certified computation is
rather straightforward but tedious indeed. We thus think that is best to proceed at a
very intuitive level.

Definition 6.1 (informal). A certified-computation system is a compiler-verifier
pair of efficient algorithms, (C,V). Given any algorithm A as input, C outputs an
equivalent algorithm A′ enjoying the following properties.

1. A′ runs in essentially the same time as A does.
2. A′ receives the same inputs applicable to A and produces the same outputs.
3. For each input x, algorithm A′ produces the same output y as A, but also a

short and easily inspectable string C vouching that indeed y = A(x) in the
following sense.

If A(x) outputs y in t steps, then V(A, x, y, t, C) = Y ES. Otherwise, it
is very hard to find a string σ such that V(A, x, y, t, σ) = Y ES.

Of course, one may ask who verifies the correctness of the verifier (i.e., either of
algorithm V itself or of its executions). Note, however, that such a V is a unique pro-
gram, capable of verifying certificates for the correct execution of all other programs.
It is thus meaningful to invest sufficient time in proving the correctness of this partic-
ular algorithm (e.g., by verification methods). Also, being that V is quite efficient (and
runs on short inputs) we may afford to execute it on very “conservative” hardware
(i.e., with particular redundancy, resiliency, and so on), or even on a multiplicity of
hardwares.

Constructing certified-computation systems. One possible way of con-
structing program certification systems essentially consists of giving a CS proof of the
statement “y = A(x) in t steps.” Let us explain. On input x, algorithm A′ = C(A)
first runs A on x so that, after some number t of steps, an output y is obtained. Then
A′ outputs y and a CS proof of (A, x, y, t) ∈ L. Thus the length of such a CS proof
will be polynomial in log t (and, of course, |A|, |x|, |y|, and some suitable security
parameter k). The additional time required to produce this CS proof is comparable
to the running time of A. (This holds if one uses the construction of Theorem 3.8
rather than a generic CS proof system.) Indeed, while the definition of CS proofs
allows a polynomial relation between these running times, the sketched construction
actually yields a linear-time relation!

An alternative notion of certified computation. Another type of certified
computation was previously proposed in [3] as an application of PCP. In essence, in
their notion, A′(x) outputs both A(x) and a string τ that vouches the correctness of
A(x). Though τ may be extraordinarily long (τ ’s length exceeds the number of steps
taken by A on input x), it could be inspected in PCP-style, by reading and verifying
only selectively few of its bits. As we have argued in section 2, however, ensuring that
one is really working with precisely these few bits of τ requires an overall verification
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time that is linear in τ ’s length (and thus greater than the time necessary to run A
on input x).

Pros and cons of certified computation. One may view some older algo-
rithms as specialized forms of certified computation, (i.e., applicable to certain func-
tions only). For instance, the classical extended GCD algorithm not only outputs the
greatest common divisor c of two input integers a and b, but also two integers x and
y such that ax+ by = c. Blum views such extended output as a relatively simple way
of checking the validity of c. That is, by checking that indeed (1) ax + by = c and
that (2) c divides both a and b, one verifies that there is no divisor of a and b greater
than c, and so that c actually is the greatest common divisor. Thus x and y are a sort
of certificate proving the correctness of c. This certificate, however, is not sufficiently
short (with respect to a, b, and c) and not sufficiently easy to verify (with respect to
ordinary GCD computation).

A certified computation system can, instead, be considered as an “extended”
universal algorithm, in the sense that it shows that certified computability is not a
property enjoyed only by some special functions (such as the GCD function) but is
an intrinsic property of computation. It should be noticed that, in addition to such
“universality,” a certified computation system produces relatively shorter and more
easily inspectable certificates (than, say, the special ones produced by the extended
GCD algorithm), but has a weaker guarantee of correctness (i.e., false certificates
exist but are hard to find).

Finally, it should be appreciated that our suggested certified computation system
may be impractical (as it refers to the execution history of Turing machines). One way
to improve its efficiency may consist of finding a more convenient, and yet sufficient
for our purposes, version or representation of the execution history of an algorithm.

Assumptions and implementations. The constructability of certified com-
putation systems is implied by CS proof systems with a random oracle or CS proof
systems with a random string. As explained below, if the latter proof systems exist,
then their use in the current context does not require trusting the randomness of the
extra string or the computational limitation of the prover.

Indeed, in this application, the random string need not be agreed upon by both
prover and verifier (by means of some possibly difficult negotiation) nor chosen by
means of a trusted third party or process. When seeking reassurance that indeed
y = A(x), the user U of a certified computation system (P,V) controls both P and
V, and thus can choose their common string in a way that he believes to be genuinely
random, without “asking for their consent.”

In addition, the physical device D implementing algorithm P “sits on top of
user U ’s desk” and produces its output within a “reasonable time” monitored by U .
Therefore, user D knows for a fact that D does not comprise more than 2k gates and
that it takes less than 2k steps of computation for a security parameter k set by U .

In sum, if CS proofs with a random string exist, they yield certified computation
systems that de facto offer the same guarantees of a probabilistic algorithm.

Conceivable applications of certified computation. Certified computation
can in principle be quite useful when “contracting out” computer time. Indeed, con-
sider an algorithm A that we believe to be correct but is very time-consuming. Then,
we can hire a supercomputing company for executing A on a given input x on their
computers and agree that we will pay for their efforts if they give us back the value
y = A(x) together with a certificate of correct execution, that is, a CS certificate
of “A(x) = y in t steps.” Note that, because such a certificate also vouches for the
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number of steps taken by A’s execution, it is easy for the supercomputing company
to charge according to the amount of computation actually invested.

Certified computation may also facilitate the verification of certain mathematical
theorems proven with the help of a computer search (as in the case of the four-color
theorem). For instance, the proof may depend on a lemma stating that there is no
sparse graph with less than fifty nodes possessing a given property, and the lemma
could be proved by means of an exhaustive search taking a few years of computing.
Often, algorithms performing an exhaustive search are sufficiently simple so that we
can be confident of the correctness of their design. Thus rather than (1) asking the
reader of trusting that such a search has been done and has returned a negative result,
or (2) asking the reader to perform such an extensive computation himself, one might
publish together with the rest of the proof a compact and easily verifiable certificate
of correct execution relative to a random oracle. If the security parameter were chosen
to be, say, 1,000, then even the most skeptic reader might believe that no one has
invested 21,000 steps of computation in order to find a false certificate nor that he has
succeeded in finding one by relying on a probability of success less than 2−1,000.

7. Concluding remarks.
Are CS proofs really proofs? In our minds this question really goes together

with an older one: do probabilistic algorithms [34, 30] really compute? There is a
sense in which both answers should be NO. These negative answers, in our opin-
ion, may stem from two different reasons: (1) a specific interpretation of the words
“proof” and “computation,” and (2) our mathematical tradition. The first reason is
certainly true but also “harmless.” The second is more “dangerous” and less accept-
able: not because it is false that these notions break with a long past, but because
the unchallenged length of a tradition should not be taken as implying that specific
formalizations of fundamental intuitions are “final.” Indeed, we believe that even
fundamental intuitions cannot be divorced from the large historical contexts in which
they have arisen, and we expect that they will change with the changing of these
contexts. And we believe and hope that, with time, CS proofs will be regarded to be
as natural as probabilistic computations.

Truths versus proofs. According to our highest-level goal, CS proofs propose
a new relationship between proving and deciding. In the thirties, Turing suggested
that establishing (to yourself) the truthfulness of a mathematical statement consists
of running a proper (accepting) algorithm. Today, we suggest that proving (to others)
a mathematical statement consists of feasibly speeding up the verification of the result
of any given accepting algorithm. That is, (1) proofs should make verifying the result
of any accepting computation exponentially faster than the same accepting compu-
tation, but (2) proofs should not be more time-consuming to find than the accepting
computations whose result verification they wish to facilitate. This, in our opinion,
is an appealing relationship between proving and accepting, and one that guarantees
that proving is both a useful and a distinct notion.

Living with error. In order to guarantee this “feasible speed up,” CS proofs
replace the traditional notion of a proof with a computational one. While CS proofs
of true statements always exist, are suitably short, and are feasibly found, proofs
of false statements either do not exist or are extraordinarily hard to find. Indeed,
a CS proof is a short string that can be thought of as a “compressed version” of
a long accepting computation. But the same conciseness that gives CS proofs their
distinctive advantage also causes them to “lose quality” with respect to the accepting
computations they compress: it makes them vulnerable to the possibility of error



COMPUTATIONALLY SOUND PROOFS 1297

(though in a controllable way).38

To be sure, the possibility of inconsistency should not be taken lightly. But
after realizing that the coherence of a sufficiently rich mathematical system cannot
be decided within it, perhaps we should switch to managing error rather than trying
desperately to ban it!
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