
Zero-Knowledge Sets�
Silvio Micaliy Michael Rabinz Joe Kilianx

Abstract

We show how a polynomial-time prover can commit to an
arbitrary finite setS of strings so that, later on, he can, for
any stringx, reveal with a proof whetherx 2 S or x 62 S,
without revealing any knowledge beyond the verity of these
membership assertions.

Our method isnon interactive. Given a public random
string, the prover commits to a set by simply posting a short
and easily computable message. After that, each time it
wants to prove whether a given element is in the set, it sim-
ply posts another short and easily computable proof, whose
correctness can be verified by any one against the public
random string.

Our scheme isvery efficient; no reasonable prior way to
achieve our desiderata existed. Our new primitive immedi-
ately extends to providing zero-knowledge “databases.”

1. Introduction

Sets are perhaps the most fundamental notion in mathe-
matics, and ever since [7], zero-knowledge proofs have been
extensively studied. Yet, to date, no general and satisfactory
zero-knowledge representation of sets exists. We thus wish
to provide one by putting forwardzero-knowledge sets.

Intuitive Goals We wish to enable one to (1) arbitrar-
ily choose a finite set,S, of finite strings, (2) compute a
commitment,CS , to S, and (3) given an arbitrary sequence
of strings,x1; x2; : : :, prove non-interactively (relatively toCS) whetherxi belongs toS or not without revealing more
knowledge aboutS than just truthfully asserting “xi 2 S”
or “xi 62 S””, whichever the case may be).

Following the non-interactive zero-knowledge paradigm
of [2] and [4], such non-interactive proofs of “membership”
and “non-membership” inS are relative to a publicly avail-
able random string.y Laboratory for Computer Science, MIT, Cambridge, MA 02139.z Department of Applied Science, Harvard University, Cambridge, MA
02138. Research supported at Harvard Univ. by NSF Grant ITR 0205423xNEC Laboratories, America.joe@nec-labs.com.

Notice that, in particular, our zero-knowledge desiderata
imply thatS’s cardinality should remain hidden to the max-
imum extent possible. For instance, after proving that 10
different strings belong toS, then the only information de-
ducible aboutS’s cardinality should be that it is at least10;
not even a ridiculously large upper bound onS’s cardinality
should be deducible. Indeed, hiding the size ofS poses the
most difficult technical obstacles to our construction.

Technical Difficulties Constructing zero-knowledge sets
is not trivial. The main difficulty lies in proving that an
arbitrary stringx does not belong to our arbitrarily con-
structed setS as identified by its commitment valueCS . For
instance, quite straightforwardly, one could prove in zero
knowledge the following two sub-statements: (1) “there
exists a (secret) valuen and (secret) stringsx1; : : : ; xn
such that committing to them yields the valueCS , and (2)
“x 6= x1; : : : ; x 6= xn ”. Unfortunately, such an approach is
bound to betray an upper bound onS’s cardinality. In fact,
the number of bits transmitted in a zero-knowledge proof,
whether interactive [7] or non-interactive [4], grows with
the size of the corresponding statement: in our case, with
“x1; : : : ; xn”, and thus withS’s cardinality. One may at-
tempt to get around this size problem using PCP-based tech-
niques (c.f., [12, 16, 13]); however, such techniques do not
appear to lead to practical solutions.

Main Result Via a different approach, we prove the fol-
lowing

Theorem: Zero-knowledge sets exist if the discrete loga-
rithm problem is hard.

Perhaps surprisingly, in light of the above very stringent
security requirements, our construction of zero-knowledge
sets is not only efficient, but actuallyvery practical: A setS is committed to by performing at most2k collision-free
hashings and2k modular exponentiations for each of its
elements, wherek is the security parameter. Each proof
of membership inS is computed by a mere table look up,
and each proof of non-membership isS is computed by at
most2k collision-free hashings and2k modular exponenti-
ations. The same amount of work is required by a verifier
for the verification of a proof�x of membership or non-

1

membership always requires2k collision-free hashings and2k modular exponentiations.

From Zero-Knowledge Sets to Zero-Knowledge (Ele-
mentary) Databases By an elementary database (EDB
for short) we mean a partial functionD mapping a (sub)set
of keys into values. While databases have many com-
plex functionalities, our EDBs have just an elementary one.
Namely, ifD is an EDB, then the only envisaged operation
is queryingD with a keyx and obtain in response either the
special symbol? (if no value is associated tox) or the only
valueD(x) associated withx.

Our construction of zero-knowledge sets immediately
yields the construction of azero-knowledge EDB.The lat-
ter consist of a way to (1) commit to an elementary databaseD and then (2)8x 2 f0; 1g�, prove whetherx is indeed an
existing key inD (and if so what is the valueD(x) associ-
ated with it), without revealing any undue knowledge. That
is, without providing more knowledge than that obtainable
from a trusted party who, knowingD, on a given sequence
of input stringsx, y, : : :, truthfully states the status ofD rel-
ative to these strings: e.g., “x is not a key inD,” “ y is a key
of D and its corresponding value isD(y) = v,” etc.

Using a small amount of interaction, Ostrovsky, Rack-
off and Smith [19] have very recently constructed zero-
knowledge databases with more powerful functionalities.
For instance, they show how to handlerange queries
(roughly, after committing toD they prove that, for an in-
put interval[a; b℄, eitherD does not contain any keys in it,
or which keys are contained in it, and which are their corre-
sponding values).

Road Map In Section 2, we give our basic notation. In
Section 3, we define zero-knowledge elementary databases.
In Section 4, we give some basic preliminaries. In Section 5,
we give an informal exposition of our protocols. In Sec-
tion 6, we make some final comments. In Section A of the
appendix, we give a more “pseudo-code” presentation of our
protocols.

A more detailed version of this paper can
be found in the Cryptology ePrint Archive
(http://eprint.iacr.org/).

2. Notation

We shall follow, verbatim, [4] and [9]. Namely,

Strings.We denote the empty word bye, and the concate-
nation of two stringsx andy byxjy (or more simply byxy). If � is a binary string, thenj�j denotes�’s length;�1 � � ��i denotes�’s i-bit prefix.

Integer representation.We denote byN the set of natural
numbers: 0, 1, 2,: : :, Unless otherwise specified, a nat-
ural number is presented in its binary expansion (with

no leading0s) whenever given as an input to an algo-
rithm. If n 2 N , we denote by1n the unary expansion
of n (i.e., the concatenation ofn 1’s).

Negligible functions.By �(�) we represent any function
than vanishes faster than the inverse of any fixed pos-
itive polynomial. That is, for any positive polynomialP , limk!1P (k)�(k) = 0:

Probabilistic algorithms.If A is a probabilistic algorithm,
then for any inputx, the notation “A(x)” refers to the
probability space that assigns to the string� the prob-
ability thatA, on inputx, outputs�. An efficientalgo-
rithm is a probabilistic algorithm running in expected
polynomial time.

Probabilistic assignments.If S is a probability space, then
“x R S” denotes the act of choosing an elementx
at random according toS. If F is a finite set, then
the notation “x R F ” denotes the act of choosingx
uniformly fromF .

Probabilistic experiments. If p is a predicate, andS1; S2; : : : are probability spaces, then the notationPr[x1 R S1; x2 R S2; : : : : p(x1; x2; : : :)℄ de-
notes the probability thatp(x1; x2; : : :) will be true af-
ter the ordered execution of the probabilistic assign-
mentsx1 R S1; x2 R S1; : : :

Probability spaces.If S, T , : : : are probability spaces,

the notationfx R S; y R T ; � � � : (x; y; � � �)g denotes
the new probability space overf(x; y; � � �)g generated
by the ordered execution of the probabilistic assign-
mentsx R S; y R T; � � �.

Elementary Databases.An EDBD is a subset off0; 1g��f0; 1g� such that(x; v1) 2 D and(x; v2) 2 D impliesv1 = v2.

If D is an EDB, by the expression “[D℄” we denote the
supportof D, that is, the set of finite binary stringsx
for which, for somev 2 f0; 1g�, (x; v) 2 D.

To indicate thatx is not in the support of and EDBD, we write “D(x) =?”. By writing “ v = D(x)”
or “D(x)=v” (wherey is any symbol other than?) we
informally mean thatx 2 [D℄ andv is a string, indeed
the unique string such that(x; y) 2 D.

3. The Notion of Zero-Knowledge EDB

Since the notion of a zero-knowledge set is essentially
a special case of that of a zero-knowledge EDB, we only
define the latter. We start with the intuitive version.

3.1 The Informal Notion

Mechanics Though not employing non-interactive zero-
knowledge proofs directly, zero-knowledge EDBs have a
similar mechanics. Namely, they rely on a public random
string �, the reference string. This string is polynomially
long in k, the security parameter controlling the probability
of error or successful cheating.

In the initial committing phase, on input an EDBD (i.e.,
a binary string encoding the relevant subset off0; 1g� �f0; 1g�) and�, a proverP easily computes a pair of match-
ing keys,PK andSK. Key PK constitutesP ’s commit-
ment toD, and is thus made public; keySK enablesP to
prove the value ofD(x) for anyx 2 KEYS, and is thus kept
secret. (In addition to some short cryptographic informa-
tion,SK may include a description ofD.)

In the subsequent proving phase, given any stringx, P ,
usingSK, quickly produces on his own (i.e., without any
interaction) a proof�x of eitherD(x) =? or D(x) = v,
whichever is the case. Any verifier can check the correct-
ness of�x by running an efficient algorithm on inputsx, the
alleged proof�x, “D’s description”PK, and the reference
string.

Security Zero-knowledge EDBs enjoy completeness,
soundness and zero-knowledge.

Completeness simply guarantees that, with above me-
chanics, one can commit to any EDBD, and then, for any
keyx, prove the correct value ofD(x).

Soundness guarantees that the prover cannot lie about
the value ofD(x). Namely,PK commits the prover to
a partial functionD : f0; 1g� ! f0; 1g� in the sense
that, in polynomial time, no one can find (1) a stringx to-
gether with (2) a proof, relative toPK, of D(x) =? andD(x) = v 2 f0; 1g�, or (20) a proof, relative toPK, ofD(x) = v1 andD(x) = v2 for v1 6= v2.

1

Zero-knowledge guarantees that the knowledge obtain-
able by seeing a commitment to a EDBD and then a se-
quence of proofs for the value ofD at stringsx, y, : : :, co-
incides with that obtainable without seeing any thing aboutD at all, except for asking a trusted party about stringsx,y, etc., and receiving in response his truthful but unproved
assertions: e.g., “D(x) =?, D(y) = v 2 f0; 1g�, : : :”

Technically, the latter condition is expressed by saying
that a zero-knowledge EDBD has a polynomial-time simu-
lator that, without knowing anything about the set, provides

1Note that the computational nature of soundness is necessary in our
setting. Namely, our very stringent zero-knowledge requirements imply
that, for each choice of the security parameterk, a commitment toD should
always have the same size (depending only onk), no matter how many
strings may be in the[D℄, and no matter how long these strings may be.
In turn, this implies that a commitment toD must be onlycomputationally
binding. Indeed, the number of bits necessary to pin-down a setS exactly
cannot be shorter thanS ’s Kolmogorov complexity, and thus any perfectly
binding commitment to a set must grow with the set.

to any verifier exactly the same view that he might receive
from the true prover (who knowsD). Namely, the verifiers’
views produced by the following two games areindistin-
guishably distributed:

Game A.First, a random reference string�, whose length is
a fixed polynomial in the security parameterk, is made
public. Then, an EDBD is chosen by the adversary
and handed to the honest proverP . Later, based onD
and the reference string�, P computes a commitmentPK to D along with a proving keySK. Finally, the
adversary chooses a sequence of stringsx1, x2, : : :, for
which P produces proofs for the correct value ofD,�x1 , �x2 , : : :
(The latter sub-process isadaptive. Namely, after see-
ingPK, the adversary choosesx1 and the prover com-
putes�x1 ; after seeing�x1 the adversary choosesx2
and the prover computes�x2 ; and so on.)

The verifier’s view then consists of the strings�, PK,x1, �x1 , x2, �x2 , : : :
Game B.The efficient simulatorSIM , on input the secu-

rity parameterk, computes a string�0 of the proper
length, a public keyPK 0 and secret keySK 0. After
seeingPK 0, the adversary choosesx1, the simulator
is told (without proof!) the correct value ofD(x) for
the same EDBD of Game 1, and computes�0x1 ; after
seeing�0x1 the adversary choosesx2, the simulator is
told (without proof!) the correct value ofD(x), and
computes�0x2 ; and so on.

The verifier’s view then consists of the strings�0,PK 0,x1, �0x1 , x2, �0x2 , : : :
By jDj we denote the sum of the lengths of the keys in[D℄ and their corresponding values.

3.2 The More Formal Notion
Elementary Database Systems We say that a triple of
Turing machines,(P1; P2; V), constitute aEDB systemif
neither machine retains state information after an execution,
and their computation on common inputs1k, a unary string
calledthe security parameter,and�, a binary string called
the reference string, proceeds as follows:� The first algorithm to compute isP1. On input(D; 1k; �), P1 produces two outputs: (1) a stringPK,

calledD ’s public key(or commitment), and (2) a stringSK, calledD ’s secret key, and halts forever.

(Note:SK may always include1k, �, andD.)� The second algorithm to compute isP2. On in-
put (D; 1k; �; PK; SK), and an additional inputx 2f0; 1g�, P2 outputs a string�x, calledD’s proof aboutx.

� The third algorithm to compute is algorithmV . On in-
put(1k; �; PK) and an additionalx 2 f0; 1g� together
with its proof�x, V outputs either a stringy 2 f0; 1g�
(meaning that it believesy = D(x)), out (meaning that
it believes thatx is outsideD’s support), or? (mean-
ing that it detected cheating).

If (P1; P2; V) is an EDB system, we refer toP1 as the
databasecommitter, to P2 as the databaseprover, and toV
as the databaseverifier.

Elementary Database Simulators Let SIM be a proba-
bilistic polynomial-time Turing machine capable of making
oracle calls. We say thatSIM is an EDBsimulatorif, given
oracle access to a databaseD, it computes as follows:� In its first execution,SIMD(1k) makes no oracle calls

and outputs three strings,�0, PK 0, andSK 0
(Respectively, a “fake” reference string,D’s “fake”
public key, andD’s “fake” secret key)� In each subsequent execution, on inputSK 0 and a
string x 2 f0; 1g�, SIMD(SK 0; x) calls its oracle
only about stringx, receivesD(x) in response, and
outputs a string�x.

Zero-Knowledge Elementary Databases Let(P1; P2; V) be an EDB system whose Turing machines run
in probabilistic polynomial time. We say that(P1; P2; V) is
azero-knowledge EDB(ZK EDB, for short) if there exists a
positive constant
 such that:

1. Perfect Completeness.8 databaseD and8x 2 [D℄,Pr8<:� R f0; 1gk
 ; (PK;SK) R P1(1k; �; S);�x R P2(x; SK) :V (1k; �; PK; x; �x) = D(x) 9=; = 1:
2. Soundness.8x 2 f0; 1g� and8 efficient algorithmsP 0, "(k) is negligible, where"(k) =
Pr

8<:� R f0; 1gk
 ; (PK 0; �01; �02) R P 0(1k; �) :V (1k; �; PK 0; x; �01); V (k; �; PK 0; x; �02) 6=? ^V (1k; �; PK 0; x; �01) 6= V (k; �; PK 0; x; �02): 9=;
3. Zero-Knowledge. There exists a database simulatorSIM such that8 Turing machineAdv, 8k 2 N , and8

databasesD: View(k) � View0(k), where

View(k) =�� R f0; 1gk
 ; (PK;SK) R P1(1k; �; S);(x1; s1) R Adv(1k; �; PK);�x1 R P2(x1; SK);(x2; s2) R Adv(1k; �; PK; s1; �x1);�x2 R P2(x2; SK);
...: PK; x1; �x1 ; x2; �x2 ; : : : g

and V iew0(k) =�(�0; PK 0; SK 0) R SIM(1k);(x1; s1) R Adv(1k; �; PK);�0x1 R SIMD(SK 0; x1);(x2; s2) R Adv(1k; �; PK; s1; �x1);�0x2 R SIMD(SK 0; x2);
...: PK 0; x1; �0x1 ; x2; �0x2 ; : : : g

As usual, various flavors of zero-knowledge arise, de-
pending on whether� denotes computational indistin-
guishability, statistical closeness, or equality.

4. Preliminaries for Our EDB Construction

4.1 Primes, Generators, and the Discrete-
Logarithm Assumption

Let p be a prime andq be a prime divisor ofp� 1. ThenZ�p , the multiplicative group modulop, is cyclic. and fur-
thermore has a cyclic subgroupG of orderq. Furthermore,
givenp andq it is a straightforward and standard exercise
to generate a random elementg 2 G that generatesG (allg 2 G save the identity generateG). Giveng andx 2 Zq , it
is easy to computegx. Thediscrete-logarithm assumption
(DLA for short) formalizes the widely believed assumption
that inverting this permutation is indeed computationallyin-
tractable.

DLA Let (pk; qk) be a family of prime pairs such thatjqj = k; jpj = O(k), andqjp � 1; let Gk and generatorgk be as above. Then,8 efficient algorithmA the function"(k) is negligible, where"(k) =
Pr

�x R Zqk ; y = gxk :A(pk ; qk; gk; y) = x�

4.2 Commitment Schemes

We restrict ourselves to discussing non-interactive com-
mitment schemes, as they are the ones used herein. Infor-
mally, such schemes comprise two phases (thecommitand
verificationphases) and involve two parties (the committer
and the verifier).

Both parties share as a common input a random string�. The commit phase is executed first. In it, the committer,
given inputm (the message, outputs acommitment string
, which is made public, and aproof r, which she keeps
secret. During the verification phase the committer simply
publicizes the messagem and the proofr, which the verifier
checks against�.

Semantically, at the end of the commit phase, (1) the ver-
ifier does not know anything yet about the message, and (2)
the Sender “cannot change the message.” In the verification
phase, the verifier either (a) learns the correct message, ifthe
committer is honest, or (b) learns that the sender has cheated
—and suspends any judgment about the message’s value.

In our application, we only define commitment schemes
in which the committer is polynomially bounded and the
verifier unrestricted. More formally,

Definition Let COMMIT and VERIFY be probabilistic al-
gorithms, where COMMIT is polynomial-time. We say that
(COMMIT ,VERIFY) is a perfectly hiding, non-interactive
commitment schemeif the following three properties hold:

1. Completeness:8�;m 2 f0; 1g�,Pr�(
; r) R COMMIT (�;m):
VERIFY(�;
;m; r) = m� = 1

2. Soundness:8 efficient algorithm COMMIT 0, "(k) is
negligible, where"(k) =

Pr

�� R f0; 1gk; (
; r; r 0) R COMMIT 0(�):? 6= VERIFY(�;
; r) 6= VERIFY(�;
; r 0)�
3. Zero knowledge:8m1;m2 2 f0; 1g�; C(�;m1) = C(�;m2);

where, form 2 f0; 1g�,C(�;m) = f(
; r) R COMMIT (�;m) :
 g:
We remark that, though we have defined commitment
schemes so as to be able to handle messages of arbitrary
length, we shall use them only for messages whose length
is fixed and actually shorter thanj�j. Indeed, we shall use
the following commitment scheme (which will prove to be
implementable in the common-random-string model).

Pedersen’s Commitment Scheme Pedersen’s commit-
ment scheme [20] does not assume the existence of public
random string�, but, rather, a public quadruple(p; q; g; h),
wherep andq are prime,qjp� 1 andg andh are generators
forG, the cyclic subgroup ofZ�p of orderq. (Thus, some ad-
ditional work is necessary in our model, in order to uniquely
from a public random string the correct public quadruple.)

The commitment and verification algorithms are so de-
fined, where all operations are performed modulop:

PED COMMIT((p; q; g; h);m): randomly selectr 2 Zq
and output(
; r), where
 = gmhr is the commitment
string, andr is the (for the time being secret) proof.

PED VERIFY((p; q; g; h);
;m; r): If
 = gmhr, then
accept; else,reject.

Clearly, the verifier will always accept values that are
committed to and revealed as above. For anym,
 is dis-
tributed uniformly overG. Thus,
 carries no information
aboutm. Notice that being able to find efficiently proofs
that the same
 is the commitment to two different messages
implies the ability to compute efficiently compute the dis-
crete logarithm ofh in baseg.

4.3 Collision-free Hash Functions

Informally, a collision-free hash function is a
polynomial-time computable functionH mapping bi-
nary strings of arbitrary length into reasonably short ones,
so that it is computationally infeasible to find anycollision
(for H), that is, any two different stringsx andy for whichH(x) = H(y). Popular candidate collision-free hash
function is the standardizedsecure hash function[18] and
Rivest’s MD5 [21]. Formally, collision-free hash functions
are easy to sample function families. Namely,

Definition Let KG (for key generator) be a probabilistic
polynomial-time algorithm,KG : 1� ! ��, and letE (for
evaluator) be a polynomial-time algorithm,E : �� � 1� !�� (more precisely,E : �� � 1k ! �k for all positive
integersk). We say that the pair(KG;E) is acollision-free
hash functionif 8 efficient algorithmA, "(k) is negligible,
where"(k) = Pr

�h R KG(1k); (x; y) R A(h) :x 6= y ^ E(h; x) = E(h; y) � :
Pedersen’s Hash Functions Collision-free hash function
exist under the discrete-log assumption. In particular, Ped-
ersen’s commitment function may be viewed as the collision
intractable hash function:H = Hpqgh : (Zq)2 ! Zp so de-
fined:H(ab) = gahb modp. If jqj > ` andjpj < k, we can
by standard coding tricks treatH as a hash function fromf0; 1g2` to f0; 1gk. By Fouvry’s theorem [6], and Bach’s

algorithm [1], we can efficiently (and provably) find suchp; q where` � (2=3)k; hence,H compresses can be used
to compress strings of size� (4=3)k to strings of lengthk.
(In practice, we can makejpj = �jqj; for any desired al-
pha.) One may iterate this construction in the standard way
(e.g., using Merkle trees) to create collision intractablehash
functions fromf0; 1g� to f0; 1gk.

An “all or nothing” property of Pedersen’s hash function

We note that the hash function computed above has the fol-
lowing “all or nothing” property: Given a single collision
((x1; x2) such thatH(x1) = H(x2)), one can compute for
anyx a siblingy such thatH(x) = H(y). This property
follows from the fact that any collision allows one to com-
putelogg h. We use this property to show that the (perfect)
completeness and zero-knowledge properties of the protocol
are unconditional.

4.4 Pseudorandom Functions

Goldreich, Goldwasser, and Micali [8] have shown how
to simulate a random oracle froma-bit strings tob-bit strings
by means of a construction using aseed, that is, a secret
and short random string. They show that, if pseudoran-
dom generators exist [3, 22], then there exists a polynomial-
time algorithmGGM(�; �; �; �) such that, lettings denote the
seed, the functionGGM(s; 1a; 1b; �) : f0; 1ga ! f0; 1gb
passes all efficient statistical tests for oracles. That is,
to an observer with sufficiently limited computational re-
sources, accessing a random oracle fromf0; 1ga to f0; 1gb
is provably indistinguishable from accessing (as an ora-
cle)GGM(s; 1a; 1b; �), even if algorithmGGM is publicly
known (provided thats is still kept secret).

As with hash functions, we can easily modify the do-
main and range of the pseudorandom functions to whatever
is convenient. For ease of exposition, we suppress all such
standard coding issues.

4.5 Trees and Merkle Trees

Binary Trees We denote byTk to be the complete binary
tree with2k leaves (we shall more simply writeT whenk
is clear from context). We define thelevelof a vertex as its
distance from the root. We label each of the2i nodes ofT of
level i with ani-bit string such that the vertex labeledv has
children labeledv0 andv1 (thus, the root has labele, and
its children are labeled0 and1). Equivalently, we define the
parent of a vertexv, PARENT(v), as follows:PARENT(vb) =v for any bitb.

We identify the vertices ofT ’s by their labels (e.g.,
given a leafx = x1 � � �xn, the path from the root tox is
e; x1; x1x2; : : : ; x1 � � �xk = x:) Similarly, if S is a subset

Figure 1. The complete labeled binary
tree T3, and the subtrees TREE(S) and
FRONTIER(S), for S = f000; 010; 111g. The
darkly shaded vertices comprise TREE(S),
and the lightly shaded vertices comprise
FRONTIER(S).

of f0; 1gk, we identifyS with the subset of the leaves ofTk
having the same labels, and define� TREE(S) to be the subtree ofTk consisting of the union

of all the paths from the root to the leaves inS; if S is
empty,TREE(S) = e; and� FRONTIER(S) =fvjv 62 TREE(S) andPARENT(v) 2 TREE(S)g;
if S is empty,FRONTIER(S) = feg.
(See Figure 1.)

We denote the complement of a bitb by �b. We say that dis-
tinct verticesv1; v2 2 T aresiblingsif they have the same
parent, and denote by�v the unique sibling ofv (�e is unde-
fined). Hence,v = !b has sibling�v = !�b.
Merkle Trees Given a collision-free hash functionH , a
subtreeT of Tk is turned into a Merkle treeM by “storing”
in every nodev of Tk a value (i.e., binary string)Vv in the
following manner: any childless node can store any non-
empty binary string, but any other node must store the valueH(ab) whenever its left child storesa and its right child
storesb: that is, Vv = H(Vv0Vv1). The value stored in
the root ofM can be viewed as a commitment to all values
stored inM ’s nodes. A proof that nodex stores the valueVx
(i.e., a proof ofVx = y) consists ofx’s authentication path:
the sequence of values stored in the siblings of the nodes
(except the root) along the path from the root tox. (That is,
the sequence ofV�� for all nonempty prefixes� of x.)

For instance, ifx is a leaf, thenx’s authentication path
consists ofk values,v1; : : : ; vk, and verifying whetherx

storesy is done as follows. Lettingxj be thejth bit of x
anduk = y, compute the valuesuk�1; : : : ; u0 as follows: ifxj = 1, setuj�1 = H(vjuj); else, setuj�1 = H(ujvj).
Finally, check whether the so computedu0 equals the valueVe stored in the root.

It is immediately seen that, onceM ’s root value is made
public, one cannot efficiently compute authentication paths
proving that two different values are stored in the same node
of M without efficiently finding anH-collision.

5. Our Informal Construction of ZK EDBs

5.1 Committing to database values

Recall that the committer receives three inputs: (1) the
security parameterk, (2) the public and random reference
string � —whose length is polynomial ink— and (3) the
EDB D as a list of pairs(x; v) —wherex 2 [D℄ andv =D(x). We find it useful to describe our committer in terms
of the following steps.

Number-Theory Step We omit an intuitive description
of this step (making non-trivial use of computational num-
ber theory) and are satisfied of just discussing the goals it
achieves at a very high level.

In this step the committer “extracts” from� two quan-
tities: (a) a quadruple(p; q; g; h) as demanded by Ped-
ersen’s commitment scheme, so that no one —including
the committer— will knowlogg h, the discrete log ofh
in baseg modulop, and (b) a collision-free hash functionH : f0; 1g� ! f0; 1gk. This extraction is deterministic
and polynomial-time. Thus, it can be easily replicated by
any possible verifier, yielding the very same(p; g; h) andH .
We also require that one can simulate the creation(p; q; g; h)
such thatlogg h is known; this is a standard construction and
we omit details in this extended abstract.

Tree-Pruning Step In this conceptual step the commit-
ter computes fromD the following subtreeT of Tk: T =
TREE(H([D℄)) [FRONTIER(H([D℄)). That is, first he con-
structs a subtreeT 0 by putting in it, wheneverD(x) = y,
nodeH(x) together with all the nodes fromTk ’s root tox.
Then, he obtainsT by adding toT 0 all the nodes ofTk whose
parent is inT 0.

The commitment to our EDB is then obtained by associ-
ating to and storing various quantities inT ’s nodes.

leaf-m-value step In this step the committer associates to
each leafx of T a valuemx as follows: ifx 2 H([D℄) thenmx = H(D(x)) (i.e., if D(x) = y then he associatesH(y)
to leafH(x)); else,mH(x) = 0. Note thatH(y) always is ak-bit value, and thus different from 0.

Considering the entire treeTk, we call a nodefull if it is
the ancestor of at least one leafx0 corresponding toH([D℄)

(i.e,, if there exist stringsx andy such thatD(x) = y andH(x) = x0); else, we call itempty.

node-h-value step To each nodev 2 T , the committer
associates a random exponentev in G (the group generated
by g andh), and then stores inv the following valuehv : ifv 2 T 0, thenhv = hev (in which case no one knows the
discrete log ofhv in baseg). Else,hv = gev .

Thus the committer does not knowlogg hv for any full v,
but does knowlogg hv for all emptyv. Furthermore, reveal-
ing ev such thathv = hev is a proof that one does not knowlogg hv (assuming one doesn’t knowlogg h).

leaf-commitment step The committer stores in every leafv of T a commitment
v computed as follows. First he as-
sociates tov a random elementrv in Z�p , and then computes
and stores inv a value
v computed as a Pedersen commit-
ment tomv (the value already associated tov) using the
Pedersen quadruple(p; q; g; hv): that is,
v = gmvhrvv mod-
ulo p.

Note that, if leafv is full then
v is a genuinecommit-
ment, that is, the committer cannot decommit
v to any
string other thanmv, because it does not know the discrete
log of hv in baseg. Else, if leafv is empty,
v is a fake
commitment, that is, the committer can decommit
v to any
string he wishes, because it knowslogg hv .

Merkle-commitment step By now all nodesn of T store
a valuehn, and all leavesv of T have an associated valuemv and store a commitment value
v. In this step the
committer associates a valuemu to and stores a commit-
ment
u to every internal nodeu of T . He proceeds in
a recursive, bottom-up fashion. Namely, ifu is an inter-
nal node whose left childu0 and right childu1 already
have stored commitments, then the committer stores inu
the valuemu = H(
u0; hu0;
u1; hu1) and stores inu the
commitment
u computed (as for a leaf) by first associating
to u a random elementru in Z�p , and then computing the
Pedersen commitment
u = gmuhruu modulop (using the
generatorhu previously stored inu).

Finally, the commitment to the EDBD,
D, consists of
the commitment
� and the generatorh� stored in the root.

Net Result It should be noted that committing toD is
quite fast: it essentially requires three modular exponen-
tiations and one hashing for each element inD’s support.
It should also be noted (which requires some proving) that
this complex operation satisfies a Merkle-tree like property.
Namely, as long as he operates in polynomial time, then with
high probability the committer cannot change any quantity
(i.e.,mv, ev, hv, rv , and
v) associated to or stored in any
nodev of T 0 without also changing
�. The opposite (except
for
v) is however true for every nodev in T ’s frontier.

5.2 Proving database values

Recall that the EDB prover coincides with the EDB com-
mitter, and thus he has in memory the committer’s treeT
and all values associate to and stored in its nodes.

For proving statements of the formD(x) = y, it will suf-
fices from the prover to retrieveT ’s values, but, for proving
statements of the formD(x) =?, it will be necessary for
the prover to augmentT with new nodes and and their rela-
tive associated and stored values. We start with the simpler
case.

Proving D(x) = y. To proveD(x) = y, the prover pro-
ducesx andy and reveals a proof�x consisting of: for every
nodev along the pathPH(x) from leafH(x) to the root, (1)
the valuesmv , ev, hv , rv , and
v and —except forv = �,
the root— (2) the values
u andhu for v’s sibling,u.

Such a proof is verified by (a) checking for the leaf ofPH(x) thatmH(x) = H(y); (b) checking recursively, for ev-
ery other node ofPH(x), thatmv = H(
v0; hv0;
v1; hv1);
(c) checking for everyv in PH(x) that hv = hev and
v = gmvhrvv modulop; and (d) verifying that
�; h� =
D.

Proof�x is convincing because it is hard for an adversary
to “prove” bothD(x) = y andD(x) = y0 for y 6= y0. This
is so because it is hard to a malicious prover to two distinct
strings� and� such thatH(�) = H(�), becauseH is
collision-resistant, and because the prover cannot decommit
any of the above
v in any other way, because Pedersen’s
commitment is computationally binding as long as one does
not know the discrete log ofhv in baseg, and because the
prover shows that he does not know this discrete log (in fact
he proves that he knows the discrete log,ev, of hv in baseh,
and he does not know that ofh in baseg).

Proving D(x) =?. To prove thatD(x) =?, the prover
computesH(x), and then “moves” inTk from the root to-
wards leafH(x) until he finds the last nodeu that also be-
longs to the current subtreeT . (Note thatu may or may not
coincide with leafH(x), but is always the case thatmu = 0
and that
u is a fake Pedersen commitment.)

Because of the wayD is committed to, proving that
u could be decommitted to 0 would also prove that leafD(x) =?; however, unlessu is also a leaf ofTk, this would
also reveal additional knowledge: namely that “below”u
are do not correspond toD’s support, something that in turn
provides information about the size ofD’s support.

Thus, the prover will enlarge the currentT by incorpo-
rating in it the subtreeTu of Tk rooted atu and consisting
of (1) the subpath fromu to H(x) together with (2) all of
the siblings of the nodes in this subpath (except the rootu).
Such incorporation will require computing valuesmv, ev,hv, rv , and
v for each nodev in Tu (computed similarly to
the other nodes ofT , except that, like foru, all such nodesv will have store a valuehv —for which the prover knows

the discrete log in baseg— and a fake commitment
v) and
then obtaining a new treeT by “decommitting”
u so as to
seamlessly weldTu into the oldT . Let us now see how the
prover associates values to thenewnodesv of Tu (i.e., those
other thanu).

In each new nodev of Tu the prover stores the valuehv so
computed: first, he randomly chooses an exponentev 2 Z�P ,
and then computesgev modulop. (Thus, by construction,
he will know the discrete log ofhv in baseg!) For each
new leafv of Tu, he setsmv = 0, choosesrv 2 Z�p at
random, and stores inv the “fake Pedersen commitment”
v = g0hrvv modulop. Then, he processes all other new
nodesv of Tu, so as to compute the valuesmv , ev, hv, rv ,
and
v , in a recursive, bottom-up fashion: namely, ifv is
an internal node whose left childv0 and right childv1 al-
ready have been processed, then the prover associates tov
the valuemv = H(
v0; hv0;
v1; hv1) and stores inv the
commitment
v computed (as for a leaf) by first associat-
ing to v a random elementrv in Z�p , and then computing
v = gmvhrvv modulop, using the generatorhv already as-
sociated tov.

The prover now “weldsTu into T ” as follows. He com-
putesmu = H(
u0; hu0;
u1; hu1), and then using the fact
that he knows the discrete log ofhu in baseg, he decom-
mits
u (originally a fake commitment to 0) tomu: that is,
he computes a newru such that
u = gmuhruu modulop.

To proveD(x) =?, the prover producesx and reveals
a proof�0x consisting of: for every nodev along the pathPH(x) from leafH(x) to the root, (1) the valuesmv , hv, rv ,
and
v and —except forv = �, the root— (2) the values
u
andhu for v’s sibling,u.

Such a proof is verified by (a) checking for the leaf ofPH(x) thatmH(x) = 0; (b) checking recursively, for every
other node ofPH(x), thatmv = H(
v0; hv0;
v1; hv1); (c)
checking for everyv in PH(x) that
v = gmvhrvv modulop;
and (d) verifying that
�; h� =
D.

5.3 Soundness is preserved

Note that proof�x is syntactically identical to a proof of
the typeD(x) = y, except thatmH(x) will be 0 rather than
a k-bit valueH(y) and all valuesev are omitted: that is,
the prover does not reveal how he constructed the valueshv
(and thus checking their construction is skipped during ver-
ification). Of course, if the verifier ever witnessed a proof
of the typeD(x) = y, he will have seen howsomeof thosehv were actually constructed (e.g.,h�, the value associated
to the root). But for some other generators (e.g.,hH(x))
he would have never seen how it was constructed. Fur-
ther, by knowing the strategy of the prover, the verifier will
know that a non-empty subset of the latter values (includ-
ing hH(x)) have actually been used to generate fake Peder-
sen commitments. The presence of such fake commitments

may actually raise some concerns about thesoundnessof
the overall construction. They donot, however, enable the
prover to find both a proof�x of D(x) = y and a proof�0x
of D(x) =?. This can be informally argued as follows.

Let�x consist of valuesmv, hv , rv ,
v andev and sibling
values
u andhu; and let�0x consist of valuesm0v , h0v, r0v ,
0v and sibling values
0u andh0u. We distinguish two cases:

Case 1:(
H(x); hH(x)) = (
0H(x); h0H(x)). In this case,
the prover has found thelogg h. In fact,mH(x) = H(y) andm0H(x) = 0 are two different Pedersen decommitments of
H(x)(=
0H(x)), relative to the sameg andhH(x)(= h0H(x)).
Thus by the way Pedersen commitment works, this implies
that the prover has foundlogg hH(x). This, per se, may not
be hard to find, because the prover has chosenhH(x). How-
ever, the prover has also included in proof�x the value oflogh hH(x). Given this value andlogg hH(x), it is easy to
computelogg h, which violates the discrete logarithm as-
sumption, becauseh is not chosen by the prover, but ran-
domly selected inG (via the random reference string).

Case 2:(
H(x); hH(x)) 6= (
0H(x); h0H(x)). In this case,
the prover has found a collision forH . Notice that leafH(x)
belongs to pathPH(x), and so does root�. But for root �,(
�; h�) = (
0�; h0�), because the commitment toD,
D , con-
sists of
� andh� and�x and�0x are convincing proofs rela-
tive to the same
D. Thus, letu be the first nodev of PH(x)
(starting from the root) such that (a)
v =
0v andhv = h0v
and (b) forv’s child in PH(x), v0 without loss of generality,(
v0; hv0) 6= (
0v0; h0v0). We distinguish two subcases.Sub-
case 2.1:mu = m0u. In this subcase, the prover has found
a collision forH , becausemu = H(
u0; hu0;
u1; hu1) andm0u = H(
0u0; h0u0;
0u1; h0u1). Subcase 2.2:mu 6= m0u. In
this subcase, using the same reasoning of Case 1, the prover
has foundlogg h.

5.4. Odds and Ends

After making precise the informal description above, one
can prove for our construction all the claimed efficiency and
zero-knowledge properties of ZK EDBs, but not their per-
fect completeness. If(x0; y0); (x00; y00) 2 D andH(x0) =x = H(x00), then a honest prover is forced to provide an in-
correct answer for at least one key, since eithermx = H(y0)
ormx = H(y00).2

To guarantee perfect completeness, one needs an addi-
tional idea. Rather than being “independent” of one another,
in the current attemptH andCOMMIT will be all-or-nothing
matched. As usual,H : f0; 1g� ! f0; 1gk is determinis-
tic (because we want that each possible keyx0 determines
a unique leafx = H(x0) that may store information aboutD(x0)) andCOMMIT is probabilistic (because we want the
scheme to be perfectly hiding). However,H andCOMMIT

2(Alternatively, settingmx = H((x; y0); (x00; y00)) generates a ZK
problem, since proving that(x0y0) 2 D proves also that(x00; y00) 2 D.)

are so correlated: though finding anyH-collision is hard, if
anyH-collision is found, thenanycommitment string
 gen-
erated byCOMMIT can be de-committed arbitrarily. That is,
COMMIT is trap-door, and anyH-collision yields a trapdoor,t, for COMMIT.

Thus, assume that(x0; y0); (x00; y00) 2 D, thatD(x000) =? , thatx = H(x0) = H(x00) = H(x000), and
that —without loss of generality— the honest prover pro-
cesses(x0; y0) first — thus computingmx = H(y0) — and(x00; y00) later. Then he will not resetmx when process-
ing (x00; y00). Rather, having found aH-collision, he will
compute and store the trapdoort for COMMIT. During the
proving process, the honest prover produces a proof�x (i.e.,
v ;mv; rv for each prefixv of x, and
�v for every nonempty
prefix v of x) for D(x0) = y0 as usual. But, should he need
to prove thatD(x00) = y00 (respectively,D(x000) =?), he
will produce the same�x above, except for the valuesmx
andrx that he so computes: using trapdoort, he computes
a proofr00x (respectively,r000x) for “
x decommits toH(y00)
(respectively, 0)” and setsmx = H(y00) andrx = r00x . For-
tunately, under the DLA, we can constructvery efficientsuchH � COMMIT pairs! Indeed, we can use Pedersen’s scheme
as the underlying commitment scheme.3

A Possible Trade-off As discussed so far, the mem-
ory (but not the computation) required during the prov-
ing process grows with the number of new proofs of
non-membership. In fact, to keep consistency among
such proofs, the prover must store and re-use some node-
dependent random values (e.g.,rv andev). To avoid, such
growth (or to enable different servers given the same se-
cret key of a committed database to prove facts about it
without coordinate with one another). We can use pseu-
dorandom functions [8] to solve this problem (namely, any
random value associated to a nodev is computed pseudo-
randomly on inputv, and all computed values aboutv are re-
computed) but degrade the zero-knowledge property from
perfect to computational. The latter approach is what we
actually adopted in the posted pseudo-code.

6. Final Thoughts
Additional Privacy Given our anthropocentric perspec-
tive, zero-knowledge sets and databases are particularly at-
tractive when dealing with sets and databases aboutpeople.
In such applications, the privacy of “membership” informa-
tion is just one of the desiderata, though often be the most
difficult one to enforce in a totally provable way. For in-
stance, it is not hard to enhance our construction so as to
ensure that

3Note that a solution to the small leakage problem could have been ob-
tained as follows: for each pair(x0y0) 2 D, storey = H(y0) in leafP (x), whereP (�) denotes a prefix-free encoding. Such a solution is how-
ever, much less efficient whenever long keys may be used to address the
database, than just hash and insert!

� It is impossible to prove, withoutx’s cooperation,
whether personx 2 D —and, if so, which his recordD[x℄ is. (This may be useful ifD consists of the medi-
cal records of the patients of an hospital.)� It is possible to prove portions of recordD[x℄ in “isola-
tion,” that is, without revealing anything about the other
portions. (E.g., withinD[x℄, one can separate financial
information from medical information.)� Only certain given entities can read certain given por-
tions (and only such portions) of the record,D[x℄, of
personx.� A databaseD can be distributed across a multiplicity of
servers, which can interface with the broad “outside”
so as to both produce and prove any valueD[x℄, but
without understanding it.

Details of these simple but powerful privacy enhancements
will be given in the final paper.

Open Questions We hope that non-interactive zero-
knowledge sets (and databases) will attract further research.
In particular, we hope that the following questions will be
answered:� Is it possible toupdatea zero-knowledge set at a low

additional cost (e.g., logarithmic in the size of the set)?� Is it possible to handle multipleprovers(e.g., ensuring
that their sets are “independent”)?� Is it possible to construct zero-knowledge sets under
weakercomplexity assumptions?

In Sum Zero-knowledge sets and databases provide a new
mathematicalprimitive, with enormousapplication poten-
tial.

References

[1] E. Bach. How to generate random integers with known
factorization. InProceedings of the fifteenth annual ACM
Symposium on Theory of Computing,pages 184–188, ACM
Press, 1983.

[2] M. Blum, P. Feldman, and S. Micali. Proving security
against chosen ciphertext attacks. In S. Goldwasser, editor,
Proc. CRYPTO 88, pages 256–268. Springer-Verlag, 1988.
Lecture Notes in Computer Science No. 403.

[3] M. Blum and S. Micali. How to generate cryptographically
strong sequences of pseudorandom bits.SIAM Journal on
Computing, 13(4):850–864, 1984.

[4] M. Blum, A. De Santis, S. Micali, and G. Persiano. Nonin-
teractive zero-knowledge.SIAM J. Comput., 20(6):1084–
1118, 1991.

[5] I. B. Damgard, T. P. Pedersen, and B. Pfitzmann. On the ex-
istence of statistically hiding bit commitment schemes and
fail-stop signatures.Lecture Notes in Computer Science,
773:250–??, 1994.

[6] E. Fouvry. Theoreme de Brun-Titchmarsh; application au
theoreme de Fermat.Invent. Math., 79:383–407, 1985.

[7] S. Goldwasser, S. Micali, and C. Rackoff. “The Knowl-
edge Complexity of Interactive Proof Systems”,SIAM J.
Comput., 18 (1):186–208, 1989.

[8] O. Goldreich, S. Goldwasser, and S. Micali. How to con-
struct random functions.Journal of the Association for
Computing Machinery, 33(4):792–807, October 1986.

[9] S. Goldwasser, S. Micali, and R. Rivest. A digital sig-
nature scheme secure against adaptive chosen-message at-
tack. SIAM Journal on Computing, 17:281–308, 1988.

[10] S. Halevi and S. Micali. Practical and provably-securecom-
mitment schemes from collision-free hashing. InProc. 16th
International Advances in Cryptology Conference – Crypto
’96, pages 201–215, 1996.

[11] A. Kalai. Generating random factored numbers, easily.In
Proceedings of the 13th Annual ACM-SIAM Symposium On
Discrete Mathematics (SODA-02), pages 412–412, New
York, January 6–8, 2002. ACM Press.

[12] J. Kilian. A note on efficient zero-knowledge proofs and
arguments. In Proc. 24th Ann. ACM Symp. on Theory of
Computing, pages 723–732, Victoria, B.C., Canada, May
1992.

[13] J. Kilian. Improved efficient arguments. In Proc. 15th Inter-
national Advances in Cryptology Conference – CRYPTO
’95, pages 311–324, 1995.

[14] J. Kilian Efficiently Committing to Databases TR #97-040,
NEC Research Institute, 1997.

[15] R. C. Merkle. A certified digital signature. In G. Bras-
sard, editor,Advances in Cryptology—CRYPTO ’89, vol-
ume 435 ofLecture Notes in Computer Science, pages 218–
238. Springer-Verlag, 1990, 20–24 August 1989.

[16] S. Micali. Computationally Sound Proofs, In proceedings,35th IEEE Symposium on Foundations of Computer Sci-
ence, 1994.

[17] S. Micali, M. Rabin Hashing on Strings, Cryptography,
and Protection of Privacy. InProceedings Compression
and Complexity of SequencesIEEE Computer Society, Los
Alamitos, CA, June 11-13, 1997, p. 1. (First presented at
Berkeley Symp. on Randomness, 1996.)

[18] National Institute of Standards and Technology.FIPS
PUB 180-1: Secure Hash Standard. National Institute for
Standards and Technology, Gaithersburg, MD, USA, April
1995. Supersedes FIPS PUB 180 1993 May 11.

[19] R. Ostrovsky, C. Rackoff and A. Smith. Personal commu-
nication.

[20] T. Pedersen. Noninteractive and information-theoretic se-
cure verifiable secret sharing.Lecture Notes in Computer
Science, 576:129–140, 1991.

[21] R. Rivest. The MD5 Message-Digest Algorithm. RFC
1321, MIT, RSA Data Security, April 1992.

[22] A. C. Yao. Theory and applications of trapdoor functions.
In 23rd IEEE Symposium on Foundations of Computer Sci-
ence, pages 80–91, 1982.

A. Detailed Construction of Zero-Knowledge
Databases

A.1. Construction-Dependent Terminology about
Binary trees

Given a databaseD with supportS, we label each vertexv 2 Tk with a collection of values, described as follows. We
first generate (pseudo)random elementsav; bv 2 Zq . We
similarly generateev 2 Zq pseudorandomly, with the re-
quirements thatev 6= 0 andee = 1. These pseudorandom
values have little conceptual meaning, but are used to gener-
ate the “meaningful” values, described below. We generate
them pseudorandomly to simplify the memory requirements
of our protocol, as they can be implicitly generated once and
for all.

We “hash” the supportS of D as follows. IfD(x) = y
we say thatD(v) = y, wherev = H(x) 2 f0; 1gk is a
vertex ofTk. We ignore the unlikely possibility of a collision
(see Section 5.4). We hereafter treatS as being defined overf0; 1gk when convenient.

The “meaningful” values we associate withv aremv;
v; hv andrv . Here,mv is a hash of some of the val-
ues forv’s children (as with a Merkle tree),
v is a Pedersen
commitment tomv, with generatorhv, andrv is the value
needed to prove thatmv was indeed the committed value.
We define these as follows:� mv = 8<: H(y) if jvj = k andD(v) = y0 if jvj = k andD(v) is undefinedH(
v0; hv0;
v1; hv1) if jvj < k.� hv = hev ; rv = av and
v = gmvhrvv if v 2 TREE(S),

and� hv = gev ;
v = gbv andrv = bv�mvev if v 62 TREE(S).

A.2. The Database Committer

COMMIT DATABASE(D; �; k)
1. The committer uniquely identifies from the reference

string� a primep, two generatorsg andh for Z�p , and
a hash function nH as follows:

First, the committer parses� as � =�1 � � ��k2�1 � � � �k2 ; where (i) each�` has length
equal to the number of coin tosses sufficient (with high
probability) for Bach’s algorithm to output a randomk-bit integer in factored form, and (ii) each�` has
lengthO(k).
Second, the committer finds the first integeri such thatBACH(1k) with coin tosses�i outputs ak-bit integerni, in factored form, such thatni + 1 is prime andni
has a prime factorq of size at least2(k+1)=3; and setsp = ni + 1.4

Third, using the factorization ofp � 1, the commit-
ter finds the first two integersa andb such thatg =� (p�1)=qa andh = � (p�1)=qb are generators ofG, the
subgroup ofZ�p or orderq (treating�a and�b as num-
bers modp). It letsH = Hpqgh be the corresponding
Pedersen hash function.

Finally, if the above initialization procedure fails to
produce the desired values for� (i.e., it runs out of ran-
dom bits), it simply stops. We choose� large enough
(details omitted) so that such a failure occurs with prob-
ability at most2�k; in such an insignificant case we
have the verifier always accept.

2. The committer chooses a seeds R f0; 1gk, thus implic-
itly defining (but not explicitly computing) a pseudo-
randomGGM(v; �), mapping each vertex labelv to a
triple (av ; bv; ev), as described in Section A.1.

3. LetS be the “hashed” support ofD. For each vertexv 2 FRONTIER(S), the committer computes
v andhv
according to the definition given in Section A.1 (note
thatv 2 FRONTIER(S) impliesv 62 TREE(S). These
values depend solely on(av; bv; ev).
Then, for v 2 TREE(S), the committer computesmv ; hv; rv and
v (according to Section A.1). Note
that for any vertexv 2 TREE(S), these values de-
pend on the database entries,(av ; bv; ev) and on the
 andh values computed for the children ofv (v0 andv1). Also note that any child ofv 2 TREE(S) is ei-
ther in TREE(S) or FRONTIER(S). Thus, the commit-
ter may computemv; hv; rv and
v for the leaves of

4It follows from Fouvry’s theorem [6] that onlyO(k) expectedni need
be generated.

TREE(S), and then successively visitv after it has vis-
ited v’s children (those inFRONTIER(S) have already
been visited).

4. Finally, the committer outputs the public keyPK con-
sisting of
e, the commitment at the root node of the
tree, and the secret keySK consisting of the valuesav; bv; ev;mv; hv;
v ; rv for each nodev 2 TREE(S)[
FRONTIER(S).
[If in any of the operations described above, the com-
mitter observes a collision:(x1; y1) and(x2; y2) such
that gx1hy1v = gx2hy2v ;
wherehv = hev , it computeslogg h = y2 � y1ev(x1 � x2) ;
and stores this value.]

(Comment: TREE(S) [FRONTIER(S) contains less
than3kn nodes if ifS has cardinalityn.)

A.3. The Database Prover

PROVE(x; SK)
If D(x) = y, the prover executes
PROVE DATA(D; x; y; SK; �).
If D(x) = out , the prover executes
PROVE EMPTY(x; SK).
[If in the execution ofCOMMIT DATABASE, the com-
mitter computedd = logg h, the prover may perform
these operations trivially (details omitted).]

PROVE DATA(D; x; y; SK; �) /* prove thatD(x) = y */

The prover outputs the statement “D(x) = y” and the
proof�x consisting of the stored values

– ev; rv ;
v;
v0; hv0;
v1; hv1 for eachv = v0; : : : ; vk�1 (where e = v0; : : : ; vk =H(x) is the sequence of vertices frome toH(x));
and

– eH(x); rH(x);
H(x); y.

Note that these values were computed during the exe-
cution ofCOMMIT DATABASE.

PROVE EMPTY(x; SK) /* prove thatD(x) is undefined */

The prover outputs the statement “D(x) = out” and the
proof �x obtained by computing from scratch (given
the definition in COMMIT DATABASE) or retrieving
from storage the following values

– hv; rv ;
v;
v0; hv0; hv1; hv1 for eachv = v0; : : : ; vk�1 (where e = v0; : : : ; vk =H(x) is the sequence of vertices frome toH(x));
and

– hH(x); rH(x);
H(x).
(Comments: (1) The valuehe = h always, and is thus
not computed nor sent. (2) Values must be recomputed
from scratch only for those nodes in the sub-path,SP ,
from a node inFRONTIER([D℄) to leafH(x). All nodesu in SP do not belong toTREE([D℄), and thus their
v
values do not depend on their children’s values, but are
“locally” computed as a function ofu. Therefore, since
the length ofSP is at mostk, the values of at most2k
nodes must be computed from scratch, either locally or
based on previously computed “from scratch” values.
This entails thatO(k)GGM evaluations, hashings and
exponentiations modp, suffice to compute�x. (3) In
this exposition, the same value appears in multiple lo-
cations; the prover sends them only once.)

A.4. The Database Verifier

VERIFY(x; statement; �x; PK; �)� The verifier extracts the quantitiesp; q; g; h;H from
the reference string� just as the honest prover (if it
cannot do so, it simply accepts); then� If statement= \D(x) = y”, the verifier executes
VERIFY DATA(x; y; �x; PK).
If statement= \D(x) = out”, then verifier executes
VERIFY EMPTY(x; �x; PK).

VERIFY DATA(x; y; �x; PK; �)
1. For each nodev such that the verifier receivesev, the

verifier computeshv = hev , and checks that this is con-
sistent with the stated values ofhv if given to it (ver-
ifier also checks thathe = h). For v = v0; : : : ; vk�1,
the verifier computesmv = H(
v0; hv0;
v1; hv1) andmvk = mH(x) = H(y).

2. For v = v0; : : : ; vk, the verifier computes
PED VERIFYp;g;hv (
v;mv; rv), and rejects if any
of these tests rejects. Otherwise, the verifier accepts.

VERIFY EMPTY(x; out; �x; PK; �) :
1. Forv = v0; : : : ; vk�1, the verifier computesmv = H(
v0; hv0;
v1; hv1)

andmvk = mH(x) = 0.

2. For v = v0; : : : ; vk, the verifier computes
PED VERIFYp;g;hv (
v;mv; rv), and rejects if any
of these tests rejects. Otherwise, the verifier accepts.

