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ABSTRACT
The notion of non-malleability in cryptography refers to the
setting where the adversary is a man-in-the-middle (MIM)
who takes part in two or more protocol executions and tries
to use information obtained in one, to violate the security
of another. Despite two decades of research, non-malleable
commitments (NMCs) have remained too inefficient to be
implemented in practice, without some sort of trusted setup.

In this work, we give a fast implementation of NMC in
the plain model, based on the DDH assumption being hard
over elliptic curve groups. Our main theoretical result is
a new NMC scheme which can be thought of as a “high
dimensional” generalization of the one in the recent work
of [GRRV14]. Central to our efficiency improvements is a
method of constraining challenges sent by the receiver. This
new approach enables us to obtain dramatically improved
parameters over those suggested in [GRRV14]. In particu-
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lar, our work opens the door to implementations based on
Elliptic Curves.

Our prototype implementation gives evidence of our pro-
tocol’s efficiency. Additionally, like the Elgamal commit-
ment it is built on top of, our scheme allows for homom-
rphic operations on committed values, and is amenable to
fast Schnorr proofs of knowledge. Thus, it will work well
when used as a building block inside larger cryptographic
protocols. As an example of its performance, our protocol
allows a committer to commit to a 1.9−KB message using
a scheme supporting 220 identities in less than one second.

Categories and Subject Descriptors
F.2.0 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—General

General Terms
Cryptography, Theory
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1. INTRODUCTION
Secure computation was introduced in the 1980s and still

remains an active area of research. Over the years classical
feasibility results [Yao86, GMW87, BGW88] have given way
to constructions which are both more efficient and which
satisfy stronger notions of security. In recent works we
have seen a push towards obtaining “practice-oriented” pro-
tocols [IKO+11, Lin13, FJN+13, LR14, AMPR14] (and the
references there-in). Several concrete secure computation
systems building upon these improvements have been imple-
mented (e.g. the JustGarble system [BHKR13]). The goal
of this work is to initiate and promote the study of non-
malleable commitments from the practical efficiency per-
spective.

1.1 Non-Malleable Commitment
Non-malleable cryptography models the scenario where

the adversary is a man-in-the-middle (MIM) who partici-
pates in two or more instantiations of a protocol and tries to
use information obtained in one execution to harm the secu-
rity of another. Many tasks in cryptography are susceptible
to such an attack, and thus non-malleable security arises



naturally in many settings (e.g. commitment, encryption,
coin-flipping witness-indistinguishable and zero-knowledge
proofs, etc.). Interest in non-malleable security is motivated
both by the strong security guarantees it provides, and by
the unfortunate reality that many widely used protocols are
actually highly malleable.

Non-malleable commitment (NMC), introduced by Dolev,
Dwork and Naor [DDN91], is especially well studied, and has
proven to be an immensely useful primitive. Very briefly we
say that a commitment scheme is non-malleable if for ev-
ery message m, no MIM adversary, intercepting a commit-
ment Com(m) and modifying it at will, is able to efficiently
generate a commitment to a related message m̃. NMC is
extremely versatile and is often used as a building block in
more complex protocols. For example, it is known how to
use NMC to construct several other non-malleable primitives
such as zero-knowledge proofs.

Because of its applications across cryptography, the ef-
ficiency of NMC has been studied extensively. Beginning
with [DDN91], who gave a protocol for NMC with O(logn)
rounds, research over the last two decades has improved
the round complexity from logarithmic to constant [Bar02,
PR05, Goy11, LP11] and recently to just 4 rounds [GRRV14].
However common to most of these works is that they use
computationally heavy tools (such as generic zero-knowledge
proofs) leading to quite inefficient protocols. The focus of
our work is on obtaining efficient non-malleable commit-
ments, usable in practice.

1.2 Motivation
Constant Round Multi-Party Computation. Non-malleable

commitments are important building blocks in round-efficient
multi-party computation (MPC) protocols. Without some
form of non-malleability, any MPC protocol must have round
complexity that is at least linear in the number of parties,
since in protocols with sublinear round complexity, multiple
parties must commit to their inputs in parallel. When the
fraction of corrupt parties is less than 1/2, one can use in-
formation theoretic verifiable secret sharing (VSS). However
when the corruption threshold increases above 1/2, infor-
mation theoretic techniques fail and cryptographic subpro-
tocols are needed. It is known how to construct constant
round MPC protocols with high corruption tolerance using
constant round NMC [Pas04, Wee10, Goy11] (essentially by
replacing the VSS with NMC). Traditionally VSS is thought
to be much more efficient than NMC, however in this work
we give evidence that this isn’t the case. Our prototype
implementation has computation and communication com-
plexity which is comparable with that of widely used VSS
schemes. In this way our work allows one to increase the
corruption tolerance of an efficient MPC scheme above 1/2
without incurring a penalty.

Composable Security. Another application of NMC is
to the area of secure protocol composition [DNS98, Fei90,
Can01]. So far, all work on efficient secure computation
that we are aware of focuses on the standalone setting. De-
signing protocols which are secure in the more demanding
(though realistic) models which allow for protocol composi-
tion is vastly more difficult. Over the past decade [CLOS02,
BS05, Goy12] has shown that non-malleability lies at the
heart of protocol composition; MIM attacks seem to be the

most devastating. Our work takes an important step toward
the goal of attaining efficient protocols which are provably
secure in composition.

Sigma Protocols. Probably the most useful aspect of
the Elgamal commitment scheme is its seamless compatibil-
ity with Schnorr proofs of knowledge, thus allowing a com-
mitter to prove knowledge of his committed value, or that
two committed values are equal. In fact, the recent work
of [AMPR14] shows that these plus several other techniques
“go all the way” to an efficient protocol for general 2PC.
Our NMC prototype is instantiated on top of the Elgamal
commitment scheme and inherits all of the fast Σ−protocols
available to the original. NMC is most commonly used as a
subprotocol, so compatibility with usual cryptographic op-
erations is an important feature. Such compatibility is not
offered by most schemes which use a random oracle.

Comparison with NMC in the Random Oracle Model.
Prior to this work, we are not aware of any attempts to
implement non-malleable commitments in the plain model.
In part this is because such a simple solution exists in the
random oracle model: Com(m; r) = H(m, r) where H is
the random oracle. However our construction has some ad-
vantages over this trivial one. First, our implementation is
provably secure under well understood and widely accepted
assumptions. This is in contrast to the random oracle heuris-
tic which is known to break down as soon as the random or-
acle is replaced by a specific hash function. Second, as men-
tioned above, our protocol is compatible with fast proofs of
knowledge of committed values and Σ−protocols for prov-
ing that these values satisfy certain relations. The above
and other random oracle constructions (such as the recent
one from [CJS14]) need to use cut-and-choose techniques
for such proofs, which introduces extra rounds of interac-
tion and requires more communication than our protocol.

1.3 Results
The recent work of [GRRV14] gives a relatively simple,

round-efficient NMC. However (as remarked by the authors),
the proof of non-malleability requires choosing parameters
which are much too large to be used in practice. In fact, at-
tempting to instantiate their protocol with more reasonable
parameter choices opens the door to actual attacks. Exact
communication/computation complexities are shown in Ta-
ble 2, but just to give an idea: one execution of the protocol
instantiated over the DDH group Zq with 2−80 security and
supporting 216 identities (for background on the identities,
see Section 2.4) requires the committer to compute about
4000 exponentiations in Zq where q is a 6000−bit prime. In
this work we give a new NMC scheme which is similar to that
of [GRRV14] (in particular, it is provably secure in the plain
model) but has much better performance. For example, for
the security and identity parameters mentioned, our scheme
requires C to compute fewer than 600 exponentiations in
elliptic curve over GF (p), where p can be few hundred bit
prime of our choice. 1

Theorem 1. There exists a four-round, statistically bind-
ing, non-malleable commitment scheme which, when instan-

1R has to compute many more exponentiations than C in
the näıve protocol. However, since these are during the veri-
fication phase, optimization techniques such as batching are
available to reduce R’s workload considerably.



tiated over any DDH group, requires C (resp. R) to perform
18k (resp. 4k2) exponentiations where k is the length of
identities supported (in bits). Furthermore, all of R’s expo-
nentiations take place during the decommitment phase (and
so may be done offline, and are subject to optimizations).

Our prototype implementation is instantiated over an ellip-
tic curve group G and is secure assuming that DDH is hard
over G. This is the first implementation of a NMC scheme
whose proof of security does not use random oracles, or some
other form of trusted setup. Our implementation capitalizes
on several optimizations. For example, we use batching to
reduce the computation complexity of the receiver during
verification to below what are shown in Table 2. Specific
performance numbers for a variety of parameters is shown
in Table 1.

We stress that our scheme can be instantiated over any
DDH group; it does not place restrictions on the size of the
group. See Table 2 for more efficiency-related information.
Additionally, we note that our new scheme is general (it
can be instantiated from any one-way function), and though
we have chosen to focus on a DDH−based instantiation, it
could be implemented, giving similar results, starting from
any homomorphic commitment scheme.

Next we increase the message space of our new NMC
scheme. The basic protocol allows a committer C to com-
mit to a vector m ∈ Z`q where q is any prime specified by the
the protocol and ` depends linearly on the length of iden-
tites the scheme can support (for most choices of q, ` = 2k
where the scheme can support 2k identities is natural). The
overall communication complexity of our scheme, however, is
Ω(k2 log q), meaning that our rate (i.e., the message length
divided by the communication complexity) is 1

Ω(k)
. This

is lower than we would like, especially since there are well
known ordinary commitment schemes with constant rate.

It turns out that increasing the rate of NMC can be done
trivially: simply commit non-malleably to a short seed s,
then use s to encrypt (malleably) a longer message m. This
construction, however, destroys the structure of the NMC
scheme in the sense that any fast Σ−protocols available to
the original NMC needn’t (and likely will not) be compatible
with the high rate NMC. For example, if the NMC protocol
of Theorem 1 is instantiated on top of the Elgamal com-
mitment scheme it inherits homomorphic operations and
Schnorr-like Σ−protocols for proving that the committed
value satisfies a linear relation. However, if the amortiza-
tion technique just mentioned is used on top to increase the
message size, these fast proofs are lost. This lack of compati-
bility with common cryptographic operations severely limits
the utility of this NMC when used as a building block for
larger protocols. We show that our scheme is amenable to
an amortization technique which is as efficient as the general
one, and which also preserves the Σ−protocols available to
the original.

1.4 Central Idea: From Subsets to Subspaces
Our techniques expand on the algebraic techniques put

forth in [GRRV14]. Briefly recall their scheme.

1. C → R commitments to the coefficients of n linear
polynomials all with the same constant term. We

denote the i−th polynomial fi(x) = rix + m where
m ∈ Zq is the value C is committing to non-malleably,
and the ri ∈ Zq are random.

2. R→ C a random query vector α = (α1, . . . , αn) ∈ Znq .

3. C → R response vector a = (a1, . . . , an) ∈ Znq where
ai = fi(αi).

4. C proves to R in ZK that the values sent in step 1 are
valid commitments, consistent with the responses in
step 3.

Crucial for the proof of non-malleability is the fact that
the challenges αi are actually drawn from proper subsets
Vi ⊂ Zq, the sizes of which depend on C’s identity. Since
C’s identity and M’s identity are distinct, M will be asked
queries from different challenge spaces than he will be al-
lowed to use to query C. It is then possible to show that
by carefully controlling the Vi, M will not be able to use
C’s answer to construct his own, and thus the protocol is
non-malleable.

Unfortunately, the requirements needed on the Vi for the
proof to work mean that, for example, the size of Vi+1 is at
least a constant multiple of the size of Vi for each i. Since
in [GRRV14], each Vi ⊂ Zq, this and other requirements on

the Vi necessitate q = 2Ω(k2). The main advantage of our
new protocol is that for us each Vi will be a subset of the
vector space Z`q for some ` which may be controlled. This
allows us to keep q fixed to a small value and still make sure
that

∣∣Z`q∣∣ is large.

The proof of non-malleability in [GRRV14] is delicate
enough to where even this small change threatens to de-
stroy the proof and much care is needed. The key is setting
the Vi ⊂ Z`q to be vector subspaces rather than just proper
subsets. This allows most of the algebraic ideas in the proof
to carry over unchanged. Instead of the fi(·), we use maps
vi 7→ 〈zi,vi〉 where the vector zi = (m, ri) ∈ Z`q. Our proof
uses similar ideas such as collinearity testing, though our
setting is more complicated as we work in vector spaces of
high dimension.

2. PRELIMINARIES
For positive n ∈ N, let [n] = {1, . . . , n}. A function

ε : N → R+ is negligible if it tends to 0 faster than any in-
verse polynomial i.e., for all constants c there exists nc ∈ N
such that for every n > nc it holds that ε(n) < n−c. We use
negl(·) to specify a generic negligible function. We abbrevi-
ate “probabilistic polynomial time” with PPT. We assume
familiarity with computational indistinguishability and zero-
knowledge proofs (and related protocols).

2.1 Commitment schemes
Commitment schemes are protocols which enable a party,

known as the committer C, to commit himself to a value
while keeping it secret from the (potentially cheating) re-
ceiver, R. This property is known as hiding. Additionally,
upon receiving the commitment from C, R is ensured that
even if C cheated, there is at most one value that C can de-
commit to during a later, decommitment phase (binding).
In this work, we consider commitment schemes that are
statistically-binding which means that the hiding property
only holds against computationally bounded adversaries.



Table 1: Implementation Time Comparisons in DDH Implementation. The complexity is measured in Giga clock-cycles. For
example, considering identities domain of size 216 with 2−96 security our proposed implementation runs in about 0.07 seconds
on the committer’s side, and about 0.41 seconds on the receiver’s side. This is highly efficient in comparison to [GRRV14]
whose duration is about 50 seconds for the committer and about 46 seconds for the receiver (given matching parameters of
identity space and slightly worse security). Measurements were taken on a Core i7 Intel Ivy Bridge architecture (with 2.9 GHz
frequency) using only a single core. We note that for id’s of size larger than 230 the [GRRV14] scheme is already infeasible.

Scheme IDs Prime Size (log q) Msg size Clock Cycles (C + R) Security

[GRRV14] 216 6400 6400 146G + 134G 2−80

this paper 216 192 12288 0.2G + 1.15G 2−96

this paper 232 192 24576 0.4G + 4.1G 2−96

this paper 232 224 28672 0.82G + 8.7G 2−112

Table 2: Complexity Comparisons in DDH Implementations. Communication is computed in terms of field elements.

Scheme IDs Prime Size Msg Space Comm. Exponentiations (C+R)

[GRRV14] 2k log q = Ω(k2) Zq 96k 32k + 96k
this paper 2k any Z4k

q 2k2 18k + 4k2

this paper 2k any ZKq , K = Ω(k2) 14K + 2k2 6K + 2Kk

Definition 1 (Statistically Binding). Let 〈C,R〉 be
an interactive protocol between C and R. We say that 〈C,R〉
is a statistically binding commitment scheme if the following
properties hold:

Correctness: If C and R do not deviate from the pro-
tocol, then R should accept (with probability 1) during
the decommit phase.

Binding: For every C∗, there exists a negligible func-
tion negl(·) such that C∗ succeeds in the following game
with probability at most negl(λ): On security param-
eter 1λ: C∗ first interacts with R in the commit phase
to produce commitment c. Then C∗ outputs two de-
commitments (c,m0, d0) and (c,m1, d1), and succeeds
if m0 6= m1 and R accepts both decommitments.

Hiding: For every PPT receiver R∗ and every two mes-
sages m0,m1, the view of R∗ after participating in the
commitment phase, where C committed to m0 is in-
distinguishable from its view after participating in a
commitment to m1.

[Nao91] gives a 2-round, statistically binding bit commit-
ment scheme that can be built from any OWF [HILL99].

2.2 Non-malleable commitments
We wish for our commitment scheme to be impervious to

a MIM adversary, M, who takes part in two protocol exe-
cutions (in the left interaction M acts as the receiver while
in the right, M plays the role of the committer), and tries
to use the left interaction to affect the right. The security
property we desire can be summarized:

For any MIM adversary M, there exists a stan-
dalone machine who plays only one execution as
the committer, yet whose commitment is indis-
tinguishable from M’s commitment on the right.

At first glance, non-malleability seems impossible as surely
nothing can be done to protect against a MIM who sim-
ply copies messages from one protocol execution to another.
For this reason, non-malleable security offers protection only

against any MIM who tries to change messages in a mean-
ingful way.

On the Existence of Identities. In this work, just as
in [DDN91], we assume that the committer has an identity
id ∈ {0, 1}k. In order to perform a successful mauling at-
tack, a MIM has to maul a commitment corresponding to
C’s identity into a commitment of his own, distinct iden-
tity. Though this sounds like a strong assumption on the
network, essentially requiring that “you know who you are
talking to”, for our purposes, it is actually equivalent to the
requirement discussed above, that the MIM does something
other than simply copy messages. This is because our proto-
col is interactive, and the first committer message contains
a statistically binding commitment to m. This means that
if we set the committer’s identity to be the first committer
message, C’s and M’s identities will be distinct unless M
copied C’s first message.

Moving forward, we assume that the committer’s id is
externally given and we require that non-malleability holds
only in the case when C and M’s identities are different. We
also assume for simplicity that player identities are known
before the protocol begins, though strictly speaking this is
not necessary, as the identities do not appear in the protocol
until after the first committer message. We point out that
M can choose his identity adversarially, as long as it is not
equal to C’s.

Definition of Non-Malleable Commitments. In this
work, we consider the notion of non-malleability with respect
to commitment and we will frequently refer to the “message
committed to by a MIM adversary M during the commit-
ment phase”. We note that this is uniquely defined, as all
commitment schemes in this work are statistically binding,
and so for all but a negligible fraction of the possible tran-
scripts T of the interaction between M and an honest receiver
R, there exists at most one message m that is consistent with
T (i.e., for which there exist random coin tosses which give
T). We recall the definition of non-malleable commitments
of Lin et al et al. [LPV08].



The man-in-the-middle execution. In the man-in-
the-middle execution, the MIM adversary M is simultane-
ously participating in two interactions called the left and
the right interaction. In the left interaction M is the receiver
and interacts with a honest committer whereas in the right
interaction M is the committer and interacts with a hon-
est receiver. We define a random variable MIM〈C,R〉(m, z)
describing (m̃, v): the value M commits to in the right in-
teraction, and M’s view in the full experiment. Specifically,
M has auxiliary information z and interacts on the left with
an honest committer C with input message m and identity
id and on the right with honest receiver R. M attempts to
commit to a value m̃ that is related to m using an identity
ĩd of its choice. If the right commitment (as determined by

the transcript) is invalid or undefined, or id = ĩd its value is
set to ⊥.

The simulated execution. In the simulated execution
a simulator S interacts with an honest receiver R. S receives
security parameter 1λ and auxiliary information z and inter-
acts with the honest receiver R. Let SIMS

〈C,R〉(1
λ, z) denote

the random variable describing (m̃, v): the value S commits
to in the right interaction, and S’s view during the entire
experiment. If the commitment produced by S is invalid or
undefined, its value is set to ⊥.

Definition 2. Let 〈C,R〉 be a commitment scheme. 〈C,R〉
is non-malleable with respect to commitment if for every
PPT MIM adversary M, there exists a PPT simulator S
such that the following ensembles are indistinguishable for
all m ∈ {0, 1}λ:

{MIM〈C,R〉(m, z)}z∈{0,1}? ; {SIMS
〈C,R〉(1

λ, z)}z∈{0,1}?,id∈{0,1}k

2.3 Σ-protocols
The notion of a Σ-protocol generalizes the identification

protocols by Schnorr [Sch91], and Guillou and Quisquater
[GQ88], as well as many others. A Σ-protocol is required to
be zero-knowledge against an honest verifier only. Despite
this limitation, Σ-protocols are building blocks in many pro-
tocols due to their remarkable efficiency.

Let R = {(x,w)} ⊆ {0, 1}∗×{0, 1}∗ be a binary relation,
where x denotes the common input to the prover and the
verifier, and w denotes a witness, which is the private input
to the prover. Let LR = {x : ∃w such that(x,w) ∈ R}
denote the language corresponding to relation R.

Definition 3. A Σ-protocol for relation R is a protocol
between a prover P and a verifier V of the following 3-move
form:

Satisfying the following three properties:

3-move form. Given a common input x to P, V and a
w such that(x,w) ∈ R is private input to P :

1. P sends a message a.

2. V sends a random t-bit string e.

3. P sends a reply z, and V decides to accept or
reject based on x, a, e, z.

Completeness. if P , V follow the protocol on input x
and private input w to P where (x,w) ∈ R, the verifier
always accepts.

Special soundness. From any input x and any pair
of accepting conversations on input x, (a, e, z) and
(a, e′, r′) with e 6= e′, one can efficiently compute wit-
ness w such that (x,w) ∈ R.

Special honest-verifier zero-knowledge . There ex-
ists a polynomial-time simulator S, which on input x
and a random e outputs an accepting conversation of
the form (a, e, z), with the same probability distribu-
tion as conversations between the honest P, V on input
x

2.4 Challenge Space Generation
In this section, we describe how to derive the tags from

C’s identity, highlighting the properties we will use moving
forward. Let id ∈ {0, 1}k be C’s identity and {ti}i=1,...,n the
tags resulting from it in as described below. Note that we
have already touched on the role that the tags play in our
protocol: the size of the challenge space in coordinate i is
determined by ti. In particular, Vi will be a ti−dimensional
vector space over Zq, and so its order is qti . Of particular
importance is the quantity |Vi+1|/|Vi|. We will always have
ti < ti+1 so this quantity will always be at least q = 2160

(our general protocol can be tuned to handle other sizes
of q using techniques presented in [GRRV14]; however since
q ≈ 2160 in our implementation, we do not discuss this point
further). In particular, |Vi|/|Vi+1| is negligible for all i. The
other property we need from the tags is the following: if
i 6= j then ti 6= t̃j ; moreover ti < t̃i holds for at least one
i ∈ [n] (as does ti > t̃i).

The tags are generated according to the “DDN trick”,
namely ti = 2i+ idi where idi is the i−th bit of C’s identity.
This ensures that if id 6= ĩd that ti 6= t̃i for some i. To
arrange that ti > t̃i for some i, we define a final tag tk+1 =
2(k + 1)− |id| where |id| is the Hamming weight of id. Our
final parameters therefore, are n = k + 1 and ` = 2(k + 1).

3. THE BASIC PROTOCOL
In this section, we describe our protocol given a large

prime q ≈ 2160 and vector spaces V1, . . . , Vn ⊂ Zq as de-
scribed in Section 2.4. We use Naor’s two round, statisti-
cally binding bit commitment scheme [Nao91] as a building
block.2. We use boldface to denote vectors, and 〈·, ·〉 to
denote inner product of vectors. In particular we denote
our challenge vector set as {vi}i=1,...,n and our response set
{wi}. We write Com for the entire first commitment mes-
sage. Our non-malleable commitment scheme 〈C,R〉BASIC
shown in Figure 1. The decommitment phase is done by
having the committer C send m and the randomness it used
during the protocol.

Proposition 1. The commitment scheme 〈C,R〉BASIC is
computationally hiding and statistically binding.

Proof. Computational hiding follows from the hiding of
Com, the ZK property and having having n+ `−1 variables
and only n equations, where each equation has an indepen-
dent, random component. Statistical binding follows from

2Briefly recall Naor’s scheme: 1) R sends random initial-
ization message σ, and 2) C responds with Comσ(m; s), a
commitment to m ∈ {0, 1} using randomness s (we will feel
free to just write Com(m), surpressing σ and s for simplic-
ity)



Public Parameters: A large prime q, an integer ` and
vector spaces V1, . . . , Vn ⊂ Z`q obtained from identities as
described in Section 2.4.

Commiter’s Private Input: m ∈ Z`−1
q to be committed

to.

Commit Phase:

1. R→ C: Send the first message σ of the Naor
commitment scheme.

2. C→ R: Choose random values r1, . . . , rn ∈ Zq. This
defines vectors z1, . . . , zn ∈ Z`q where zi = (ri,m). C
sends commitments to every coordinate of the zi.

3. R→ C: Send random challenge vectors {vi}i=1,...,n

where each vi ∈ Vi ⊂ Z`q.

4. C→ R: Send evaluations {wi}, where each
wi = 〈zi,vi〉 ∈ Zq.

5. C←→ R Consistency proof: Parties engage in a
zero-knowledge argument protocol where C proves to
R that
∃
(
(m1, s1), . . . , (m`−1, s`−1), (r1, s

′
1), . . . , (rn, s

′
n)
)

such that:

• Com =
(
Comσ(m1; s1), . . . ,Comσ(m`−1; s`−1),

Comσ(r1; s′1), . . . ,Comσ(rn; s′n)
)
; and

• wi = 〈zi,vi〉 ∀ i = 1, . . . , n.

Figure 1: Non-malleable commitment scheme 〈C,R〉BASIC.

the statistical binding property of the underlying commit-
ment scheme Com.

Theorem 2. The commitment scheme 〈C,R〉BASIC is non-
malleable.

3.1 Discussion of the Proof of Non-Malleability
We now mention some of the key points from the proof of

non-malleability. See the full version for more details. We
first define the notion of ε−dependence.

Definition 4. Fix a commitment message Com. We
say that vi′ ∈ Vi′ is ε−dependent on ṽi ∈ Ṽi if

Pr{ṽ′
i}
(
v′i′ ∈ Span{vi′}

∣∣ṽ′i ∈ Span{ṽi}
)
≥ ε.

Definition 4 implicitly assumes we are given a completed
transcript with first message Com and right (resp. left)
challenges {ṽi} (resp. {vi}). Then M is rewound to the
beginning of the second message and given new challenges
{ṽ′i} with ṽ′i ∈ Span{ṽi}, and we are interested in the prob-
ability that the resulting left challenges {v′i} are such that
v′i′ ∈ Span{vi′}. Intuitively, vi′ being dependent on ṽi is
a result of M performing a mauling attack. Suppose that
M mauls Com(zi′) in order to obtain Com(z̃i). Then M
does not know z̃i and so cannot hope to answer ṽi except
by mauling C’s answer to vi′ . Therefore, if M is rewound to
the beginning of the right session’s query phase and asked a
different query {ṽ′i} such that ṽ′i ∈ Span{ṽi}, M will have

to ask {v′i} such that v′i′ ∈ Span{vi′} if he wants to answer
successfully. The proof of non-malleability proceeds in cases,
depending on how the right queries can depend on the left
queries. This is exactly the same high-level structure of the
proof of non-malleability in [GRRV14], though some of the
specifics differ.

Consider the bipartite graph G = (V,E) with vertex set
V = [n] × [n] and an edge (i′, i) ∈ E exactly when vi′ is
ε−dependent on ṽi. We consider four cases:

• IND: There exists i such that (i′, i) /∈ E for all i′.

• L < R: There exist i′ < i such that (i′, i) ∈ E.

• L > R: There exist i′ > i such that (i′, i) ∈ E.

• L = R: E =
{

(i, i) : i = 1, . . . , n
}

.

We think of IND, L < R, L > R, L = R as events whose prob-
ability of occuring depends on M. Notice however that re-
gardless of M’s behavior,

Pr
(
IND or L < R or L > R or L = R

)
= 1.

Therefore, it suffices to prove that if there exists a PPT M
such that

Pr
(
M mauls 〈C,R〉BASIC & E

)
=

1

poly

for any E ∈ {IND, L < R, L > R, L = R}, then M breaks the
hiding of Com. This is the same approach taken in [GRRV14]
and many supporting lemmas carry over directly to our set-
ting. In particular, the case of E = IND is handled in Claim 9
of [GRRV14]. Additionally, Claims 5 through 7 of [GRRV14]
show that the cases for the other values of E follow from
the same lemma which we state below and prove in Ap-
pendix 3.1. Our main technical lemma is much the same
as Claim 8 from [GRRV14]. We prove it formally, how-
ever, as it is the point in which the differences between our
high-dimensional setting and their linear setting are most
apparent.

Note that once Com is fixed, M defines a map from right
challenges {ṽi} to left challenges {vi}. Fix (as a function of
λ), ω = ω(1). Given a transcript with left challenges {vi},
say that the event SUPER−POLY occurs if the preimage of
{vi} has superpolynomial size:

∣∣M−1
(
{vi}

)∣∣ ≥ λω.

Lemma 1. Fix non-negligible σ. If

Pr
(
M mauls 〈C,R〉BASIC & SUPER−POLY

)
≥ σ

then there exists a PPT algorithm A who breaks the hiding
of 〈C,R〉BASIC.

Proof. We give a reduction from a MIM who mauls
〈C,R〉BASIC given that the event SUPER−POLY occurs, to
a PPT A who breaks the hiding of Com. Our A proceeds
as follows.

• A chooses random m0,m1 ∈ Z`−1
q and begins the hid-

ing game, sending (m0,m1) to the challenger C. Then
A instantiates M and runs two sessions of 〈C,R〉BASIC
forwarding the messages it receives as C to C. In
the left interaction, C commits to mu for unknown
u ∈ {0, 1}. Let the resulting transcript be T, and let
{vi} and {wi} be the query and response messages in
the left interaction. Similarly {ṽi} and {w̃i} are the
query and response messages in the right.



• A chooses random u′ ∈ {0, 1} and sets vectors zi ∈ Z`q
to be the unique such vectors which correspond to mu′

and so that 〈zi,vi〉 = wi for all i.

• A chooses random {ṽ′i}, {ṽ′′i } such that {ṽi, ṽ′i, ṽ′′i }
are collinear for all i. He rewinds M twice back to
the beginning of the right execution’s second message
asking {ṽ′i} and {ṽ′′i }, receiving left queries {v′i} and
{v′′i }. A responds to M’s queries with {w′i} and {w′′i }
where w′i = 〈zi,v′i〉 for all i (and similarly for w′′i ),
receiving right responses {w̃′i} and {w̃′′i }.

• A checks whether
{

(ṽi, w̃i), (ṽ
′
i, w̃
′
i), (ṽ

′′
i , w̃

′′
i )
}

are collinear for all i. A outputs u′ if so, 1− u′ if not.

The following is Fact 1 from [GRRV14].

Fact 1. Let E be an event such that

• Pr(E) ≥ ξ;

• Pr
({

(ṽi, w̃i), (ṽ
′
i, w̃
′
i), (ṽ

′′
i , w̃

′′
i )
}

col. ∀ i
∣∣u′ = u & E

)
≥

ξ′;

• Pr
({

(ṽi, w̃i), (ṽ
′
i, w̃
′
i), (ṽ

′′
i , w̃

′′
i )
}

col. ∀ i
∣∣u′ 6= u & E

)
≤

ξ′′,

for non-negligible values ξ, ξ′, ξ′′ satisfying ξ′′ = O(ξξ′).
Then A breaks the hiding of 〈C,R〉BASIC.

So it suffices to construct such an E. We have already defined
the event SUPER−POLY. We additionally define the events
HONEST and EXT as follows:

• HONEST occurs if {ṽi} is such that M gives correct
answers {w̃i} provided his queries {vi} are answered
correctly;

• EXT occurs if {ṽi} is such that M gives correct an-
swers with non-negligible probability even he receives
random answers to his queries {vi}.

Note that HONEST, EXT and SUPER−POLY are all deter-
mined by Com and {ṽi}. SinceA fixes Com and rewinds M
asking three challenges, we will think of these events as de-
pending only on {ṽi}. We may assume Pr

(
HONEST

)
= 1

poly
because otherwise M is not completing the protocol success-
fully (and so cannot be mauling) except with negligible prob-
ability. It can also be shown (Claim 2 in [GRRV14]) that
Pr

(
M mauls & EXT

)
= negl. This is because if M answers

{ṽi} correctly with non-negligible probability given random
answers to his queries {vi} then he knows his message m̃ (it
can be extracted in polynomial time). It therefore cannot
depend on C’s commitment m, which is computationally
hidden from M.

We use the event

E = HONEST & (¬EXT) & SUPER−POLY.

It remains to prove

Pr
({

(ṽi, w̃i), (ṽ
′
i, w̃
′
i), (ṽ

′′
i , w̃

′′
i )
}

col. ∀ i
∣∣u′ = u & E

)
=

1

poly

Pr
({

(ṽi, w̃i), (ṽ
′
i, w̃
′
i), (ṽ

′′
i , w̃

′′
i )
}

col. ∀ i
∣∣u′ 6= u & E

)
= negl.

To prove the first, note that if u′ = u then M receives correct
answers to his queries {ṽi}, {ṽ′i}, and {ṽ′′i }, so by definition

of HONEST he will provide correct answers {w̃i}, {w̃′i}, and
{w̃′′i } with non-negligible probability. However, if M gives
correct answers then certainly

{
(ṽi, w̃i), (ṽ

′
i, w̃
′
i), (ṽ

′′
i , w̃

′′
i )
}
i

are collinear for all i.

To prove the second, note that if u′ 6= u then M receives
random answers {w′i} to his queries {v′i}, so by definition of
EXT, his responses {w̃′i} to {ṽ′i} on the right will be incorrect
with high probability. This means that the lines spanned
by the points

{
(ṽ′i, w̃

′
i), (ṽ

′′
i , w̃

′′
i )
}
i

are not contained in the

`−planes
{

(ṽ, 〈ṽ, z̃i〉)
}

to which the points
{

(ṽi, w̃i)
}
i

be-
long. It follows that the intersections of these lines and
these `−planes is at most a single point. By definition of
SUPER−POLY, the probability that this {ṽi} in the in-
tersection is chosen out of all the superpolynomially many
preimages of {vi} is negligible.

4. AMORTIZING NMC
We now show that the scheme from the previous section
〈C,R〉BASIC can be amortized as efficiently as the trivial con-
struction mentioned in the introduction, while still preserv-
ing any fast proofs available to the original scheme. Our
protocol 〈C,R〉AMOR is shown in Figure 2.

The proof that 〈C,R〉AMOR is non-malleable is almost ex-
actly the same as the proof of non-malleability for 〈C,R〉BASIC.
Recall that most of the proof for 〈C,R〉BASIC involved view-
ing M as a map from right challenges {ṽi} to left challenges
{vi} and proving that in all cases, M cannot be mauling.
The challenge space for 〈C,R〉AMOR is the same as the chal-
lenge space for 〈C,R〉BASIC and so the same analysis for M
as a function from right to left challenge spaces carries over.
The only thing that must be changed is that the extractor
must be modified in order to extract all of the m̃i. This,
however, is a minor change which we omit.

Note that when k is large, the communication complexity
of 〈C,R〉AMOR is dominated by the second message when C
sends commitments to the m̃i. If Com has constant rate,
then so does 〈C,R〉AMOR. Finally, if Com is homomorphic
then so is 〈C,R〉AMOR, and similarly, any fast Σ−protocols
available to Com for proving knowledge of committed values
or that these values satisfy a linear relation will likewise be
available to 〈C,R〉AMOR.

5. IMPLEMENTATION
We now discuss some of the specifics of our prototype im-

plementation. The two cryptographic building blocks needed
for our protocol are statistically binding homomorphic com-
mitment and zero-knowledge proof of knowledge. Any sta-
tistically binding commitment can be used, but for the sake
of efficiency, we instantiate our protocol using ElGamal com-
mitments [EG85]. Zero-knowledge is instantiated with Schnorr
protocol [Sch91] as follows: a receiver proves knowledge
of a trapdoor followed by a schnorr based Σ-OR proto-
col [CDS94], where the committer proves knowledge of either
the committed message or receiver’s trapdoor.

Optimized performance is achieved by aggregating many
of the operations of the atomic protocols together. Our
main most valuable tool is the modular exponentiation with



Public Parameters: A large prime q = λω(1), integers
`, k and vector spaces V1, . . . , Vn ⊂ Z`q obtained from C’s
identity.

Commiter’s Private Input: Messages
m1, . . . ,mk ∈ Z`−1

q to be committed to.

Commit Phase:

1. R→ C: Send the first message σ of the Naor
commitment scheme.

2. C→ R: Choose random values r1, . . . , rn ∈ Zkq . This

defines vectors zi,j ∈ Z`q for i = 1, . . . , n and
j = 1, . . . , k where zi,j = (ri,j ,mj). C sends
commitments to every coordinate of the zi,j using
Com.

3. R→ C: Send random challenge vectors {vi}i=1,...,n

where each vi ∈ Vi ⊂ Z`q.

4. C→ R: Send evaluation vectors {wi}, where each
wi ∈ Zkq is such that wi,j = 〈zi,j ,vi〉 ∈ Zq.

5. C←→ R Consistency proof: Parties engage in a
zero-knowledge argument protocol where C proves to
R that
∃
(
{(mj,l, sj,l)}1≤j≤k,1≤l≤`−1, {(ri,j , s′i,j)}1≤i≤n,1≤j≤k

)
such that:

• Com =
(
{Comσ(mj,l, sj,l)}1≤j≤k,1≤l≤`−1,

{Comσ(ri,j , s
′
i,j)}1≤i≤n,1≤j≤k

)
; and

• wi,j = 〈zi,j ,vi〉 ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ k.

Figure 2: Constant Rate Non-malleable commitment
scheme 〈C,R〉AMOR.

precomputation [BGMW92]. This provides a tremendous
improvement for both parties. We also use batch verifica-
tion [LL94, BGR98] for each of the parties’ verification of
repeated equations. In particular, we use the bucket test
with small exponents. For further optimization we use the
Comba multiplication [Com90].

We implement our protocol over elliptic curves. Note
that [GRRV14] required the group size to be exponential in
the tag values, and therefore required approximately 6000
bits group size to achieve decent security. Our protocol,
on the other hand, allows using any group size (as long as
it is secure) regardless of the tags values. This allows us
to use more standard elliptic curves groups. We choose to
use NIST GF(P) elliptic curves, and construct our imple-
mentation in MIRACL SDK – an open source C software
library for elliptic curve cryptography. Our implementation
is generic for any EC parameters. Concrete measurements
of performance for our protocol are presented in table 3. For
example, to commit to a message of size 24,576 bits with El-
Gamal modulus of size 192 bits, tags of size 32 bits, it takes
approximately 4.5 giga clock cycles. That is, on average for
every committed bit we run approximately 0.19 mega clock
cycles.

IDs
Prime Size

(log q) Msg size Clock Cycles (C+R) Sec.

216 192 12288 0.2 G + 1.15 G 2−96

232 192 24576 0.4 G + 4.1 G 2−96

264 192 49152 0.79 G + 15.3 G 2−96

216 224 14336 0.4 G + 2.46 G 2−112

232 224 28672 0.82 G + 8.7 G 2−112

Table 3: Implementation time measurements in DDH Imple-
mentation. The complexity is measured in Giga clock-cycles.
Measurements were taken on a Core i7 Intel Ivy Bridge ar-
chitecture (with 2.9 GHz frequency) using only a single core.
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