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a b s t r a c t

We investigate the problem of exactly reconstructing, with high confidence and up to iso-
morphism, the ball of radius r centered at the starting state of a Markov process from inde-
pendent and anonymous experiments. In an anonymous experiment, the states are visited
according to the underlying transition probabilities, but no global state names are known:
one can only recognize whether two states, reached within the same experiment, are the
same.

We prove quite tight bounds for such exact reconstruction in terms of both the number
of experiments and their lengths.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The problem of reconstructing a large ‘‘object’’ from partial observations is quite fundamental, and arises in many fields,
such as system biology [22,29], social networks [38,27], brain networks [36,19], telecommunication networks [10], and
many others.

We investigate a more complex type of reconstruction. In essence, our goal is to reconstruct a Markov process from
the records produced by limited observers acting independently, without coordination, and without even sharing a common
‘‘name space’’. Let us explain.

1.1. Our model

Our Markov model. In a Markov process, we denote the underlying transition graph by G = (V , E) and the starting vertex
by v. In this paper, the graph G is undirected and has infinitely many vertices, each of finite degree. An infinite sequence of
vertices is generated by the following process. The first vertex is v, and, if the ith vertex is u, then the (i + 1)-st vertex is
chosen at random uniformly and independently among the neighbors of u.

A sequence of vertices so generated is called a random walk. If (v =)v0→v1→· · · is a randomwalk, then v0→· · ·→vℓ

is a random walk of length ℓ.
Note. Assuming that G is undirected and unweighted allows us to present our results in the cleanest way. We shall discuss
how to relax both assumptions in Section 1.4. Assuming that G has infinitely many vertices is a simple way to force us to
consider only ‘‘local’’ algorithms: essentially, algorithmswhose performance does not depend on the size of thewhole graph,
which may be larger than all the parameters we shall care about.
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Fig. 1. An example illustrating the definition of anonymous experiment.

Our anonymous observation model. If v0→v1→· · · is a randomwalk, then its corresponding (anonymous) experiment is
the sequence of integers f (v0)→ f (v1)→· · · , where f (vi)

def
= |{v0, . . . , vi∗}| and i∗ is the smallest integer j such that vj = vi.

Intuitively, f (u) maps u to an integer indicating that u is the f (u)th distinct vertex in this walk.
Example. In the graph of Fig. 1, the length-7 walk v→ b→ c → f → b→ v→ c → g corresponds to the anonymous
experiment 1→2→3→4→2→1→3→5.

Note the walk v→c→b→ f→c→v→b→e also corresponds to the same experiment.
Rationale. Markov processes naturally model physical systems. In essence, the possible ‘‘states’’ of the system are the
vertices of the transition graph G, and, when put in its ‘‘initial state’’ v, the system evolves (i.e., new states are generated)
according to the transition rules.

When the system is ‘‘new’’ – better said, studied for the first time–noone initially has any idea about theunderlying graph
G. However, each individual can, on his own, experimentwith the systembyputting it into its initial state, and independently
observe its ‘‘evolution’’: that is, a random walk in G.

In sum, each individual will observe and record the states encountered in a random walk. Since the system is new, no
global names exist for the states. Thus each individual may very well use his own name space for the states encountered,
and thus his record is an anonymous experiment as defined above.

Of course, an individual observer might consider writing down a full description of every state he sees. However, this
may not be possible due to – say – memory limitations [15], or privacy reasons [26]. Also, an observer may not know how
many details are sufficient to identify each encountered state. In any case, an anonymous experiment is a most compact and
meaningful record.

1.2. Our results for the basic reconstruction problem

Whether human or not, a realistic observer has a bounded lifetime, and thus cannot visitmore than ℓ nodes in his random
walk.1 Thus, even with an unlimited number of such observers, one can at most learn Dℓ, the distribution over the anony-
mous experiments of length ℓ (that are induced from the randomwalks of the same length). Since our G has infinitely many
vertices, Dℓ cannot suffice to reconstruct the entire graph G. However, one may be able to use Dℓ in order to reconstruct
B(v, r), the ball of center v and radius r (i.e., the subgraph ofG induced by all verticeswhose distance from v is atmost r).More
precisely, one may be able to compute a graph G′ = (V ′, E ′) and a distinguished vertex v′ ∈ V ′, such that G′ is isomorphic
to B(v, r) and the isomorphism maps v′ to v. Thus, our basic reconstruction problem can be formulated as follows:

For every r, is there a length ℓ such that B(v, r) is reconstructible (up to isomorphism) from Dℓ?
Notice that, given access to the distributionDℓ, one can also simulate access to the distributionsD1, . . . , Dℓ−1. Of course,

although for now we are ignoring the complexity of learning these distributions, it would be nice if, given (D1, . . . , Dℓ) as
oracles, the reconstruction algorithm is efficient. Here, we say that (D1, . . . , Dℓ) are given as oracles, if the algorithm is
allowed to ask for the precise probability of Dt(P) for any anonymous experiment P of length t ∈ [ℓ].

Notice too that, in principle, our basic reconstruction problem may be impossible. For instance, could there exist two
different Markov processes, (G1, v1) and (G2, v2), having the same distribution Dℓ for all ℓ ≥ 0? If this were the case, the
two processes would be indistinguishable by any number of anonymous experiments, of any length, which immediately
implies a negative answer to the above question. Yet, we provide a constructive proof showing that our basic reconstruction
problem is indeed possible, when the underlying graph G is undirected.

Theorem 1. Let n be the number of vertices in B(v, r) and m the number of edges. One can reconstruct B(v, r) in time O(n2) and
with O(n2) oracle accesses to (D1, . . . , Dℓ), where ℓ = O(m). Moreover, the reconstruction algorithm only makes membership
queries to supp(Di) for i ∈ [ℓ].

In contrast, as we shall see in Section 1.4, this reconstruction becomes impossible when the underlying graph is directed
but not strongly connected.

Is this algorithm tight? To answer this question we must refine our reconstruction problem.

1 For concreteness, if he lives for at most 100 years, and each transition from node to node takes 1 s of time, then ℓ = 100× 366× 24× 60× 60.



S. Micali, Z.A. Zhu / Discrete Applied Mathematics ( ) – 3

1.3. Our results for the refined reconstruction problem

To discuss efficiencymoremeaningfully, we need to identify the relevant resources. First of all, notice that onemay never
learnDℓ exactly, nomatter howmany anonymous experiments hemay observe. Thus, we should investigate the ‘‘complex-
ity’’ of reconstructing B(v, r) with some confidence 1− δ. Furthermore, to appropriately count resources, we should realize
that even approximating the result of a single oracle call to Dℓ (i.e., to approximately compute the probability of a given
anonymous experiment P of length ℓ, up to a constant factor and with constant probability), one needs an exponential
number of length-ℓ experiments.

This said, it is easy to see that our first result can be expressed more precisely as follows.

Theorem 1′. Let d be the maximum degree of graph G. Then, B(v, r) can be reconstructed with probability at least 1 − δ using
dO(dr ) log 1

δ
anonymous experiments of length O(dr) each.

The above theorem follows fromTheorem1becausem, the number of edges inB(v, r), is atmostO(dr)due to the bounded
degree, and learning the support of Dℓ with 1− δ probability for ℓ = O(m) requires dO(m) log 1

δ
samples.

Thus a natural question arises: can one improve the total number of experiments, or the length of experiments, even
when the underlying graph is a tree? More concretely, suppose that B(v, r) is a tree of degree at most d and depth r , and d
is a constant.

• A random experiment of length ℓ = r can already visit (with non-zero probability) every vertex in B(v, r); if one allows
ℓ = poly(r), there will be dpoly(r) distinct experiments of length ℓ that correspond to random walks within B(v, r). In
principle, one may hope to use the probability values of these dpoly(r) experiments from Dℓ (that has bit complexity at
least dpoly(r)), to reconstruct B(v, r) (that has bit complexity only dO(r)); could it be possible?
• Our algorithm in Theorem 1 makes oracle accesses to Dℓ, and as we have argued, supporting even a single such query

requires us to generate dO(ℓ) random experiments. Therefore, could it be possible to design other types of algorithms that
use significantly smaller number of experiments?

We prove that the answers are both no in a very strong sense.2
Our first impossibility result states that one cannot ‘‘asymptotically’’ decrease the length of the experiments, even if the

number of experiments is made arbitrary high.

Theorem 2. If an algorithm can, for everyMarkov process (G, v), where G is an infinite binary tree, and every radius r, reconstruct
B(v, r) with probability 1

2 using an arbitrary number of anonymous experiments of length no more than ℓ, then ℓ = 2Ω(r).

Our second result is similarly strong, namely, one cannot ‘‘asymptotically’’ decrease the number of the experiments, even
if the length of experiments is made arbitrary high.

Theorem 3. If an algorithm can, for every Markov process (G, v), where G is an infinite ternary tree, and every radius r,
reconstruct B(v, r) with probability 1

2 using N anonymous experiments of arbitrary lengths, then N = 22Ω(r)
.

1.4. Extensions and additional results: a quick summary

As we shall discuss in our RelatedWork section (Section 1.5), our approach is related but quite different from other types
of reconstruction problems studied before. Here we wish to sketch various ways to generalize/improve our results.
Extensions. It should be realized that in a typical Markov process, the underlying graph may be directed and/or weighted.
Let us explore both possibilities separately.

An undirected graph of course is a special case of a directed one: namely a graph in which for each edge x→ y there
also is an edge y→x. For the reconstruction problem we discuss, however, the undirected case captures all the difficulty of
the problems, and certainly allows for much simplicity. For instance, the impossibility result of Theorem 2 becomes trivial.
To see this, it is enough to consider the following two graphs G1,G2 in Fig. 2a (with starting vertices v1, v2 respectively).
Indeed, for both graphs, there is only one anonymous experiment of length ℓ: namely, 1→2→· · ·→ℓ+ 1.

Accordingly, our reconstruction problem becomes interesting only when the underlying graph is strongly connected. Bet-
ter said, since we are studying infinite graphs and ‘‘local algorithms’’, the notion of strong connectivity needs to be strength-
ened so as to guarantee, for every edge x→ y, the existence of a path from y back to x of suitably bounded length. In the
simplest case, the length of the path from y to x is upper bounded by an absolute constant c . In this case, our algorithm of
Theorem 1 can be extended to reconstruct the directed ball B(v, r) using experiments of length ℓ = O(m ·c). More generally,
our algorithm will work with experiments of length ℓ = O(m · c ′), where c ′ is the average length of the paths from y to x
over all edges x→y in the ball B(v, r), and c ′ need not be known by the algorithm.

2 We also note that the answers are both yes in certain special cases, as we shall formalize in Section 1.4.
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(a) An example for directed graphs. (b) An example to illustrate
homogeneity.

Fig. 2. Examples for extensions and improvements.

In the weighted case, our algorithm will reconstruct the ‘‘topology’’ of the underlying ball, that is, all edges in the ball,
without their weights. This implies, for instance, if the randomwalk we studied has laziness – that is, at each vertex it stays
at where it is with half probability, and goes to a random neighbor with another half probability – we can still reconstruct
G. In general, reconstructing the weights too will require future work.
Improvements. The performance of our algorithm of Theorem 1 can be dramatically improved given reasonable guarantees
about the topology of the underlying graph. One such guarantee is ‘‘non homogeneity’’. Consider the simple graph (indeed
a tree) in Fig. 2b.

In this graph, the three children of the root, a, b, and c , cannot be distinguished until level 3. Indeed, all of them are indis-
tinguishable at level 1, that is, in B(v, 1). Vertex c can be distinguished from the others at level 2: indeed, in B(v, 2) vertex
c has only one child (equivalently 2 neighbors), while each of a and b has 2 children. At this level, however, no way exists to
distinguish a from b. But one additional level suffices.

Informally,we say that a graphGhas homogeneityω, if for each vertexu inG, every twoneighbors ofu can be distinguished
in a ball centered at u with at most ω edges. Then, if the graph G is guaranteed to be of homogeneity ω, the algorithm for
Theorem 1 (without knowing ω) can be extended to reconstruct B(v, r) with experiments only of length ℓ = O(r · ω).

Notice that this specific improvement does not contradict the impossibility result of Theorem 2. Indeed, to prove
Theorem 2 we exhibit a ball B(v, r) whose homogeneity is very large, namely, ω = 2Ω(r). In fact, B(v, r) is constructed
so that B(v, r − 1) consists of a complete binary tree, and thus the two children of the root cannot be distinguished up to
level r − 1.

1.5. Related work

Graph reconstruction using queries. The problem of reconstructing an unknown graph from oracle queries has been stud-
ied in many different contexts, and most notably using edge detection queries [16,2,1,5,6], edge counting queries [17,7,25],
or distance queries [20,21,32,24].

In an edge detection query model, the oracle, on input a subset S of the vertices, returns if there exists an edge between
any two vertices in S. Angluin and Chen [6] show that usingO(log n) adaptive queries per edge is sufficient for reconstructing
an arbitrary graph, and this has been generalized to hypergraphs [5].

In an edge counting querymodel, the oracle, on input a subset S of the vertices, returns the number of edges between any
two vertices in S. While Grebinski and Kucherov [17] prove tight bounds of O(dn) and O(n2/ log n) non-adaptive queries for
d-degree-bounded and general graphs, in a more recent work, Mazzawi [25] shows that an information-theoretically tight
bound of O(m log(n2/m)/ logm) can be achieved using non-adaptive queries for any graph with n vertices and m edges.

In a distance query model, the supported queries are of the form dist(u, v), that is, the oracle returns the (possibly ap-
proximate) distance between any two given vertices. A lower bound ofΩ(n2) queries is shown by Reyzin and Srivastava [32]
for general graphs. Mathieu and Zhou [24] generalize this lower bound to allow approximate distance oracles, provide an
upper bound ofO(n3/2) for constant-degree graphs, andO(n) for outerplanar graphs.

All the results above are quite different from ours: the ‘‘name space’’ of the vertices are shared between different queries.
As a result, if one is satisfied with a polynomial running time – say, O(n2) – it is trivial to (even locally) reconstruct any graph
using any of the oracles above.
Learning graphical models. Much work has been done in the machine learning community on learning the structures of
graphical models. While we refer interested readers to Part III of Kollar and Friedman’s book [23], we summarize a few of
them below.

A first type of research in this field assumes that the topology of a graphicalmodel (e.g., a Bayesian network) is known, and
focuses on estimating the parameters in the model. Two well-known methods are the maximum likelihood estimation and
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the Bayesian estimation.While the earliest application of suchmethods is for the purpose of classification [12], Spiegelhalter
and Lauritzen [34] lay the foundation for the general parameter estimation problem of the Bayesian network from data.

A second type of research is on structure learning in Bayesian networks. Twomain approaches are used to learn a Bayesian
network without a pre-specified topological structure. The first approach is constraint-based, where the network structure
is reconstructed via various kinds of independency tests. The most famous one is the I-equivalence test due to Verma and
Pearl [37,30]. The second approach is learning-score-based, where the score of a candidate network structure is based on
(1) a prior distribution describing how well we believe the structure is true (where one usually prefers sparser structures),
and (2) how well the structure fits the observed data. For instance, Buntine [8] first explored the use of non-uniform priors
(namely, Dirichlet priors), and studied the problem of learning discrete Bayesian networks by Bayesian scores.

In general, structure learning beyond Bayesian networks is much harder. For instance, learning Markov random fields
(i.e., Markov networks) has received much attention in various special cases including, most notably, the tree case tracing
back to Chow and Liu [9].

A third type of research is on learning with incomplete data, where some variables are usually missing or hidden in the
data, and one may still want to either estimate the parameters or learn the network structure as above. Perhaps the most
famous method in this line of research is the framework of expectation maximization, introduced by Dempster et al. [11],
and then applied to structural learning by Friedman [13,14].

To the best of our knowledge, there has not been any study of using independent and anonymous samples, like we do, in
order to reconstruct (or in their language, do structure learning for) a Markov process. In our case, the ‘‘name space’’ of the
observed variables are not shared across samples.
Local graph algorithms. By adaptively performing a sublinear number of queries (compared to the input graph size) around
a specific vertex, one can solve certain local variants of the classical graph problems, including coloring, maximal indepen-
dent set, dominating set, andmany others. One can find a survey for such topics in [33]. The idea of using local randomwalks
to obtain local properties about a graph is studied by papers such as [35,3,4,39,28], but those randomwalks assume a global
name space.
A complementary model of limited experiment. Another type of limited experiment is that in which, although a global
name space exists, each observer only writes down the set of the visited states, ignoring the order in which they are visited.
See [31,18].

1.6. Roadmap

We introduce necessary notations in Section 2, and prove Theorems 1, 2 and 3 in Sections 3, 4 and 5 respectively.

2. Notation

Throughout the paper we assume that the graph G = (V , E) is undirected, unweighted, simple,3 of finite degree, and of
infinite size. We denote by BG(u, r) the subgraph of G induced by all vertices whose distance from u is at most r . When it is
clear from the context, we abbreviate BG(u, r) as B(u, r).

We distinguish a special node v ∈ V as the starting vertex, and are interested in reconstructing B(v, r) for some radius r .
Anonymous experiments. We say that P is a valid (anonymous) experiment of length ℓ if P = p0→ p1→· · · pℓ, in which
pi = |{p0, p1, . . . , pi∗}| where i∗ is the smallest index j such that pj = pi. For instance, 1→ 2→ 3→ 2→ 4→ 3 is a valid
experiment, but 1→2→4 is not.

A walk Q of length ℓ in G corresponds to a unique anonymous experiment P of the same length, by replacing the name
of each vertex u in Q by a positive integer k indicating that u is the kth distinct vertex in this walk. We denote by Q ▹ (G, P)
when this happens.

In the graph of Fig. 1, the length-7 walk Q = v→b→c→ f→b→v→c→g uniquely corresponds to the experiment
P = 1→2→3→4→2→1→3→5; as we have seen, two different walks may correspond to the same experiment.

For notational simplicity, we sometimes remove the requirement that ‘‘the numbers in an experiment are sorted by the
order they visit’’. For instance, wemay also talk about experiments of the form 2→3→1→3, which is regarded equivalent
to 1→2→3→2 due to renaming.
Randomwalks. A randomwalk of length ℓ on G (starting from vertex v) is generated from the following procedure. The first
vertex is v, and, if the ith vertex is u, then the (i+ 1)-st vertex is chosen at random uniformly and independently among the
neighbors of u.4 A random (anonymous) experiment is generated by first generating a random walk and then mapping it to
its corresponding anonymous experiment.

We let Dwalk
v,ℓ denote the distribution over random walks of length ℓ, and Dv,ℓ the distribution over random anonymous

experiments of length ℓ. For notational simplicity we usually denote them by Dℓ and Dwalk
ℓ . We also let supp(Dℓ) be the

support ofDℓ, so it consists of all experiments that have a positive probability to be seen in a random experiment of length ℓ.

3 I.e., no multi-edges or self-loops. One can allow a single self-loop at each vertex for the positive result of this paper.
4 One can also allow laziness, letting the random walk have a 1/2 probability of staying for each step, and all results in this paper remain unchanged.
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Fig. 3. An example to illustrate the proof of Theorem 1 for r = 1.

Supporting graph. Given an anonymous experiment P of length ℓ that contains n distinct integers, one can define its
supporting graph Graph(P)

def
= (V , E), where V = {1, 2, . . . , n} and (a, b) ∈ E if and only if a→ b (or b→ a) appears

in P . For instance, letting P = 1→ 2→ 3→ 1→ 4→ 2→ 1, we have Graph(P) equal to the graph in Fig. 3b. As we shall
see in detail, a usual property about supporting graphs is that given any P ∈ supp(Dv,ℓ), its supporting graph Graph(P) is
a subgraph of G (up to renaming of the vertices), where vertex 1 in Graph(P) is mapped to v in G.
Path replacement. Given any experiment P , we denote by Replace(P, u, P ′) the new experiment after replacing the last
occurrence of integer u in P by the path P ′. For instance

Replace(1→2→3→4→5→4→3, 4, 4→6→4) = 1→2→3→4→5→(4→6→4)→3

where the parentheses are for clarification purpose.

3. Theorem 1: a reconstructability result

In this section we show a positive result on reconstructing B(v, r) from random anonymous experiments of length
ℓ = O(m), where m is the number of edges in B(v, r).

Theorem 1 (Restated). Let n be the number of vertices in B(v, r) and m the number of edges. Reconstruct(v, r) (see Fig. 4)
reconstructs B(v, r) with oracle accesses to (D1, . . . , Dℓ), where ℓ = 2(m + 1). More specifically, Reconstruct runs in time
O(n2), and makes a total of O(n2) membership queries to supp(Di) for i ∈ [ℓ].

3.1. An intuitive and non-constructive proof of Theorem 1

In this subsection, we show why Theorem 1 holds in a rather ‘‘non-constructive’’ way, that is, without worrying about
the running time of the reconstruction algorithm. In the next subsection we prove Theorem 1, with the claimed running
time of its reconstruction algorithm.
Thewarm-up case: Reconstruction for r = 1. Before proving the theorem, let us build the intuition by studying the special
case of r = 1. Consider the following simple 2-step algorithm for reconstructing B(v, 1).

* (Throughout this section we slightly abuse the notation: for any experiment P of length no more than ℓ, we use
P ∈ supp(Dℓ) to indicate the fact that P ∈ supp(Di) for some i ∈ [ℓ].)

1. In the first step we learn the degree of v. Let k ≥ 1 be the maximum integer such that the experiment

P = 1→2→1→3→· · ·→k→1

is in supp(Dℓ). It is easy to show that vertex v has precisely k− 1 neighbors in G according to the definition of k.
* (For the ease of describing the next step, we assume k = 4 and B(v, 1) is given by Fig. 3a.)
2. In the second step we learn the pairwise connections among the 3 = k − 1 neighbors of v. Letting P = 1→ 2→ 1→

3→1→4→1 be the walk studied in the first step, we proceed as follows.
• We first check if

P1
def
= Replace(P, 2, 2→3→2) = 1→(2→3→2)→1→3→1→4→1

is in supp(Dℓ). If not, it indicates that there is no pairwise connection between any two neighbors of v, and the
algorithm may terminate. Otherwise, there exists at least one pair of neighbors of v that are connected and the
algorithm proceeds. Note that P1 indeed exists in supp(Dℓ) for the graph of Fig. 3a, because v → a → c → a →
v→c→v→b→v is such a walk.
• We then check if

P2
def
= Replace(P1, 2, 2→4→2) = 1→


2→3→(2→4→2)


→1→3→1→4→1

is in supp(Dℓ). If not, it indicates that there does not exist a neighbor of v that is connected to two other neighbors,
and the algorithmmay terminate (in the case of k = 4). Otherwise, like in Fig. 3a where v→


c→a→(c→b→c)


→

v→a→v→b→v is such a walk, there exists a neighbor of v connected to two other neighbors, and the algorithm
proceeds.
• We finally check if P3

def
= Replace(P2, 3, 3→ 4→ 3) is in supp(Dℓ). If not, like in Fig. 3a, we know the other two

neighbors of v are not connected; otherwise they are connected. In both cases the algorithm may terminate here (in
the case of k = 4).
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Fig. 4. ReconstructDℓ (v, r).

In the end of the algorithm, we output the supporting graph of the last experiment seen in supp(Dℓ) by the above steps. In
our example, this is Graph(P2), shown in Fig. 3b. Note that Fig. 3b is isomorphic to Fig. 3a and the isomorphismmaps vertex
1 to vertex v, so is indeed a reconstruction of B(v, 1). In this example, the longest experiment ever queried is P3, of length
12 = 2(m+ 1) = ℓ.
The general case: Reconstruction for r > 1. One can learn from the above warm-up case that, for any experiment P of
length no more than ℓ,

• if P ∈ supp(Dℓ), then Graph(P) is a subgraph of G (up to renaming with 1 being mapped to v in G), and conversely
• if Graph(P) is a subgraph of G (up to renaming with 1 being mapped to v in G), then P ∈ supp(Dℓ).

We summarize this as

P ∈ supp(Dℓ) ⇐⇒ Graph(P) is a subgraph of G (up to renaming with 1 mapped to v). (3.1)

Therefore, onewould hope to enumerate over all possible experiments P anduse the information ofwhether P is in supp(Dℓ)
to reconstruct B(v, r). Let us formalize this.

We call an experiment P economical if for any two integers a, b in the path, the segment a→ b appears at most once in
P . All paths studied in the warm-up case are economical.

One can now study the following algorithm NaiveReconstruct. It enumerates over all valid experiments by the
increasing order of their lengths, in order to find the longest experiment P∗ ∈ supp(Dℓ) such that

both P∗ is economical and Graph(P∗) is of radius r from vertex 1.

Owing to (3.1), this P∗ satisfies that Graph(P∗) is isomorphic to B(v, r) and the isomorphism maps vertex 1 to vertex v.
Since any economical experiment P of length 2(m+1) has at leastm+1 edges in its supporting graph, Graph(P) cannot be
a subgraph of B(v, r) and thus P ∉ supp(Dℓ). This implies that NaiveReconstruct only needs oracle access to supp(Dℓ)
for ℓ ≤ 2(m+ 1) in order to determine that P∗ is the longest such experiment.

3.2. A constructive proof of Theorem 1

Although being sufficient for reconstructing B(v, r) given oracle access to supp(Dℓ), NaiveReconstruct is still unsat-
isfactory because (1) the enumeration procedure is too slow and (2) the algorithm is not generalizable to the improvement
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case studied in Section 1.4. We thus propose a more constructive algorithm Reconstruct that only makes O(n2) member-
ship queries to supp(Dℓ).

At a high level, Reconstruct builds B(v, r) by learning B(v, 1), . . . , B(v, r) layer by layer, and for each layer, by learning
the vertices one by one. At any time of the algorithm, we maintain an economical experiment P whose supporting graph
Graph(P) is a subgraph of B(v, r). We incrementally ‘‘add’’ new vertices or edges to Graph(P), verify if the new graph is
still a subgraph of B(v, r) using (3.1), and if so, we update the current experiment P and continue. The details are as follows.

We describe Reconstruct in Fig. 4 and show its correctness by an induction on r . Suppose that we have reconstructed
B(v, r0 − 1) for some value r0 − 1 ≥ 0, and we now want to reconstruct B(v, r0) using Dℓ where ℓ = 2(m+ 1).

Let n0 be the number of vertices in B(v, r0 − 1), and P0 an arbitrary experiment such that G0
def
= Graph(P0) is a

reconstruction of B(v, r0 − 1).5 We also denote by u1, . . . , uk ∈ [n0] the vertices in G0 that have distance precisely r0 − 1
from vertex 1. We iterate over all i = 1, 2, . . . , k, and for each i we first let P ′ = Pi−1 and repeatedly do the following (see
Line 7 through 8 in Fig. 4).

Whenever Replace(P ′, ui, ui→ ⋆→ ui) exists in supp(Dℓ), where ⋆ is the smallest integer not appearing in P ′, we
know that there is at least one more vertex neighboring to ui that is not explored so far, and we add it to P ′ by updating
P ′ ← Replace(P ′, ui, ui→⋆→ui). Equivalently, this update on P ′ can be understood as we are introducing a new vertex
x along with a new edge (x, ui) to Graph(P ′).

As soon as a new vertex ⋆ is added to P ′, we add the edges connecting ⋆ to other vertices in Graph(P ′) as follows. In
principle, ⋆ may be connected to any vertex in u′ ∈ {ui+1, . . . , uk} ∪ {n0 + 1, . . . , ⋆ − 1}, and we check them one by one.
For each such a candidate neighbor u′, we check if Replace(P ′, ⋆, ⋆→ u′→ ⋆) exists in supp(Dℓ), and if so, we update
P ′ ← Replace(P ′, ⋆, ⋆→ u′→ ⋆) and continue to the next u′. Equivalently, this update can be understood as we are
adding an extra edge between x and u′ into Graph(P ′).

Let Pi be the final experiment P ′ after exploring all the vertices neighboring to ui, andGi = Graph(Pi). We have, according
to (3.1), that Gi is a subgraph of G. In fact, the last such subgraph Gk reconstructs B(v, r0):

Claim 3.1. Gk is isomorphic to B(v, r0) and the isomorphism maps vertex 1 to vertex v.

Proof. First of all, Gk must be a subgraph of B(v, r0) because Pk ∈ supp(Dℓ) and, by construction, all vertices of Gk arewithin
distance r0 from vertex 1. Therefore, we only need to verify if there is any vertex or edge in B(v, r0) missing from Gk.

Let σ be an arbitrary embedding of Gk into B(v, r0), i.e., a mapping from the vertex set of Gk to that of B(v, r0), preserving
edges, and mapping vertex 1 to vertex v.

For the missing vertex case, we prove by way of contradiction and suppose there is a vertex w in B(v, r0) \ B(v, r0 − 1)
missing from Gk under this embedding σ . Becausew is at distance r0 from v, it must be connected to some vertex at distance
r0− 1 from v. Let this vertex be σ(ui) for some i ∈ [k]. (There must exist such a ui because G0 reconstructs B(v, r0− 1) from
the inductive step.)

Next, since w is missing from Gk, vertex ui must have fewer neighbors in Gk than vertex σ(ui) does in B(v, r0). At the
time we finish constructing Pi (so the while loop in Line 9 from Fig. 4 terminates), Gi = Graph(Pi) can be embedded into G
under the same σ . LettingP = Replace(Pi, ui, ui→ x→ ui), the same embedding σ , while appended with σ(x) → w,
should provide a valid embedding of Graph(P) into G, and according to (3.1) this impliesP ∈ supp(Dℓ). This contradicts
the termination condition of the while loop in Line 9 that saysP ∉ supp(Dℓ). Therefore there is no missing vertex.

One can perform a similar argument for the missing edge case. �

In sum,we have shown that B(v, r0) can be constructed by the algorithm above, and by induction, Reconstruct outputs
a reconstruction of B(v, r). Notice that the experiment P , at the end of the algorithm, has a total length of 2m because
each edge in B(v, r) is traversed precisely once in each direction. Therefore the longest experiment Reconstruct has ever
queried is of length 2(m + 1), and choosing ℓ = 2(m + 1) is sufficient for our purpose. In addition, Reconstruct makes
no more than O(n2) membership queries to supp(Dℓ). �

4. Theorem 2: a lower bound on experiment length

In this section, for any integer h ≥ 1, we construct two (infinite) binary trees T1 = T (h)
1 and T2 = T (h)

2 with the starting
vertex being the root for both cases. We show, quite surprisingly, although T1 and T2 are different at depth r = 2h + 3,
any anonymous experiment of length no longer than ℓ = O(2h) has the same probability to be generated from T1 and T2.
Formally,

Lemma 4.1. There exists a constant c such that, given two binary trees T1 = T (h)
1 and T2 = T (h)

2 (as constructed in Fig. 5), and
letting the starting vertex v1 and v2 be their roots, we have:

• BT1(v1, 2h+ 3) and BT2(v2, 2h+ 3) are different (i.e., non-isomorphic), but
• the distributions over random experiments of length ℓ ≤ c · 2h in T1 and T2 are the same.

5 I.e., P0 satisfies that Graph(P0) is isomorphic to B(v, r0 − 1) and the isomorphismmaps vertex 1 to v. In fact, P0 is inherited from the inductive step of
the algorithm, and corresponds to an arbitrary walk that starts from v and traverses each edge in B(v, r0 − 1) exactly once in each direction.
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Fig. 5. The recursive definition of the hard instance for Theorem 2.

Theorem 2 is immediately implied by the above lemma, because it rules out the possibility of reconstructing B(v, r), even
for binary trees, with oracle access to (D1, . . . , Dℓ) for any ℓ = 2o(r).

4.1. Our hard instance

We define T1 = T (h)
1 and T2 = T (h)

2 recursively.
Let T (0)

1 and T (0)
2 be defined as follows (see Fig. 5): the roots of both trees have two children and each child in turns has

two children; among the four grandchildren of the root, two of them are ‘‘black’’, having two infinite chains of descendants,
and two of them are ‘‘white’’, having one infinite chain of descendants.

T (i)
1 and T (i)

2 are defined similarly (see Fig. 5): the roots of both trees have two children and each child in turns has two
children; among the four grandchildren of the root, two of them are ‘‘black’’, having T (i−1)

1 as subtrees, and two of them are
‘‘white’’, having T (i−1)

2 as subtrees.

4.2. A warm-up property

For j ∈ {1, 2}, let Dj,ℓ be the distribution over random experiments of length ℓ generated from the Markov process
starting from the root of Tj. Given an experiment P of length ℓ, we denote by Pr[P | Tj] the probability that P is generated
from Dj,ℓ.

Recall that one can associate P with its supporting graphGP = Graph(P). Since T1 and T2 are binary trees, if the supporting
graph GP has cycles or is non-binary, P cannot exist inDj,ℓ. We thus focus only on the experiments P for which GP is a binary
tree. We make the following claim:

Claim 4.2. If the root (i.e., vertex 1) of GP has at most one grandchild, then Pr[P | T1] = Pr[P | T2].

Before proving Claim 4.2, we summarize the high level intuition as follows.
Any experiment P is consistent with a set of walksQ1 on T1, and a set of walksQ2 on T2. The probability Pr[P | Tj] is equal

to


Q∈Qj
Pr[Q | Tj], the sum of probabilities over the walks in Qj, i.e., those walks consistent with P . We show that, under

the condition P visits only one grandchild of the root, there is a one-to-one mapping τ between Q1 and Q2 that preserves
probabilities. This immediately implies that Pr[P | T1] = Pr[P | T2]. The one-to-one mapping τ is illustrated in Fig. 6, and
note that if P visits two grandchildren such a mapping may not exist.

Proof of Claim 4.2. We prove the claim when the root has only one grandchild in GP . The other case – when the root has
no grandchild – is only simpler. We denote by u ∈ Z+ this unique grandchild, and focus on the case of h = 0; the case of
h > 0 is similar.

Let the four grandchildren of the root in T (0)
1 be denoted by a1, a2, a3, a4 respectively, and the four grandchildren of the

root in T (0)
2 be denoted by b1, b2, b3, b4. We order them according to Fig. 6 so a1, a2, b1, b3 are black, and a3, a4, b2, b4 are

white.
We now construct a one-to-one mapping τ from the walks on T (0)

1 that are consistent with P to the walks on T (0)
2 that

are consistent with P . Our τ is defined ‘‘by picture’’, with four representative examples given in Fig. 6.
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Fig. 6. The illustration of our mapping τ used in Claim 4.2.

More precisely, to define τ , we first draw T (0)
1 and T (0)

2 on the plane with four grandchildren of the root sorted as
a1, a2, a3, a4 and b1, b2, b3, b4 from left to right. Then, given a walk Q on T (0)

1 (starting from the root) that is consistent
with P , denoted as Q ▹ (T (0)

1 , P), vertex u in P must be mapped to one of {a1, a2, a3, a4}.

• If u is mapped to a2 or a3 in Q (see Fig. 6(b) and (c)), we let Q ′ = τ(Q ) be the walk in T (0)
2 that is flipped left and right

(with respect to the plane), and thus u is mapped to b3 or b2 respectively in Q ′.
• If u is mapped to a1 or a4 in Q (see Fig. 6(a) and (d)), we let Q ′ = τ(Q ) be the ‘‘same’’ walk Q under translation on the

plane, and thus u is mapped to b1 or b4 respectively in Q ′.

It is not hard to verify that τ is a one-to-one mapping. In addition, the ith vertex in Q has the same degree as the ith vertex
in Q ′ = τ(Q ) for any i and any Q satisfying Q ▹ (T (0)

1 , P). Therefore we have Pr

Q | T (0)

1


= Pr


Q ′ | T (0)

2


, i.e., Q and Q ′

have the same probability to be generated in the random walk from T (0)
1 and T (0)

2 respectively. This implies

Pr

P | T (0)

1


=


Q▹(T (0)

1 ,P)

Pr

Q | T (0)

1


=


Q▹(T (0)

1 ,P)

Pr

τ(Q ) | T (0)

2


=


Q ′▹(T (0)

2 ,P)

Pr

Q ′ | T (0)

2


= Pr


P | T (0)

2


,

that is, P has the same chance to be generated as an experiment in T (0)
1 and T (0)

2 . �

4.3. A general property

For any i ∈ {0, 1, . . . , 2h}, we denote by Li the set of vertices (in the form of integer numbers) in GP = Graph(P) at
depth i from the root (where the root itself is in L0). We prove the following property about a shortest experiment in which
Pr[P | T1] ≠ Pr[P | T2].

Lemma 4.3. Given a shortest experiment P in which Pr[P | T1] ≠ Pr[P | T2], any i ∈ {0, 1, . . . , h}, and any u ∈ L2i, vertex u
has at least two grandchildren in GP .

Notice that the case of i = 0 is a direct consequence of Claim 4.2, but the proof for the i ≥ 1 case is more involved. Before
proving it formally, we summarize the basic idea as follows.

If P is a shortest such experiment, and if there exists some u in P with only one grandchild, we shorten P to a new
experiment P ′ by essentially removing all occurrences of u and the descendants of u. In a rough sense, Pr[P | Tj] equals to
Pr[P ′ | Tj] × Pr[P \ P ′ | Tj]where P \ P ′ is an experiment corresponding to the removed segment of vertices. Because u has
only one grandchild in GP , this removed subsegment P \ P ′ has the same probability to be generated in T1 and T2 (owing
to Claim 4.2). We therefore conclude that Pr[P ′ | T1] ≠ Pr[P ′ | T2], contradicting to the fact that P is the shortest such
experiment.
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Proof of Lemma 4.3. The case of i = 0 is inherited fromClaim4.2, so the rest of this section is devoted to proving Lemma4.3
for i ≥ 1.

For j ∈ {1, 2}, let Dj,ℓ be the distribution over random experiments of length ℓ in tree Tj, and Dwalk
j,ℓ the distribution over

random walks in tree Tj. We make a quick observation first.

Given an experiment P , the probability Pr[P | Tj] is the sumof the probabilities Pr[σ(P) | Tj] over all choices of embeddings
σ : GP→Tj:

Pr[P | Tj] =


embedding σ : GP→Tj

Pr[σ(P) | Tj]. (4.1)

Here an embedding σ is a mapping from the vertices in GP to the vertices in Tj, while preserving edges and mapping vertex
1 to vertex v. Accordingly, σ maps an experiment P to an actual walk σ(P) on Tj, and Pr[σ(P) | Tj] is the probability for σ(P)

to be generated from Dwalk
j,ℓ . We also recall a useful fact by the definition of random walk:

Pr[σ(P) | Tj] =
ℓ

i=1

1
deg(σ (P (i)))

, (4.2)

where P (i) is the ith integer in the experiment P , and thus deg(σ (P (i))) is the degree of the ith vertex in the length-ℓ walk
σ(P).

We are now ready to prove Lemma 4.3. Suppose that Lemma 4.3 does not hold for some i ∈ {1, . . . , h}, and vertex u ∈ L2i
has only one grandchild in GP , we will show that one can shorten P to construct a new experiment P ′ where it also satisfies
Pr[P ′ | T1] ≠ Pr[P ′ | T2], contradicting the fact that P is the shortest such experiment. In order to shorten P , we first discover
that P must be of some special structure, described as follows.

We note that P can be viewed as a ‘‘walk’’ on its supporting graph GP = Graph(P), and let the w be parent of u in GP .
Clearly, P must visit w before it visits u in this walk, but we claim that P can only be one of the two forms:

• either it enters the subtree rooted at u, then comes back to w and never visits u again;
• or it enters the subtree rooted at u and never comes back to w.

Formally,

Claim 4.4. P must be of the form:

P = P1→w→u→P2→u→w→P3 or P = P1→w→u→P2

where P2 consists of only vertices that are u or descendants of u (in GP ), while P1 and P3 consist of only vertices that are neither
u nor descendants of u (in GP ).

Proof. Suppose that P is of neither of the two forms above, then P must visit some descendants of u first, then non-
descendants, and then descendants again. For instance, such a walk could be

P = P1→w→u→P2→u→w→P3→w→u→P ′2
where P2 and P ′2 consist of only u or descendants or u, while P1 and P3 consist of only vertices that are neither u nor
descendants of u. We only prove the claim for this case above, and other cases are similar.

We first swap the order of the vertices in P and construct the following experiment P ′:

P ′ = P1→w→P3→w→u→w→u→P2→u→P ′2.

Since for any two integers a and b the directed edge a→b appears exactly the same number of times in P and P ′, we have
that Pr[P | Tj] = Pr[P ′ | Tj] according to (4.1) and (4.2), for both j = 1 and 2.

We next observe that the subsequencew→u→w→u is redundant: since u andw are of depth 2i and 2i−1 respectively,
they will always be mapped to vertices with degree 3 in T1 or T2. As a result, if we define

P ′′ = P1→w→P3→w→u→P2→u→P ′2

we must have Pr[P ′ | Tj] = ( 1
3 )

2 Pr[P ′′ | Tj] for both j = 1 and j = 2, according to (4.1) and (4.2) again. This indicates Pr[P ′ |
T1] ≠ Pr[P ′ | T2], contradicting the choice of P which is the shortest experiment that makes Pr[P | T1] ≠ Pr[P | T2]. �

Now we focus only on the case of P = P1→w→u→P2→u→w→P3 because the other one is only simpler. We want
to shorten it to P1→w→P3.

Claim 4.5. If an experiment P = P1→w→u→ P2→u→w→ P3 satisfies Pr[P | T1] ≠ Pr[P | T2] (where the definitions of
P1, P2 and P3 are the same as Claim 4.4), and u has at most one grandchild in Graph(P), then we have

Pr[P1→w→P3 | T1] ≠ Pr[P1→w→P3 | T2].
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Proof. To see this, we consult (4.1) again. For each j ∈ {1, 2}, and given an embedding σ : GP → Tj, we write it as a pair
σ = (σ1, σ2) where

• σ1 maps all the vertices excluding the descendants of u (so including u) to Tj,
• σ2 maps all the descendants of u (including u) to Tj, and
• σ1 and σ2 map u to the same vertex in Tj. (When this is the case, we denote by σ1 ∼ σ2.)

We therefore rewrite:

Pr[P | Tj] =


σ

Pr[σ(P) | Tj] =

σ1


σ2:σ1∼σ2

Pr

(σ1, σ2)(P)

 Tj. (4.3)

Next, recall that Q = σ(P) = (σ1, σ2)(P) is a walk on the tree Tj, and Pr[Q | Tj] can be written as a product of the reciprocal
of degrees, i.e., Pr[Q | Tj] =

ℓ
i=1

1
deg(Q (i))

in which deg(Q (i)) is the degree of the ith vertex in the walk Q . This allows us to
break Q into five segments: σ1(P1→w), σ1(w→u), σ2(u→P2→u), σ1(u→w), and σ1(w→P3), and compute

Pr[(σ1, σ2)(P) | Tj] = Pr

σ1(P1→w)

 Tj · Prσ1(w→u)
 Tj

· Pr

σ2(u→P2→u)

 Tj · Prσ1(u→w)
 Tj · Prσ1(w→P3)

 Tj.
We reorder them into four segments σ1(P1→w→P3), σ1(w→u), σ1(u→w), σ2(u→P2→u), and conclude that

Pr[(σ1, σ2)(P) | Tj] = Pr

σ1(P1→w→P3)

 Tj · Prσ1(w→u)
 Tj · Prσ1(u→w)

 Tj · Prσ2(u→P2→u)
 Tj.

However, we must have Pr[σ1(w→u) | Tj] = Pr[σ1(u→w) | Tj] = 1/3 because any embedding σ = (σ1, σ2) maps u and
w to vertices with degree 3. This, combined with (4.3) gives us

Pr[P | Tj] =

σ1


σ2:σ1∼σ2

Pr

σ1(P1→w→P3)

 Tj · 13 · 13 · Prσ2(u→P2→u)
 Tj

=
1
9


σ1

Pr

σ1(P1→w→P3)

 Tj · 
σ2:σ1∼σ2

Pr

σ2(u→P2→u)

 Tj.
Now, fixing any σ1, we know that u is mapped to vertex σ1(u) in Tj, and σ1(u) must be the root of some T (h−i)

k tree for
k ∈ {1, 2}. Here the value of k depends on the choice of σ1. We observe that the summation

σ2:σ1∼σ2

Pr

σ2(u→P2→u)

 Tj
is precisely the probability for the experiment u→P2→u (after renaming so that the integers are 1-based) to be generated
in T (h−i)

k , and this value does not depend on the choice of k owing to Claim 4.2 and the fact that u has at most one grandchild
in P2. Let this value be p ∈ [0, 1], and we conclude that

Pr[P | Tj] =
1
9


σ1

Pr

σ1(P1→w→P3)

 Tj · p = p
9
· Pr[P1→w→P3 | Tj],

that is, the value of Pr[P | Tj] is a fixed constant p
9 multiplied by that of a shorter experiment P1→w→P3 on the same tree

Tj. Since this is true for both j ∈ {1, 2}, we conclude that Pr[P1→w→P3 | T1] ≠ Pr[P1→w→P3 | T2]. �

Since the above claim contradicts the choice of P which is the shortest such sequence that makes Pr[P | T1] ≠ Pr[P | T2],
we finish the proof of Lemma 4.3. �

4.4. Proof of Lemma 4.1

Proof. It is immediate that Lemma 4.3 implies Lemma 4.1: the shortest experiment P that distinguishes Pr[P | T1] and
Pr[P | T2] must branch out at least once for every two levels, and therefore |L2i| ≥ 2i and in particular L2(h+1) ≥ 2h+1. This
shows that the length of P must be at least Ω(2h) (in order to visit 2h+1 distinct vertices at depth 2(h+ 1)). In other words,
there exists some constant c where Pr[P | T1] = Pr[P | T2] for any experiment of length ℓ ≤ c · 2h. �

5. Theorem 3: a lower bound on the number of experiments

5.1. Our new hard instance

We slightly modify our hard instance in Fig. 5, by replacing the definitions of T (0)
1 and T (0)

2 with Fig. 7: instead of having
a black vertex to be the root of two infinite chains and the white vertex to be the root of one (recall Fig. 5), we let a black
vertex be the parent of three infinite complete binary trees, and the white one be the parent of two. The new trees T1 = T (h)

1
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Fig. 7. The new choices of T (0)
1 and T (0)

2 for Theorem 3.

and T2 = T (h)
2 so constructed are ternary. (In fact, one can verify that the binary variants of T1 and T2 also suffice for the

purpose of Theorem 3, but they will make the analysis more involved.)
It is a simple exercise to verify that all the proofs in Section 4 remain true for this new hard instance pair (T1, T2), and

therefore Lemma 4.1 still applies: that is, there exists a constant c such that, letting the starting vertex v1 and v2 be the
corresponding roots, we have:

• BT1(v1, 2h+ 3) and BT2(v2, 2h+ 3) are different (i.e., non-isomorphic), but
• the distributions over random experiments of length ℓ ≤ c · 2h in T1 and T2 are the same.

This new construction satisfies an additional property:

• in a random walk on either T1 or T2, if the current vertex is at depth d for some d ∈ Z≥0, then with probability at least
2/3, the next vertex is going to be at depth d+ 1.

5.2. A structural lemma

We say that an experiment P is bad, if it has less than 2h+1 vertices at depth 2(h + 1) in its supporting graph GP =

Graph(P). We denote by BAD the set of bad experiments. According to the proof of Lemma 4.1, any bad experiment
P ∈ BAD has the same chance to be seen in T1 and T2, that is, Pr[P | T1] = Pr[P | T2].

We now compute a lower bound on the chance of a random experiment to be bad.

Lemma 5.1. For any j ∈ {1, 2}, and any value of ℓ, with probability at least 1 − e−Ω(2h), the random experiment of length ℓ
generated from Tj is bad.

The proof of Lemma 5.1 mostly consists of careful applications of Chernoff and union bounds, and we summarize its
intuition as follows.

By our construction of the trees, any random walk (on either T1 or T2) of length t is likely to arrive at a vertex at depth
Ω(t). This is because, in each step of the randomwalk, the depth increases by 1 with probability at least 2/3, and decreases
by 1 with probability at most 1/3. More precisely, by Chernoff bound, the randomwalk will land at a vertex of depth Ω(2h)

after t = 2h steps, with probability at least 1 − e−Ω(2h). Since 2h < 2h+1, in order for this random walk to correspond to a
good experiment, it has to come back from depth Ω(2h) to depth 2(h+ 1) in order to visit 2h+1 vertices at that depth. This,
again using Chernoff bound, is a very unlikely event, because going back fromdepthΩ(2h) to depth 2(h+1) has a probability
at most e−Ω(2h), no matter how long the random walk is. It is crucial here that the probability does not depend on ℓ.

Proof of Lemma 5.1. If suffices to prove the lemma for ℓ ≥ 2h+1, because otherwise any experiment P of length ℓ cannot
visit 2h+1 vertices at depth 2(h+ 1) and is by definition bad.

Let depi ∈ Z≥0 be the random variable indicating the depth of the ith vertex in the random walk on Tj, where
i ∈ {0, 1, . . . , ℓ}. We have dep0 = 0. Let the random variable xi be defined as depi−depi−1+1

2 ∈ {0, 1}, so that depi =

depi−1+ (−1+ 2xi) = depi−1± 1. By the construction of our graph (either T1 or T2), we always have E[xi] ≥ 2
3 , that is, with

probability at least 2
3 the depth increases by 1 in a step.

Let us consider a special timestamp in the randomwalk: time t = 2h. Using Chernoff bound, we deduce below that with
very high probability (i.e., 1− e−Ω(t)), we have that dept ≥

1
6 t =

2h
6 :

Pr

dept <

1
6
t

= Pr


−t + 2(x1 + · · · + xt) <

1
6
t

= Pr


x1 + · · · + xt <

7
12

t


≤ Pr

x1 + · · · + xt <

7
8

E[x1 + · · · + xt ]

≤ e−Ω(t).

Recall that within t = 2h steps the randomwalk cannot visit enough (i.e., at least 2h+1) vertices at depth 2(h+ 1), so for
a randomwalk of length ℓ to correspond to a good experiment, it must come back from depth dept to depth 2(h+ 1) in the
remaining ℓ− t steps.
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Conditioning on that dept ≥
1
6 t =

2h
6 , we compute the chance of the random experiment to reach back to a vertex at

depth≤2(h+ 1) at time t + t ′ where t ′ ∈ {1, . . . , ℓ− t}.

Pr

dept+t ′ ≤ 2(h+ 1)


≤ Pr


dept+t ′ − dept ≤ 2(h+ 1)−

2h

6


= Pr


−t ′ + 2(xt+1 + · · · + xt+t ′) ≤ 2(h+ 1)−

2h

6


= Pr


xt+1 + · · · + xt+t ′ ≤

t ′

2
+ (h+ 1)−

2h

12


. (5.1)

We assume that h is sufficiently large (e.g. h ≥ 8) so that t ′
2 + (h+ 1)− 2h

12 ≤
t ′
2 −

2h
24 . Then obviously t ′ has to be at least

2h
12 before this probability in (5.1) becomes non-zero. Therefore, we only focus on the choices of t ′ ≥ 2h

12 and continue our
calculation using Chernoff bound:

Pr

dept+t ′ ≤ 2(h+ 1)


≤ Pr


xt+1 + · · · + xt+t ′ ≤

t ′

2
−

2h

24


≤ Pr


xt+1 + · · · + xt+t ′ ≤

t ′

2


≤ Pr


xt+1 + · · · + xt+t ′ ≤

3
4

E[xt+1 + · · · + xt+t ′ ]

≤ e−Ω(t ′).

Finally, since we only need to focus on t ′ ≥ 2h
12 due to the discussed reason, by a union bound over all integers

t ′ ∈
 2h
12 , ℓ−t


, we have that the chance for a randomexperiment to visit back to depth 2(h+1) is atmost

ℓ−t
t ′=2h/12 e

−Ω(t ′)
=

e−Ω(t).
In sum, we know that with probability at least 1− e−Ω(t)

= 1− e−Ω(2h), the random walk generated (from either T1 or
T2) will: (1) have dept ≥

2h
12 and (2) never visit back to depth 2(h+ 1). The experiment corresponding to this walk has to be

bad, and therefore we finish the proof. �

5.3. Proof of Theorem 3

We argue that in order to distinguish T1 = T (h)
1 from T2 = T (h)

2 with probability at least 1
2 , one needs at least eΩ(2h)

samples of random experiments of arbitrary lengths.
Indeed, let D1,ℓ be the distribution over random experiments of length ℓ for tree T1, and D2,ℓ that for T2. By definition,

D1,ℓ and D2,ℓ are identical on the support of BAD , the set of bad experiments. Therefore, owing to Lemma 5.1, the total
variation distance (i.e., half of the 1-norm distance) between them ∥D1,ℓ −D2,ℓ∥TV is at most e−Ω(2h) for any ℓ; that is, any
algorithm that samples an experiments from D1,ℓ or D2,ℓ, can only tell the difference with probability at most e−Ω(2h).

Using union bound, given any algorithm that takes samples from distributions (Dj,1, Dj,2, . . . , ), unless it takes eΩ(2h)

samples, it cannot distinguish T1 from T2 with any constant probability.
Let A be an algorithm that reconstructs B(v, r) – even only for the case when the underlying graph is a ternary tree –

with probability 1/2 using N random experiments. If N = 22o(r) , then using A one can reconstruct B(v, 2h+ 3) for T1 and T2
respectively, and thus distinguish T1 from T2. This leads to a contradiction because no algorithm can distinguish T1 from T2
using only eo(2

h) samples; therefore we must have N = 22Ω(r)
. �
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