Zero-Knowledge Sets

Silvio Micalit Michael Rabir Joe Kiliark

Abstract Notice that, in particular, our zero-knowledge desiderata
imply thatS’s cardinality should remain hidden to the max-
We show how a polynomial-time prover can commit to animum extent possible. For instance, after proving that 10
arbitrary finite setS of strings so that, later on, he can, for different strings belong t&, then the only information de-
any stringz, reveal with a proof whether € Sorz ¢ S, ducible aboutS’s cardinality should be that it is at leak;
without revealing any knowledge beyond the verity of thesenot even a ridiculously large upper bound & cardinality
membership assertions. should be deducible. Indeed, hiding the size&Sgfoses the

. most difficult technical obstacles to our construction.
Our method isnon interactive Given a public random

string, the prover commits to a set by simply posting a shortTechnical Difficulties Constructing zero-knowledge sets
and easily computable message. After that, each time its not trivial. The main difficulty lies in proving that an
wants to prove whether a given element is in the set, it simarbitrary stringz does not belong to our arbitrarily con-
ply posts another short and easily computable proof, whosetructed sef as identified by its commitment vali&;. For
correctness can be verified by any one against the publignstance, quite straightforwardly, one could prove in zero
random string. knowledge the following two sub-statements: (1) “there
exists a (secret) value and (secret) strings;,...,z,
such that committing to them yields the valGe, and (2)
“x £ x1,...,2 # x, ". Unfortunately, such an approach is
bound to betray an upper bound 8fs cardinality. In fact,
the number of bits transmitted in a zero-knowledge proof,
. whether interactive [7] or non-interactive [4], grows with
1. Introduction the size of the corresponding statement: in our case, with
“x1,...,2,", and thus withS’s cardinality. One may at-
Sets are perhaps the most fundamental notion in mathetempt to get around this size problem using PCP-based tech-
matics, and ever since [7], zero-knowledge proofs have beeniques (c.f., [12, 16, 13]); however, such techniques do not
extensively studied. Yet, to date, no general and satfiact appear to lead to practical solutions.
zero-knowledge representation of sets exists. We thus wish

to provide one by putting forwargero-knowledge sets Il\él\;a\lliiggResult Via a different approach, we prove the fol-

Intuitive Goals We wish to enable one to (1) arbitrar-
ily choose a finite setS, of finite strings, (2) compute a Theorem: Zero-knowledge sets exist if the discrete loga-

Our scheme iwery efficient; no reasonable prior way to
achieve our desiderata existed. Our new primitive immedi-
ately extends to providing zero-knowledge “databases.”

commitment(Cs, to S, and (3) given an arbitrary sequence rithm problem is hard.

of strings,z, x2, . . ., prove non-interactively (relatively to

C's) whetherz; belongs taS or not without revealing more Perhaps surprisingly, in light of the above very stringent
knowledge abouf than just truthfully assertings; € S” security requirements, our construction of zero-knowkdg
or“z; ¢ S™, whichever the case may be). sets is not only efficient, but actualixery practical: A set

Following the non-interactive zero-knowledge paradigm S is committed to by performing at mogk collision-free
of [2] and [4], such non-interactive proofs of “membership” hashings and®k modular exponentiations for each of its
and “non-membership” iy are relative to a publicly avail- elements, wheré is the security parameter. Each proof
able random string. of membership inS is computed by a mere table look up,
T Laboratory for Computer Science, MIT, Cambridge, MA 02139 and each p_ro_of of non-me_mbershlpﬁss computed by Qt
 Department of Applied Science, H’arva’rd University’, Camidpei, MA m_OStQk collision-free hashings arﬁkﬁ mOdUI,ar exponentl_-.
02138. Research supported at Harvard Univ. by NSF Grant D0%423 ations. The same amount of work is required by a verifier
§NEC Laboratories, Americg.oe@ec- | abs. com for the verification of a proofr, of membership or non-

membership always requir@g collision-free hashings and
2k modular exponentiations.

From Zero-Knowledge Sets to Zero-Knowledge (Ele-
mentary) Databases By an elementary database (EDB
for short) we mean a partial functial mapping a (sub)set
of keysinto values While databases have many com-

plex functionalities, our EDBs have just an elementary one.

Namely, if D is an EDB, then the only envisaged operation
is queryingD with a keyz: and obtain in response either the
special symbollL (if no value is associated tg) or the only
value D (z) associated with.

Our construction of zero-knowledge sets immediately
yields the construction of aero-knowledge EDBTlhe lat-

ter consist of a way to (1) commit to an elementary database

D and then (2)/z € {0, 1}*, prove whether: is indeed an
existing key inD (and if so what is the valu®(z) associ-
ated with it), without revealing any undue knowledge. That
is, without providing more knowledge than that obtainable
from a trusted party who, knowin, on a given sequence
of input stringse, v, . . ., truthfully states the status @f rel-
ative to these strings: e.g., “x is not a keylin’ “ y is a key

of D and its corresponding value I3(y) = v,” etc.

Using a small amount of interaction, Ostrovsky, Rack-
off and Smith [19] have very recently constructed zero-
knowledge databases with more powerful functionalities.
For instance, they show how to handlange queries
(roughly, after committing taD they prove that, for an in-
put intervalla, b], eitherD does not contain any keys in it,
or which keys are contained in it, and which are their corre-
sponding values).

Road Map In Section 2, we give our basic notation. In

Section 3, we define zero-knowledge elementary databases.

In Section 4, we give some basic preliminaries. In Section 5
we give an informal exposition of our protocols. In Sec-
tion 6, we make some final comments. In Section A of the

appendix, we give a more “pseudo-code” presentation of our

protocols.
A more detailed version of this paper can
be found in the Cryptology ePrint Archive

(http://eprint.iacr.org/).
2. Notation

We shall follow, verbatim, [4] and [9]. Namely,

Strings.We denote the empty word l®/ and the concate-
nation of two strings: andy by z|y (or more simply by
zy). If ais a binary string, thefe| denotesy’s length;
a1 - - - «; denotesy’s i-bit prefix.

Integer representationWe denote byV the set of natural
numbers: 0, 1, 2,. ., Unless otherwise specified, a nat-
ural number is presented in its binary expansion (with

no leading0s) whenever given as an input to an algo-
rithm. If n € N, we denote byl" the unary expansion
of n (i.e., the concatenation af1's).

Negligible functions.By ¢(-) we represent any function
than vanishes faster than the inverse of any fixed pos-
itive polynomial. That is, for any positive polynomial
P,

lim P(k)e(k) = 0.
k—oo

Probabilistic algorithmslIf A is a probabilistic algorithm,
then for any inputr, the notation A(x)” refers to the
probability space that assigns to the strinthe prob-
ability that A, on inputz, outputss. An efficientalgo-
rithm is a probabilistic algorithm running in expected
polynomial time.

Probabilistic assignmentsf S is a probability space, then
“ R ” H
x < S” denotes the act of choosing an element
at random according t&. If F is a finite set, then

the notation & & F” denotes the act of choosing
uniformly from F'.

Probabilistic experiments. If p is a predicate, and
S1,Ss,... are probability spaces, then the notation
PI“[QZ] (E 51;) & SQ; : p(a:1,a:2,...)] de-
notes the probability that(z,, z», . . .) will be true af-
ter the ordered execution of the probabilistic assign-
mentsz, (i Sl; T9 (i Sl; -

Probability spaceslf S, T', ... are probability spaces,

the notation{z & S;y & T;---: (x,y,---)} denotes
the new probability space ové(z,y,---)} generated
by the ordered execution of the probabilistic assign-
mentsz < S, y & T, -.

Elementary Databaseé&\n EDB D is a subset of0, 1}* x
{0,1}* such thaf{z,v,) € D and(z,vs) € D implies
V1 = V2.

If D is an EDB, by the expressiofD]” we denote the
supportof D, that is, the set of finite binary strings
for which, for somev € {0,1}*, (z,v) € D.

To indicate that: is not in the support of and EDB
D, we write “D(xz) =1". By writing “v = D(x)"
or “D(x)=v" (wherey is any symbol other tha.) we
informally mean that: € [D] andv is a string, indeed
the unique string such thét,y) € D.

3. The Notion of Zero-Knowledge EDB

Since the notion of a zero-knowledge set is essentially
a special case of that of a zero-knowledge EDB, we only
define the latter. We start with the intuitive version.

3.1 The Informal Notion

Mechanics Though not employing non-interactive zero-
knowledge proofs directly, zero-knowledge EDBs have a

to any verifier exactly the same view that he might receive
from the true prover (who know®). Namely, the verifiers’
views produced by the following two games anelistin-

similar mechanics. Namely, they rely on a public random 9uishably distributed

string o, the reference string This string is polynomially
long in k, the security parameter controlling the probability
of error or successful cheating.

In the initial committing phase, on input an EOB(i.e.,

a binary string encoding the relevant subset{6f1}* x
{0,1}*) ando, a proverP easily computes a pair of match-
ing keys,PK andSK. Key PK constitutesP’s commit-
ment toD, and is thus made public; keyK enablesP to
prove the value oD(x) for anyz € KEYS, and is thus kept
secret. (In addition to some short cryptographic informa-
tion, SK may include a description dp.)

In the subsequent proving phase, given any stsing,
using SK, quickly produces on his own (i.e., without any
interaction) a proofr, of either D(z) =1 or D(z) = v,
whichever is the case. Any verifier can check the correct-
ness ofr, by running an efficient algorithm on inputs the
alleged proofr,, “D’s description”’P K, and the reference
string.

Security Zero-knowledge EDBs enjoy completeness,
soundness and zero-knowledge.

Completeness simply guarantees that, with above me-
chanics, one can commit to any EOB, and then, for any
key z, prove the correct value dp (z).

Soundness guarantees that the prover cannot lie about
the value of D(z). Namely, PK commits the prover to
a partial functionD : {0,1}* — {0,1}* in the sense
that, in polynomial time, no one can find (1) a strindo-
gether with (2) a proof, relative t& K, of D(z) =1 and
D(z) = v € {0,1}*, or (2') a proof, relative toPK, of
D(z) = vy andD(z) = v, for vy # vs.

1

Game AFirst, arandom reference striagwhose length is

a fixed polynomial in the security parametgiis made
public. Then, an EDBD is chosen by the adversary
and handed to the honest prover Later, based o)
and the reference string, P computes a commitment
PK to D along with a proving keys K. Finally, the
adversary chooses a sequence of strings,, . . ., for
which P produces proofs for the correct value bf,
Ty Mgy - -

(The latter sub-process &laptive Namely, after see-
ing PK, the adversary chooses and the prover com-
putesr,,; after seeingr,, the adversary chooses
and the prover computes.,; and so on.)

The verifier's view then consists of the stringsP K,
L1y Tgqy T2y Mgy - -

Game B.The efficient simulatolSI M/, on input the secu-

rity parameterk, computes a string’ of the proper
length, a public keyPK' and secret keys K'. After

seeingPK’, the adversary choosas, the simulator
is told (without proof!) the correct value db(z) for

the same EDBD of Game 1, and computes, ; after

seeingr, the adversary choosas, the simulator is
told (without proof!) the correct value ab(z), and
computesr,,, ; and so on.

The verifier's view then consists of the string's PK’,

!

L1y Typs

i
.T,‘2,7Tz2,

By |D| we denote the sum of the lengths of the keys in
[D] and their corresponding values.

Zero-knowledge guarantees that the knowledge obtain3.2 The More Formal Notion

able by seeing a commitment to a EOB and then a se-

Elementary Database Systems We say that a triple of

quence of proofs for the value @ at stringsz, y, ..., €O~ Tyring machines(P;, P», V), constitute aEDB systenif

incides with that obtainable without seeing any thing aboutheither machine retains state information after an exeouti
D at all, except for asking a trusted party about strings 414 their computation on common inpats a unary string
y, etc., and receiving in response his truthful but unproved.5jedthe security parameteando, a binary string called

assertions: e.g..D(z) =1, D(y) =v € {0,1}*,...”
Technically, the latter condition is expressed by saying

that a zero-knowledge EDB has a polynomial-time simu-

lator that, without knowing anything about the set, progide

INote that the computational nature of soundness is negessaur
setting. Namely, our very stringent zero-knowledge regmients imply
that, for each choice of the security paramétes commitment t@ should
always have the same size (depending onlyhmo matter how many
strings may be in théD], and no matter how long these strings may be.
In turn, this implies that a commitment #0 must be onlycomputationally
binding. Indeed, the number of bits necessary to pin-down &'setactly
cannot be shorter thati’s Kolmogorov complexity, and thus any perfectly
binding commitment to a set must grow with the set.

e The first algorithm to compute ig;.

the reference stringproceeds as follows:

On input
(D, 1%, 0), P, produces two outputs: (1) a strifgk,
calledD s public key(or commitmen)t and (2) a string
SK, calledD s secret keyand halts forever.

(Note: SK may always includé”, o, andD.)

e The second algorithm to compute B,. On in-

put (D,1% 0, PK,SK), and an additional input €
{0,1}*, P, outputs a stringr,, calledD’s proofabout
Z.

e The third algorithm to compute is algorithin. On in-
put(1*, o, PK) and an additionat € {0, 1}* together
with its proofr,, V outputs either a string € {0,1}*
(meaning that it believeg = D(x)), out (meaning that
it believes that: is outsideD’s support), orl (mean-
ing that it detected cheating).

If (P,P,V) is an EDB system, we refer t& as the
databaseommitter to P, as the databag@over, and toV’
as the databaserifier.

Elementary Database Simulators Let SIM be a proba-
bilistic polynomial-time Turing machine capable of making
oracle calls. We say th&tl M is an EDBsimulatorif, given
oracle access to a databd3eit computes as follows:

e Inits first executionS T M (1*) makes no oracle calls
and outputs three strings,, PK', andSK’

(Respectively, a “fake” reference strin@)’'s “fake”
public key, andD'’s “fake” secret key)

e In each subsequent execution, on ing&K' and a
stringz € {0,1}*, SIMP(SK',z) calls its oracle
only about stringz, receivesD(z) in response, and
outputs a stringr,, .

Zero-Knowledge Elementary Databases Let
(P, Py,
in probabilistic polynomial time. We say thaP,, P», V) is
azero-knowledge EDBZK EDB, for short) if there exists a
positive constant such that:

1. Perfect Completenesg.databasé andvz € [D],

o & {0,1}¥;(PK,SK) & P (1%,0,5);
Ty & Po(z,SK):

V(1*¥,0, PK,z,7,) = D(x)

Pr =1.

2. Soundnessy¥z € {0,1}* andV efficient algorithms
P', (k) is negligible, where (k) =

o & {0, 1} (PK',«}) & P'(1* 0):
V(¥ o, PK' z, 7)),V (k,0, PK' x,7}) #L A
V(¥ o, PK' z, 7)) # V(k,0, PK' z,).

Pr

3. Zero-Knowledge. There exists a database simulator

STM such tha¥ Turing machineddv, Vk € N, andv
database®: View(k) ~ View'(k), where

V') be an EDB system whose Turing machines run

View(k) =
{o & {0,1}"; (PK,SK) & Pi(1*
(z1,51) & Adv(1*, 0, PK);
Te, & Py(z1,SK);
(z2,52) & Adv(1¥, 0, PK, 51,7y,);
Ty & Py(y, SK);

,0,5);

: PK, &, Ty, To, Tgy, --- }

and

View' (k) =
{(¢o',PK',SK") & SIM(1F);
(CU],S]) & Adv(1*,0, PK);
& SIMD(SK’ x1);
T2, 92) & Adv(1*%,0, PK, 51, 7.,);
. SIMD(SK’ Za);

: PK', my, my,, a2, Wy oo }
As usual, various flavors of zero-knowledge arise, de-
pending on whether denotes computational indistin-

guishability, statistical closeness, or equality.

4. Preliminaries for Our EDB Construction

4.1 Primes, Generators, and the Discrete-

Logarithm Assumption

Letp be a prime ang be a prime divisor op — 1. Then
Z,, the multiplicative group modulp, is cyclic. and fur-
thermore has a cyclic subgrodpof orderq. Furthermore,
givenp andq it is a straightforward and standard exercise
to generate a random elemenE G that generate&! (all
g € G save the identity generafé). Giveng andz € Z,, it
is easy to computg®. Thediscrete-logarithm assumption
(DLA for short) formalizes the widely believed assumption
that inverting this permutation is indeed computationaity
tractable.

DLA Let (pk,qr) be a family of prime pairs such that
lgl = k,|p|] = O(k), andg|p — 1; let G, and generator
g, be as above. Thel, efficient algorithmA the function
e(k) is negligible, where

)

{ F quy *gk
p/lewQ/ﬁ)

4.2 Commitment Schemes Pedersen’'s Commitment Scheme Pedersen’s commit-
ment scheme [20] does not assume the existence of public

We restrict ourselves to discussing non-interactive com-tandom strings, but, rather, a public quadruple, ¢, g, k),
mitment schemes, as they are the ones used herein. Infowherep andq are primeg|p — 1 andg andh are generators
mally, such schemes comprise two phases ¢gramitand for G, the cyclic subgroup of; of orderg. (Thus, some ad-
verificationphases) and involve two parties (the committer ditional work is necessary in our model, in order to uniquely
and the verifier). from a public random string the correct public quadruple.)

Both parties share as a common input a random string The commitment and verification algorithms are so de-
o. The commit phase is executed first. In it, the committer,fined, where all operations are performed modulo
given inputm (the messageoutputs acommitment string
¢, which is made public, and proof r, which she keeps ~ PEP-COMMIT((p, ¢, g,h), m): randomly select € Z,
secret. During the verification phase the committer simply ~ @nd outputc, 7), wherec = g™h" is the commitment
publicizes the message and the proof:, which the verifier string, and- is the (for the time being secret) proof.
checks against.

Semantically, at the end of the commit phase, (1) the ver-
ifier does not know anything yet about the message, and (2)
the Sender “cannot change the message.” In the verification Clearly, the verifier will always accept values that are
phase, the verifier either (a) learns the correct messathe, if committed to and revealed as above. For anyc is dis-
committer is honest, or (b) learns that the sender has aheateributed uniformly overG. Thus,c carries no information
—and suspends any judgment about the message’s value. aboutm. Notice that being able to find efficiently proofs

In our application, we only define commitment schemesthat the same is the commitment to two different messages
in which the committer is polynomially bounded and the implies the ability to compute efficiently compute the dis-
verifier unrestricted. More formally, crete logarithm of. in basey.

PED_VERIFY((p,q,9,h),c,m,r): If ¢ = ¢g™h", then
accept; else,reject.

Definition Let ComMmIT and VERIFY be probabilistic al- o .
gorithms, where ©MMmIT is polynomial-time. We say that 4-3 Collision-free Hash Functions
(CommIT,VERIFY) is a perfectly hiding, non-interactive

commitment schenifthe following three properties hold: Informally, a collision-free hash function is a
polynomial-time computable functionrd mapping bi-
1. Completenessio, m € {0,1}*, nary strings of arbitrary length into reasonably short gnes
so that it is computationally infeasible to find aogllision
. {(C,T) & COMMIT(a,m):} -1 (for H), that is, any two different strings andy for which
VERIFY(o,¢c,m,r) =m H(z) = H(y). Popular candidate collision-free hash

function is the standardizeskcure hash functiofiL8] and
2. Soundnessy efficient algorithm @mmIT', £(k) is Rivest's MD5 [21]. Formally, collision-free hash functien

negligible, where are easy to sample function families. Namely,
(k) = Definition Let KG (for key generator) be a probabilistic
{7 £ (011% cr) & Counro) | BORTOTBHE SgorimG 1 b andletr (o
1 # VERIFY(o,¢, 1) # VERIFY(0, ¢, 1) poly 9 '

¥* (more preciselyE : ¥* x 1¥ — X for all positive
integersk). We say that the paitK G, E) is acollision-free
hash functionf V efficient algorithmA, (k) is negligible,

Vimi,ms € {0,1}*, C(o,m1) = C(o,ms), where

Pedersen’s Hash Functions Collision-free hash function

Wi K that. though h defined i texist under the discrete-log assumption. In particulad-Pe

?1 remar at’ bOUle V\t’e h av(; efine com:cnl Tﬁn ersen’s commitment function may be viewed as the collision
schemes so as to be able to handle messages of arbitrafy, - o 0\0 hash functionfl — Hpaon : (Z,)? = Z, S0 de-
length, we shall use them only for messages whose lengt

o ned: H (ab) = g°h® modp. If |¢q| > ¢ and|p| < k, we can
s fixed ar_ld actually shorter than|. Ind_eed, we shall use by standard coding tricks tredf as a hash function from
the following commitment scheme (which will prove to be

1}2¢ LS : ’
implementable in the common-random-string model). {0,1}7 0 {0.1}%. By Fouvry's theorem [6], and Bach's

3. Zero knowledge:

_ o JhE KGR (2,y) & Ah
where, form € {0,1}*, e(k) = r{ x#y N E(h,z) = E(h,y

C(o,m) = {(c,r) & CoMmmIT(a,m): ¢ }.

~— —

algorithm [1], we can efficiently (and provably) find such
p,q Wherel ~ (2/3)k; hence,H compresses can be used
to compress strings of size (4/3)k to strings of lengthk.

(In practice, we can makp| = «lql|, for any desired al-
pha.) One may iterate this construction in the standard way
(e.g., using Merkle trees) to create collision intractdtdsh
functions from{0, 1}* to {0, 1}*.

An“all or nothing” property of Pedersen’s hash function

lo11] [100] [101] [110]

We note that the hash function computed above has the fol;
lowing “all or nothing” property: Given a single collision
((z1,z2) such thatd (z;) = H(z2)), one can compute for
any z a siblingy such thatH (z) = H(y). This property Figure 1. The complete labeled binary
follows from the fact that any collision allows one to com- tree 73, and the subtrees TREE(S) and
putelog, h. We use this property to show that the (perfect) FRONTIER(S), for S ={000,010,111}. The
completeness and zero-knowledge properties of the prbtoco, darkly shaded vertices comprise TREE(S),
are unconditional. and the lightly shaded vertices comprise
FRONTIER(S).

4.4 Pseudorandom Functions

Goldreich, Goldwasser, and Micali [8] have shown how {0, 1}*, we identifyS with the subset of the leaves
to simulate a random oracle frombit strings tob-bit strings having the same labels, and define

by means of a construction usingseed that is, a secret
and short random string. They show that, if pseudoran- e TREE(S) to be the subtree df; consisting of the union

dom generators exist [3, 22], then there exists a polynemial of all the paths from the root to the leavesSnif S is
time algorithmGGM (-, -, -, -) such that, letting denote the empty,TREE(S) = €, and

seed, the functiolt?G M (s,19,1°,-) : {0,1}* — {0,1}®

passes all efficient statistical tests for oracle§hat is, * FRONTIER(S) =

to an observer with sufficiently limited computational re- {vlv ¢ TREE(S) andPARENT(v) € TREE(S)};
sources, acc_es_sin_g a _random oracle fl{c[ml]_»“ to {0,1}° if S is empty,FRONTIER(S) = {e}.

is provably indistinguishable from accessing (as an ora- .

cle) GG M (s,1%,1°,-), even if algorithmGG M is publicly (See Figure 1.)

known (provided that is still kept secret). . We denote the complement of a biby b. We say that dis-
As with hash functions, we can easily modify the do- tinct verticesy,, v, € T aresiblingsif they have the same

main and range of the pseudorandom functions to whatev arent, and denote bythe unique sibling of (e is unde-
is convenient. For ease of exposition, we suppress all suc ned). Hencey = wb has siblings = wb.

standard coding issues.
Merkle Trees Given a collision-free hash functioH, a

subtre€l” of Ty is turned into a Merkle tre@/ by “storing”

in every nodev of 7, a value (i.e., binary stringly, in the
Binary Trees We denote byT; to be the complete binary following manner: any childless node can store any non-
tree with2* leaves (we shall more simply writE whenk empty binary string, but any other node must store the value
is clear from context). We define thevelof a vertex as its ~ H(ab) whenever its left child stores and its right child
distance from the root. We label each of tienodes of7” of storesb: thatis,V, = H(V,V,1). The value stored in
leveli with ani-bit string such that the vertex labeledhas the root of M can be viewed as a commitment to all values
children labeledy0 andv1 (thus, the root has lab&l and stored inM’s nodes. A proof that nodestores the valug,,

its children are labelet and1). Equivalently, we define the (i.e., a proof ofV/, = y) consists ofr’s authentication path:

4.5 Trees and Merkle Trees

parent of a vertex, PARENT(v), as follows:PARENT(vb) = the sequence of values stored in the siblings of the nodes
v for any bitb. (except the root) along the path from the rootto(That is,

We identify the vertices of7’'s by their labels (e.g., the sequence df; for all nonempty prefixes of z.)
given a leafr = z; -- -z, the path from the root ta is For instance, ifr is a leaf, thent’s authentication path

€T, 21xa,...,21 -z = x.) Similarly, if S is a subset consists ofk values,vq,...,v;, and verifying whether:

storesy is done as follows. Letting; be thejth bit of z
anduy = y, compute the values;, 1, ..., uq as follows: if
z; = 1, setu;_1 = H(vju;); else, set;_1 = H(u;v;).
Finally, check whether the so computeglequals the value
Ve stored in the root.

It is immediately seen that, ondé’s root value is made
public, one cannot efficiently compute authentication path

(i.e,, if there exist strings andy such thatD(z) = y and
H(z) = z'); else, we call iempty.

node--value step To each noder € T, the committer
associates a random exponepin G (the group generated
by g andh), and then stores in the following valueh,,: if

v € T', thenh, = h® (in which case no one knows the

proving that two different values are stored in the same nodeliscrete log of:, in basey). Else,h, = g°*.

of M without efficiently finding anH -collision.

5. Our Informal Construction of ZK EDBs

5.1 Committing to database values

Recall that the committer receives three inputs: (1) the

security parametek, (2) the public and random reference
string 0 —whose length is polynomial ik— and (3) the
EDB D as a list of pairdz,v) —wherez € [D] andv =
D(z). We find it useful to describe our committer in terms
of the following steps.

Number-Theory Step We omit an intuitive description
of this step (making non-trivial use of computational num-
ber theory) and are satisfied of just discussing the goals i
achieves at a very high level.

In this step the committer “extracts” from two quan-
tities: (a) a quadruplép, q,g,h) as demanded by Ped-

Thus the committer does not kndmgg h, forany full v,
but does knovog,, h,, for all emptyv. Furthermore, reveal-
ing e, such thati, = h®¢ is a proof that one does not know
log, h, (@assuming one doesn't kndeig, h).

leaf-commitment step The committer stores in every leaf
v of T"a commitment, computed as follows. First he as-
sociates tw a random element, in Z*, and then computes
and stores i a valuec, computed as a Pedersen commit-
ment tom, (the value already associated #p using the
Pedersen quadruplg, ¢, g, h,): thatis,c, = g™ h;» mod-
ulop

Note that, if leafv is full then ¢, is a genuinecommit-
ment, that is, the committer cannot decommjtto any
string other thann,,, because it does not know the discrete
tog of h, in baseg. Else, if leafv is empty,c, is afake
commitment, that is, the committer can decomepito any
string he wishes, because it knolug,, /.

ersen’s commitment scheme, so that no one —includingVlerkle-commitment step By now all nodes: of T' store

the committer— will knowlog, h, the discrete log ofh

in baseg modulop, and (b) a collision-free hash function
H : {0,1}* — {0,1}*. This extraction is deterministic
and polynomial-time. Thus, it can be easily replicated by
any possible verifier, yielding the very safie g, h) andH.

We also require that one can simulate the creation, g, h)
such thatog, h is known; this is a standard construction and
we omit details in this extended abstract.

Tree-Pruning Step In this conceptual step the commit-
ter computes fronD the following subtred” of 7;: T =
TREE(H ([D])) U FRONTIER(H([D])). Thatis, first he con-
structs a subtre@’ by putting in it, wheneveD (z) = y,
nodeH (z) together with all the nodes frof,’s root to .
Then, he obtain% by adding tdl" all the nodes of’;, whose
parentis inZ".

The commitment to our EDB is then obtained by associ-
ating to and storing various quantitiesits nodes.

leaf-m-value step In this step the committer associates to
each leafr of T' a valuem, as follows: ifz € H([D]) then
m, = H(D(zx)) (i.e., if D(z) = y then he associatd$(y)
to leaf H (x)); else,mp(,) = 0. Note thatH (y) always is a
k-bit value, and thus different from 0.

Considering the entire treg,, we call a noddull if it is
the ancestor of at least one ledfcorresponding td ([D])

a valueh,,, and all leave® of T' have an associated value
m, and store a commitment valug. In this step the
committer associates a valuwe, to and stores a commit-
ment ¢, to every internal node: of T. He proceeds in
a recursive, bottom-up fashion. Namely,fis an inter-
nal node whose left child:0 and right childul already
have stored commitments, then the committer stores in
the valuem, = H(cyuo, huo, Cu1, hy1) and stores ing the
commitment, computed (as for a leaf) by first associating
to u a random element, in Z;, and then computing the
Pedersen commitmenf, = ¢”+h!* modulop (using the
generatoh,, previously stored in).

Finally, the commitment to the EDB, ¢p, consists of
the commitment, and the generatdr, stored in the root.

Net Result It should be noted that committing tb is
quite fast: it essentially requires three modular exponen-
tiations and one hashing for each elementlis support.

It should also be noted (which requires some proving) that
this complex operation satisfies a Merkle-tree like propert
Namely, as long as he operates in polynomial time, then with
high probability the committer cannot change any quantity
(i.e., my, ey, hy, 7y, andc,) associated to or stored in any
nodev of T without also changing.. The opposite (except
for ¢,) is however true for every nodein T's frontier.

5.2 Proving database values

the discrete log in basg— and a fake commitment,) and
then obtaining a new treg by “decommitting”c,, so as to

Recall that the EDB prover coincides with the EDB com- seamlessly weld’, into the oldT". Let us now see how the

mitter, and thus he has in memory the committer’s tfee
and all values associate to and stored in its nodes.

For proving statements of the form(z) = y, it will suf-
fices from the prover to retrievE’s values, but, for proving
statements of the fornfb(z) =1, it will be necessary for

the prover to augmerft with new nodes and and their rela-

prover associates values to thewnodesy of T, (i.e., those
other thanu).

In each new node of 7', the prover stores the valulg so
computed: first, he randomly chooses an expoagit 77,
and then computeg’* modulop. (Thus, by construction,
he will know the discrete log of, in baseg!) For each

tive associated and stored values. We start with the simplefew leafv of T, he setsn, = 0, chooses, € Z; at

case.

Proving D(z) = y. To proveD(z) = y, the prover pro-
ducest andy and reveals a proaf, consisting of: for every
nodev along the pattPy(,) from leaf H () to the root, (1)
the valuesn,, e,, hy, r,, ande, and —except fow = e,
the root— (2) the values, andh,, for v's sibling, u.

Such a proof is verified by (a) checking for the leaf of

Py, thatmpy) = H(y); (b) checking recursively, for ev-
ery other node ofy(,), thatm, = H(cyo, hvo, Co1, ho1);
(c) checking for everyv in Py, thath, = h° and

¢y = g™ hl» modulop; and (d) verifying that,, h. = cp.

random, and stores in the “fake Pedersen commitment”
¢, = g°h’» modulop. Then, he processes all other new
nodesv of T, so as to compute the values,, e, h,, ry,
andc,, in a recursive, bottom-up fashion: namelypifis
an internal node whose left chikeD and right childvl al-
ready have been processed, then the prover associates to
the valuem, = H(cyo, hyo, ¢v1, hy1) and stores in the
commitmente, computed (as for a leaf) by first associat-
ing to v a random element, in Z*, and then computing
¢y = g™ hl» modulop, using the generatdr, already as-
sociated ta.

The prover now “weldg’, into 7" as follows. He com-

Proofr, is convincing because it is hard for an adversary putesm,, = H(cuo, huo, cu1, hu1), and then using the fact

to “prove” bothD(z) = y andD(z) = y' fory # y'. This

that he knows the discrete log af, in baseg, he decom-

is so because it is hard to a malicious prover to two distinCtmits ¢,, (originally a fake commitment to 0) tow,,: that is,

stringsa and 8 such thatH (o) = H(f), becauseH is

collision-resistant, and because the prover cannot desbmm o prove D(z)

he computes a new, such that,, = ¢g"**h!* modulop.
=1, the prover produces and reveals

any of the above, in any other way, because Pedersen’s 3 proof, consisting of: for every node along the path

commitment is computationally binding as long as one doesPH

not know the discrete log of, in baseg, and because the

from leaf H (z) to the root, (1) the values.,, h,,, ry,
ando, and —except fob = ¢, the root— (2) the values,

prover shows that he does not know this discrete log (in factandp,, for v's sibling, .

he proves that he knows the discrete leg,of k., in baseh,
and he does not know that afin basey).

Proving D(z) =L. To prove thatD(z) =1, the prover
computesH (z), and then “moves” irff;, from the root to-
wards leafH (x) until he finds the last node that also be-
longs to the current subtrge (Note thatu may or may not
coincide with leafH (), but is always the case that, = 0
and that:,, is a fake Pedersen commitment.)

Because of the way) is committed to, proving that

Such a proof is verified by (a) checking for the leaf of
Py () thatmpg(,) = 0; (b) checking recursively, for every
other node ofPy), thatm, = H(cyo, hvo, o1, ho1); (C)
checking for every in Py (,) thatc, = g™ hyy moduIOp,
and (d) verifying that.., b, = cp.

5.3 Soundness is preserved

Note that proofr, is syntactically identical to a proof of

¢, could be decommitted to O would also prove that leafthe typeD(z) = y, except thain g, will be O rather than

D(z) =L; however, unless is also a leaf off;, this would
also reveal additional knowledge: namely that “below”
are do not correspond tB’s support, something that in turn
provides information about the size bfs support.

Thus, the prover will enlarge the currehtby incorpo-
rating in it the subtred’, of 7; rooted atu and consisting
of (1) the subpath fromu to H(x) together with (2) all of
the siblings of the nodes in this subpath (except the apot
Such incorporation will require computing values,, e,,
hy, 1y, ande, for each node in T, (computed similarly to
the other nodes df’, except that, like fow, all such nodes
v will have store a valué,, —for which the prover knows

a k-bit value H(y) and all values, are omitted: that is,
the prover does not reveal how he constructed the vaiyes
(and thus checking their construction is skipped during ver
ification). Of course, if the verifier ever witnessed a proof
of the typeD(z) = y, he will have seen howomeof those

h, were actually constructed (e.d.,, the value associated

to the root). But for some other generators (€/gs.))

he would have never seen how it was constructed. Fur-
ther, by knowing the strategy of the prover, the verifier will
know that a non-empty subset of the latter values (includ-
ing hg(,)) have actually been used to generate fake Peder-
sen commitments. The presence of such fake commitments

may actually raise some concerns about sbendnessf
the overall construction. They dmwt, however, enable the
prover to find both a proof, of D(z) = y and a proofr,,
of D(z) =_L. This can be informally argued as follows.
Letr, consist of values,, h,, r,, ¢, and e, and sibling
valuesc,, andh,; and letr) consist of valuesn!, h!, 7.,
¢!, and sibling values!, andh!,. We distinguish two cases:
Case 1:(ch(z), PH(x) = (c’H(w),h’H(x)). In this case,
the prover has found theg,, h. In fact,m () = H(y) and

are so correlated: though finding aBdrcollision is hard, if
any H-collision is found, themnycommitment string gen-
erated bycommIT can be de-committed arbitrarily. That is,
COMMIT is trap-door, and an¥ -collision yields a trapdoor,
t, for cCOMMIT.

Thus, assume thaiz’,y'),(¢",y") € D, that
D(z") =1 ,thate = H(z') = H(z") = H(z""), and
that —without loss of generality— the honest prover pro-
cessegz’,y') first — thus computingn, = H(y') — and

m'y .,y = 0 are two different Pedersen decommitments of (", ") later. Then he will not resein, when process-

CH(z) (= €y (), relative to the sameandh g,y (= hly (.,)-

ing (z",y"). Rather, having found & -collision, he will

Thus by the way Pedersen commitment works, this impliescOmpute and store the trapdaofor commiT. During the

that the prover has founidg, hy (). This, per se, may not
be hard to find, because the prover has chdsgn). How-
ever, the prover has also included in progf the value of
logy, hpi(.)- Given this value andog, hy (), it is easy to
computelog, h, which violates the discrete logarithm as-
sumption, becausk is not chosen by the prover, but ran-
domly selected ir7 (via the random reference string).
Case 2:(cx(a), PH()) # (c’H(w),h’H(x)). In this case,
the prover has found a collision féf. Notice thatleaf (x)
belongs to pathPy(,), and so does roat But for roote,
(ce, he) = (c,), because the commitmentid, c¢pp, con-
sists ofc. andh. andr, andz, are convincing proofs rela-
tive to the samep. Thus, letu be the first node of Py,
(starting from the root) such that (a) = ¢, andh, = h
and (b) forv’s child in Py (., v0 without loss of generality,
(€vo, hwo) # (b, bho). We distinguish two subcaseSub-

proving process, the honest prover produces a prodf.e.,

¢y, My, T, for each prefix of z, ande; for every nonempty
prefix v of z) for D(z') = y' as usual. But, should he need
to prove thatD(z") = y" (respectively,D(z"") =1), he

will produce the same, above, except for the values,
andr, that he so computes: using trapdephe computes

a proofr!! (respectivelyy!") for “c, decommits toH (y")
(respectively, 0)" and sets.,, = H(y") andr, = r.. For-
tunately, under the DLA, we can constrwetry efficiensuch

H — coMMIT pairs! Indeed, we can use Pedersen’s scheme

as the underlying commitment schefe.

A Possible Trade-off As discussed so far, the mem-
ory (but not the computation) required during the prov-
ing process grows with the number of new proofs of
non-membership. In fact, to keep consistency among
such proofs, the prover must store and re-use some node-

case 2.1:m, = mj,. In this subcase, the prover has found dependent random values (e.g,,ande,). To avoid, such

a collision forH, becausen, = H(cyuo, huo, Cu1, hy1) @and
mi, = H(cg, Mo, Chr,s Bly1). Subcase 2.2m,, # ml,. In

w0 “uls "Yul

growth (or to enable different servers given the same se-
cret key of a committed database to prove facts about it

this subcase, using the same reasoning of Case 1, the provgithout coordinate with one another). We can use pseu-

has foundog,, .

5.4. Odds and Ends

dorandom functions [8] to solve this problem (namely, any
random value associated to a nadés computed pseudo-
randomly on input, and all computed values abauare re-
computed) but degrade the zero-knowledge property from

After making precise the informal description above, one perfect to computational. The latter approach is what we
can prove for our construction all the claimed efficiency and actually adopted in the posted pseudo-code.

zero-knowledge properties of ZK EDBs, but not their per-

fect completeness. ', y'), (z",y") € D andH (z') =

x = H(z'"), then a honest prover is forced to provide an in-

correct answer for at least one key, since either= H (y')
orm, = H(y").?

6. Final Thoughts

Additional Privacy Given our anthropocentric perspec-
tive, zero-knowledge sets and databases are particularly a

To guarantee perfect completeness, one needs an addfactive when dealing with sets and databases apeople
tional idea. Rather than being “independent” of one another!n such applications, the privacy of “membership” informa-

in the current attemptl andcommIT will be all-or-nothing
matched As usual,H : {0,1}* — {0,1}* is determinis-
tic (because we want that each possible kéyletermines
a unique leafr = H(z') that may store information about
D(z")) andcomMmIT is probabilistic (because we want the
scheme to be perfectly hiding). Howevéf,andcomMmIT

2(Alternatively, settingm, = H((z,y'),(z",y")) generates a ZK
problem, since proving thdtt'y’) € D proves also thatz”’,y"") € D.)

tion is just one of the desiderata, though often be the most
difficult one to enforce in a totally provable way. For in-
stance, it is not hard to enhance our construction so as to
ensure that

3Note that a solution to the small leakage problem could haes imb-
tained as follows: for each paiz’y’) € D, storey = H(y') in leaf
P(z), whereP(-) denotes a prefix-free encoding. Such a solution is how-
ever, much less efficient whenever long keys may be used tessithe
database, than just hash and insert!

e |t is impossible to prove, without's cooperation,
whether person: € D —and, if so, which his record
DIz] is. (This may be useful ib consists of the medi-
cal records of the patients of an hospital.)

e Itis possible to prove portions of recofd]z] in “isola-
tion,” that is, without revealing anything about the other
portions. (E.g., withinD[z], one can separate financial
information from medical information.)

e Only certain given entities can read certain given por-
tions (and only such portions) of the recoid|x], of
personz.

e Adatabasé can be distributed across a multiplicity of
servers, which can interface with the broad “outside”
so as to both produce and prove any valdg:], but
without understanding it.

Details of these simple but powerful privacy enhancements
will be given in the final paper.

Open Questions We hope that non-interactive zero-
knowledge sets (and databases) will attract further rekear
In particular, we hope that the following questions will be
answered:

e Is it possible toupdatea zero-knowledge set at a low
additional cost (e.g., logarithmic in the size of the set)?

e Isit possible to handle multiplerovers(e.g., ensuring
that their sets are “independent”)?

e Is it possible to construct zero-knowledge sets under
weakercomplexity assumptions?

InSum Zero-knowledge sets and databases provide a new
mathematicaprimitive, with enormouspplication poten-
tial.

References

[1] E. Bach. How to generate random integers with known
factorization. InProceedings of the fifteenth annual ACM
Symposium on Theory of Computipgges 184-188, ACM
Press, 1983.

[2] M. Blum, P. Feldman, and S. Micali. Proving security
against chosen ciphertext attacks. In S. Goldwasser,redito
Proc. CRYPTO 88pages 256—-268. Springer-Verlag, 1988.
Lecture Notes in Computer Science No. 403.

[3] M.Blum and S. Micali. How to generate cryptographically
strong sequences of pseudorandom B8EAM Journal on
Computing 13(4):850-864, 1984.

[4]

[5]

(6]

[7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

M. Blum, A. De Santis, S. Micali, and G. Persiano. Nonin-
teractive zero-knowledgeSIAM J. Comput.20(6):1084—
1118, 1991.

I. B. Damgard, T. P. Pedersen, and B. Pfitzmann. On the ex-
istence of statistically hiding bit commitment schemes and
fail-stop signatures.Lecture Notes in Computer Science
773:250-?7, 1994,

E. Fouvry. Theoreme de Brun-Titchmarsh; application au
theoreme de Fermahvent. Math, 79:383—-407, 1985.

S. Goldwasser, S. Micali, and C. Rackoff. “The Knowl-
edge Complexity of Interactive Proof Systems3JAM J.
Comput, 18 (1):186—208, 1989.

O. Goldreich, S. Goldwasser, and S. Micali. How to con-
struct random functions.Journal of the Association for
Computing Machinery33(4):792-807, October 1986.

S. Goldwasser, S. Micali, and R. Rivest. A digital sig-
nature scheme secure against adaptive chosen-message at-
tack. SIAM Journal on Computindl7:281-308, 1988.

S. Halevi and S. Micali. Practical and provably-sectwen-
mitment schemes from collision-free hashingPloc. 16th
International Advances in Cryptology Conference — Crypto
'96, pages 201-215, 1996.

A. Kalai. Generating random factored numbers, eagily.
Proceedings of the 13th Annual ACM-SIAM Symposium On
Discrete Mathematics (SODA-Q2pages 412-412, New
York, January 6-8, 2002. ACM Press.

J. Kilian. A note on efficient zero-knowledge proofs and
arguments. In Proc. 24th Ann. ACM Symp. on Theory of
Computing, pages 723-732, Victoria, B.C., Canada, May
1992.

J. Kilian. Improved efficient arguments. In Proc. 15tkelr-
national Advances in Cryptology Conference — CRYPTO
‘95, pages 311-324, 1995.

J. Kilian Efficiently Committing to Databases TR #97604
NEC Research Institute, 1997.

R. C. Merkle. A certified digital signature. In G. Bras-
sard, editor,Advances in Cryptology—CRYPTO ;8%l-
ume 435 ol_ecture Notes in Computer Scienpages 218—
238. Springer-Verlag, 1990, 20—24 August 1989.

S. Micali. Computationally Sound Proofs, In proceegin
35th IEEE Symposium on Foundations of Computer Sci-
ence 1994.

S. Micali, M. Rabin Hashing on Strings, Cryptography,
and Protection of Privacy. |Rroceedings Compression
and Complexity of SequencsEE Computer Society, Los
Alamitos, CA, June 11-13, 1997, p. 1. (First presented at
Berkeley Symp. on Randomness, 1996.)

[18] National Institute of Standards and Technolog¥IPS
PUB 180-1: Secure Hash Standartlational Institute for
Standards and Technology, Gaithersburg, MD, USA, April
1995. Supersedes FIPS PUB 180 1993 May 11.

[19] R. Ostrovsky, C. Rackoff and A. Smith. Personal commu-
nication.

[20] T. Pedersen. Noninteractive and information-theorse-
cure verifiable secret sharind.ecture Notes in Computer
Science576:129-140, 1991.

[21] R. Rivest. The MD5 Message-Digest Algorithm. RFC
1321, MIT, RSA Data Security, April 1992.

[22] A. C. Yao. Theory and applications of trapdoor functon
In 23rd IEEE Symposium on Foundations of Computer Sci-
ence pages 80-91, 1982.

A. Detailed Construction of Zero-Knowledge
Databases

A.1l. Construction-Dependent Terminology about
Binary trees

Given a databasP with supportS, we label each vertex
v € T with a collection of values, described as follows. We
first generate (pseudo)random elemenish, € Z,. We
similarly generates, € Z, pseudorandomly, with the re-
quirements that, # 0 andee = 1. These pseudorandom
values have little conceptual meaning, but are used to gener
ate the “meaningful” values, described below. We generate
them pseudorandomly to simplify the memory requirements
of our protocol, as they can be implicitly generated once and
for all.

We “hash” the suppor$ of D as follows. IfD(z) = y
we say thatD(v) = y, wherev = H(z) € {0,1}} is a
vertex of7;.. We ignore the unlikely possibility of a collision
(see Section 5.4). We hereafter tréahs being defined over
{0, 1}* when convenient.

The “meaningful” values we associate with are
my, ¢y, by andr,. Here,m, is a hash of some of the val-
ues forv’s children (as with a Merkle treey, is a Pedersen
commitment tom,,, with generatorh,,, andr, is the value
needed to prove that, was indeed the committed value.
We define these as follows:

H(y) if |v]=kandD(v) =y
em,=1¢ 0 if |v] = k andD(v) is undefined
H(Cvo, h/vO; Cyl, h/vl) if ‘1)‘ < k.

e hy, = h*,r, = a, andc, = g™ hl» if v € TREE(S),
and

A.2. The Database Committer

COMMIT_DATABASE(D, 0, k)

1. The committer uniquely identifies from the reference

stringo a primep, two generatorg andh for Z*, and
a hash function i as follows:

First, the committer parsesoc as o =
010211 - -T2, Where (i) eacho, has length
equal to the number of coin tosses sufficient (with high
probability) for Bach’s algorithm to output a random
k-bit integer in factored form, and (ii) eachy has
lengthO (k).

Second, the committer finds the first integeuch that
BAC H (1*) with coin tosses; outputs a-bit integer
n;, in factored form, such that; + 1 is prime andn;
has a prime factay of size at leas2(k + 1)/3; and sets
p=n;+14

Third, using the factorization o — 1, the commit-
ter finds the first two integers andb such thaty =
7?9 andh = 7"~/ are generators of, the
subgroup ofZ; or orderq (treatingr, andr, as num-
bers mod). Itlets H = Hp,,n be the corresponding
Pedersen hash function.

Finally, if the above initialization procedure fails to
produce the desired values fo(i.e., it runs out of ran-
dom hits), it simply stops. We chooselarge enough
(details omitted) so that such a failure occurs with prob-
ability at most2—*; in such an insignificant case we
have the verifier always accept.

2. The committer chooses a sesd {0, 1}*, thus implic-

itly defining (but not explicitly computing) a pseudo-
randomGGM (v, -), mapping each vertex labelto a
triple (a,, by, e,), as described in Section A.1.

. LetS be the “hashed” support d?. For each vertex

v € FRONTIER(S), the committer computes andh,
according to the definition given in Section A.1 (note
thatv € FRONTIER(S) impliesv ¢ TREE(S). These
values depend solely @, b, e,).

Then, forv € TREE(S), the committer computes
m,, hy,r, ande, (according to Section A.1). Note
that for any vertexv € TREE(S), these values de-
pend on the database entrié€s,,b,,e,) and on the
¢ andh values computed for the children of(v0 and

v1l). Also note that any child of € TREE(S) is ei-

ther INTREE(S) or FRONTIER(S). Thus, the commit-
ter may computen,,, h,,r, andc, for the leaves of

o hy =g, c, = g™ andr, = ”L;& if v & TREE(S).

41t follows from Fouvry’s theorem [6] that only (k) expected; need
be generated.

TREE(S), and then successively visitafter it has vis-
ited v's children (those irFRONTIER(S) have already
been visited).

. Finally, the committer outputs the public k&K con-
sisting of ce, the commitment at the root node of the
tree, and the secret keyK consisting of the values
Ay, by, €4, My, hy, cy, 7y, fOr €ach node € TREE(S) U
FRONTIER(S).

[If in any of the operations described above, the com-
mitter observes a collision(z,,y:) and (x2, y2) such
that

gzlh}h — qﬂﬂzhyz

. v . v

whereh, = h¢, it computes

Y2 — 1

1 h=—"—F"""2 _
8y eu(T1 — 22)

3

and stores this value.]

(Comment: TREE(S) U FRONTIER(S) contains less
than3kn nodes if if S has cardinality:.)

A.3. The Database Prover

= hy, T, o, Co0, Boo, o, ot for each

v = vg,...,vk_1 (Wheree = wvg,...,vp =
H(x) is the sequence of vertices fraato H (z));
and

= N (a), TH(z)s CH (x) -

(Comments: (1) The valugie = h always, and is thus
not computed nor sent. (2) Values must be recomputed
from scratch only for those nodes in the sub-p&tk,
from a node irfRONTIER([D]) to leaf H (). All nodes

u in SP do not belong taREE([D]), and thus theie,
values do not depend on their children’s values, but are
“locally” computed as a function of. Therefore, since
the length ofS P is at mostk, the values of at mostk
nodes must be computed from scratch, either locally or
based on previously computed “from scratch” values.
This entails thaO (k) GG M evaluations, hashings and
exponentiations mog, suffice to computer,. (3) In

this exposition, the same value appears in multiple lo-
cations; the prover sends them only once.)

A.4. The Database Verifier

VERIFY(z, statement, 7., PK, o)

e The verifier extracts the quantitigsq, g, h, H from

PROVEz, SK)

If D(z) =y, the prover executes
PROVEDATA(D, z,y, SK, o).

If D(z) = out, the prover executes
PROVEEMPTY(z, SK).

[If in the execution ofcOMMIT_DATABASE, the com-

the reference string just as the honest prover (if it
cannot do so, it simply accepts); then

e If statement= “D(z) = y”", the verifier executes

VERIFY_DATA(z,y, 7,, PK).

If statement= “D(xz) = out’, then verifier executes
VERIFY_EMPTY(x, 7., PK).

mitter computed! = log, h, the prover may perform VERIFY_DATA(z, y, 7, PK, o)

these operations trivially (details omitted).]
PROVEDATA(D, z,y, SK, o) I* prove thatD(z) = y */

The prover outputs the statemeri®(z) = y” and the
proofr, consisting of the stored values

= €y Ty Cys Cyos h'007 Cyl, hv] for each

v = vg,...,vx_1 (Wheree = wvg,...,vp =
H(zx) is the sequence of vertices fraao H (z));
and

— €H(z)sTH(z): CH(z): Y-

. For wv=wg,..., v, the

1. For each node such that the verifier receives, the

verifier computes, = h¢v, and checks that this is con-
sistent with the stated values bf if given to it (ver-
ifier also checks thate = h). Forv = vg, ..., vx_1,
the verifier computesu,, = H (c¢y0, hvo, ¢o1, hy1) and
My, = MH(z) = H(U)

verifier ~ computes
PED_VERIFYp 4.1, (Cy, My, 7y), and rejects if any
of these tests rejects. Otherwise, the verifier accepts.

VERIFY_EMPTY(z,0ut 77, PK, o) :

Note that these values were computed during the exe- 1. Forv = vy, ..., vy_1, the verifier computes

cution of COMMIT _DATABASE.
PROVEEMPTY(z, SK) /* prove thatD(z) is undefined */

The prover outputs the stateme? () = out’ and the

proof 7, obtained by computing from scratch (given

the definition in COMMIT_DATABASE) or retrieving
from storage the following values

2. For v=uwq,...,v, the

my = H(Cv07 th: Cyl, hv])
<’J’LI"Id7TL,U,c = MH(z) = 0.

verifier ~ computes
PED_VERIFY ¢ 1, (cy, My, 7y), and rejects if any
of these tests rejects. Otherwise, the verifier accepts.

