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Abstract. We show the following reductions from the learning with errors problem (LWE) to the
learning with rounding problem (LWR): (1) Learning the secret and (2) distinguishing samples from
random strings is at least as hard for LWR as it is for LWE for efficient algorithms if the number of
samples is no larger than O(q/Bp), where q is the LWR modulus, p is the rounding modulus, and the
noise is sampled from any distribution supported over the set {−B, . . . , B}.
Our second result generalizes a theorem of Alwen, Krenn, Pietrzak, and Wichs (CRYPTO 2013) and
provides an alternate proof of it. Unlike Alwen et al., we do not impose any number theoretic restrictions
on the modulus q. The first result also extends to variants of LWR and LWE over polynomial rings.
The above reductions are sample preserving and run in time poly(n, q,m).
As additional results we show that (3) distinguishing any number of LWR samples from random
strings is at least as hard as LWE whose noise distribution is uniform over the integers in the range
[−q/2p, . . . , q/2p) provided q is a multiple of p and (4) the “noise flooding” technique for converting
faulty LWE noise to a discrete Gaussian distribution can be applied whenever q = Ω(B

√
m).
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1 Introduction

1.1 Learning with Rounding

The learning with rounding (LWR) problem, introduced by Banerjee, Peikert, and Rosen [BPR12], concerns
the cryptographic properties of the function fs : Znq → Zp given by

fs(x) = b〈x, s〉ep = b(p/q) · 〈x, s〉e

where s ∈ Znq is a secret key, 〈x, s〉 is the inner product of x and s mod q, and b·e denotes the closest
integer. In this work we are interested in the algorithmic hardness of the tasks of learning the secret s and
of distinguishing fs from a random function given uniform and independent samples of the form (x, fs(x)).

Learning with rounding was proposed as a deterministic variant of the learning with errors (LWE)
problem [Reg05]. In this problem fs is replaced by the randomized function gs : Znq → Zq given by gs(x) =
〈x, s〉+ e, where e is sampled from some error distribution over Zq independently for every input x ∈ Znq .

In spite of the superficial similarities between the two problems, the cryptographic hardness of LWE
is much better understood. Extending works of Regev [Reg05], Peikert [Pei09], and others, Brakerski et
al. [BLP+13] gave a polynomial-time reduction from finding an approximate shortest vector in an arbitrary
lattice to the task of distinguishing gs from a random function given access to uniform and independent
samples (x, gs(x)) when e is drawn from the discrete Gaussian distribution of sufficiently large standard
deviation. Their reduction is versatile in two important aspects. First, it is meaningful for any modulus q
that exceeds the standard deviation of the noise. Second, it does not assume a bound on the number of
samples given to the distinguisher.

In contrast, the hardness of the learning with rounding problem has only been established for restricted
settings of the parameters. In their work Banerjee, Peikert, and Rosen show that if fs can be efficiently
distinguished from a random function given m random samples with advantage δ, then so can gs with
advantage δ − O(mBp/q), where the noise e is supported on the range of integers {−B, . . . , B} modulo
q. From here one can conclude the hardness of distinguishing fs from a random function given m random
samples assuming the hardness of learning with errors, but only when the modulus q is of an exponential
order of magnitude in the security parameter.

Alwen et al. [AKPW13] give a reduction from LWE to the same problem assuming that qmax is at least
as large as 2nmBp and q2max does not divide q, where qmax is the largest prime divisor of q. This reduction
can be meaningful even for values of q that are polynomially related to the security parameter. For example,
when q is a prime number then the improvement over the reduction of Banerjee, Peikert, and Rosen is
substantial.

However, the result of Alwen et al. does not apply to all (sufficiently large) values of the modulus q. For
example it does not cover values of q that are powers of two. In this case the rounding function is particularly
natural as it outputs the first log p significant bits of q in binary representation. Moreover, rounding with
a small prime q necessarily introduces noticeable bias, consequently requiring some form of deterministic
extraction. Finally, the work of Alwen et al. does not include a treatment of the significantly more efficient
ring variant of LWR.

1.2 Our results

We establish the cryptographic hardness of the function fs in the following three settings:

One-wayness: In Theorem 1 in Section 2 we show that any algorithm that recovers the secret s from m
independent random samples of the form (x, fs(x)) with probability at least ε also recovers the secret s
from m independent random samples of the form (x, bgs(x)ep) with probability at least ε2/(1+2Bp/q)m.
Therefore, if the function G(x1, . . . ,xm, s) = (x1, . . . ,xm, gs(x1), . . . , gs(xm)) is one-way under some
B-bounded distribution (i.e. if the search version of LWE is hard) then we conclude that

F (x1, . . . ,xm, s) = (x1, . . . ,xm, fs(x1), . . . , fs(xm))

is also one-way, as long as q ≥ 2mBp.
In Theorem 2 in Section 2.2 we show that the ring variants of the LWE and LWR problems (defined in
that section) are related in an analogous manner.



Pseudorandomness: In Theorem 3 in Section 3 we show that if there exists an efficient distinguisher that
tells apart m independent random samples (x, gs(x)) from m independent random samples of the form
(x, buep), then LWE secrets can be learned efficiently assuming q ≥ 2mBp.
In particular, when p divides q, the above function F is a pseudorandom generator assuming the hardness
of learning with errors.
Theorem 3 improves upon several aspects of the work of Alwen et al.: First, we do not impose any
number-theoretic restrictions on q; second, they require the stronger condition q ≥ 2nmBp; third, unlike
theirs, our reduction is sample preserving; and fourth, we believe our proof is considerably simpler. On
the other hand, the complexity of their reduction has a better dependence on the modulus q and the
distinguishing probability.

Hardness of learning from samples with uniform noise: In Theorem 5 in Section 4 we give an
efficient reduction that takes as input independent random samples of the form (x, gs(x)) and produces
independent random samples of the form (x, fs(x)) provided that p divides q and the noise e of gs is
uniformly distributed over the integers in the range [−q/2p, . . . , q/2p). Therefore if fs can be distinguished
efficiently from a random function for any number of independent random samples, so can gs. The learning
with errors problem under this noise distribution is not known to be as hard as the learning with errors
problem with discrete Gaussian noise when the number of samples is unbounded in terms of q and n.
The existence of a reduction to the case of discrete Gaussian noise is an interesting open problem.

Noise flooding: In addition, our technique allows for an improved analysis of noise flooding. The noise
flooding technique is ubiquitous in the LWE cryptographic literature. Roughly speaking, it is used to
rerandomize a faulty sample

(
x, 〈x, s〉 + ebad

)
into one of the form

(
x, 〈x, s〉 + egood

)
where egood is

distributed according to the error distribution implicit in gs(·), while ebad is not. Most of the time,
the desired error distribution is a discrete Gaussian over Zq whereas ebad is some arbitrary B-bounded
element in Zq. The most common method is to draw a fresh Gaussian error e and set egood = ebad + e
which results in the distribution of egood being within statistical distance B/σ of the desired Gaussian.
However, this requires choosing parameters in order to ensure that B/σ ≥ B/q is small. In particular,
it requires setting q to be larger than any polynomial in the security parameter. Even worse, often the
bound B is polynomially related to the standard deviation σ′ of another discrete Gaussian used in the
construction. This means that q/σ′ also grows faster than any polynomial in the security parameter,
which is not ideal as the quantity q/σ′ corresponds to the strength of assumption one is making on the
hardness of the underlying lattice problem. In Section 5 we use techniques from Section 2 to give a simple
proof that noise flooding can be used whenever q = Ω

(
B
√
m
)
. In particular, it can be used even when

q is polynomial in the security parameter.

Conventions We write x← X for a uniform sample from the set X, R(x) for the function (R(x1), . . . , R(xn)),
and Zn∗q for the set of vectors in Znq which are not zero-divisors. Namely, Zn∗q = {x ∈ Znq : gcd(x1, . . . , xn, q) =
1}. All algorithms are assumed to be randomized.

2 One-wayness of LWR

In this section we prove the following theorem. We say a distribution over Zq is B-bounded if it is supported
over the interval of integers {−B, . . . , B}, where B ≤ (q−1)/2. We say a B-bounded distribution e is balanced
if Pr[e ≤ 0] ≥ 1/2 and Pr[e ≥ 0] ≥ 1/2.

Theorem 1. Let p, q, n, m, and B be integers such that q > 2pB. For every algorithm Learn,

PrA,s,e[Learn(A, bAs + eep) = s] ≥
PrA,s[Learn(A, bAsep) = s]2

(1 + 2pB/q)m
,

where A ← Zm×nq , the noise e is independent over all m coordinates, B-bounded and balanced in each
coordinate, and s is chosen from any distribution supported on Zn∗q .

The assumptions made on the secret and error distribution in Theorem 1 are extremely mild. The
condition s ∈ Zn∗q is satisfied for at least a 1−O(1/2n) fraction of secrets s← Znq . While a B-bounded error



distribution may not be balanced, it can always be converted to a 2B-bounded and balanced error distribution
by a suitable constant shift. The discrete Gaussian distribution of standard deviation σ is e−Ω(t2)-statistically
close to being tσ-bounded and balanced for every t ≥ 1.

Theorem 2 in Section 2.2 concerns the ring variants of the LWR and LWE problems and will be proved
in an analogous manner.

We now outline the proof of Theorem 1. Let Xs denote the distribution of a single LWR sample a, b〈a, s〉ep
where a ← Znq and Ys denote the distribution of a single rounded LWE sample a, b〈a, s〉+ eep. To prove
Theorem 1 we will fix s and look at the ratio of probabilities of any possible instance under the product
distributions Xms and Yms , respectively. If this ratio was always bounded by a sufficiently small quantity K,5

then it would follow that the success probability of any search algorithm for LWR does not deteriorate by
more than a factor of 1/K when it is run on rounded LWE instances instead.

While it happens that there are exceptional instances for which the ratio of probabilities under Xms and
Yms can be large, our proof of Theorem 1 will show that such instances cannot occur too often under the
rounded LWE distribution and therefore does not significantly affect the success probability of the inversion
algorithm. This can be showed by a standard probabilistic analysis, but we opt instead to work with a measure
of distributions that is particularly well suited for bounding ratios of probabilities: the Rényi divergence.

The role of Rényi divergence in our analysis accounts for our quantitative improvement over the result
of Banerjee, Peikert, and Rosen, who used the measure of statistical distance in its place. Rényi divergence
has been used in a related context: Bai, Langlois, Lepoint, Stehlé and Steinfeld [BLL+15] use it to obtain
tighter bounds for several lattice-based primitives.

2.1 Proof of Theorem 1

Given two distributions X and Y over Ω, the power of their Rényi divergence6 is RD2(X‖Y) = Ea←X[Pr[X =
a]/Pr[Y = a]].

Lemma 1. Let Xs be the distribution of a single LWR sample and let Ys be that of a single rounded LWE
sample. Assume B < q/2p. For every s ∈ Zn∗q and every noise distribution that is B-bounded and balanced,

RD2

(
Xs‖Ys

)
≤ 1 + 2Bp/q.

Proof. By the definition of Rényi divergence,

RD2

(
Xs‖Ys

)
= Ea←Zn

q

Pr
[
Xs=(a,b〈a,s〉ep)

]
Pr
[
Ys=(a,b〈a,s〉ep)

] = Ea←Zn
q

1

Pre
[
b〈a, s〉+ eep = b〈a, s〉ep

] .
Let BADs be the set

{
a ∈ Znq :

∣∣〈a, s〉− q
p b〈a, s〉ep

∣∣ < B
}

. These are the a for which 〈a, s〉 is dangerously close

to the rounding boundary. When a /∈ BADs, Pre
[
b〈a, s〉+ eep = b〈a, s〉ep

]
= 1. Since gcd(s1, . . . , sn, q) = 1,

the inner product 〈a, s〉 is uniformly distributed over Zq, so Pr[a ∈ BADs] ≤ (2B − 1)p/q. When a ∈ BADs,
the event b〈a, s〉+ eep = b〈a, s〉ep still holds at least in one of the two cases e ≤ or e ≥ 0. By our assumptions

on the noise distribution, Pre
[
b〈a, s〉+ eep = b〈a, s〉ep

]
≥ 1/2. Conditioning over the event a ∈ BADs, we

conclude that

RD2(Xs‖Ys) ≤ 1 · Pr[a /∈ BADs] + 2 · Pr[a ∈ BADs] ≤ 1 +
2Bp

q
.

ut

To complete the proof of Theorem 1 we need two elementary properties of Rényi divergence.

Claim. For any two distributions X and Y, (1) RD2(Xm‖Ym) = RD2(X‖Y)m and (2) for any event E,
Pr[Y ∈ E] ≥ Pr[X ∈ E]2/RD2(X‖Y).

5 Levin [Lev86] calls this condition K-domination.
6 Rényi divergences [vEH14] are a class of measures parametrized by a real number α > 1. The definition we give

specializes α to 2, which is sufficient for our analysis.



Proof. Property (1) follows immediately from independence of the m samples. Property (2) is the Cauchy-
Schwarz inequality applied to the functions

f(a) =
Pr[X = a]√
Pr[Y = a]

; and g(a) =
√

Pr[Y = a].

ut

Proof (Proof of Theorem 1). Fix s such that gcd(s, q) = 1 and the randomness of Learn. By Lemma 1 and
part (1) of Claim 2.1, RD2(Xms ‖Yms ) ≤ (1 + 2Bp/q)m. Letting E be the event {(A,y) : Learn(A,y) = s}, by
part (2) of Claim 2.1,

PrA,e[Learn(A, bAs + eep) = s] ≥
PrA[Learn(A, bAsep) = s]2

(1 + 2pB/q)m
.

To obtain the theorem, we average over s and and the randomness of Learn and apply the Cauchy-Schwarz
inequality. ut

2.2 Hardness over Rings

For many applications it is more attractive to use a ring version of LWR (RLWR). Banerjee, Peikert, and
Rosen [BPR12] introduced it together with LWR. It brings the advantage of reducing the entropy of A for
same sized bAs + eep. In the following theorem, we give a variant of Theorem 1 for the RLWR based on the
hardness of ring LWE. This theorem is not needed for the remaining sections of the paper.

Theorem 2. Let p, q, n, k,B be integers such that q > 2pB. Let Rq be the ring Zq[x]/g(x) where g is a
polynomial of degree n over Zq and f be an arbitrary function over Rq. For every algorithm Learn,

Pra,s,e[Learn(a, bas+ eep) = f(s)] ≥
Pra,s[Learn(a, basep) = f(s)]2

(1 + 2pB/q)nk
,

where a← Rkq , the noise e is independent over all k coordinates, B-bounded and balanced in each coordinate,
and s is chosen from any distribution supported on the set of all units in Rq.

An element in Rq = Zq[x]/g(x) can be represented as a polynomial (in x) of degree less than n with
coefficients in Zq. Here, for a ∈ Rq, baep is an element in Zp[x]/g(x) obtained by applying the function b·ep to
each of coefficient of a separately. A distribution over ring Rq is B-bounded and balanced if every coefficient
is drawn independently from a B-bounded and balanced distribution over Zq.

The bound in Theorem 2 matches the bound in Theorem 1 since k can be chosen such that nk is on the
order of m. Theorem 2 follows from Claim 2.1 and the following variant of Lemma 1.

Lemma 2. Assume B < q/2p. For every unit s ∈ Rq and noise distribution χ that is B-bounded and
balanced over Rq, RD2

(
Xs‖Ys

)
≤
(
1 + 2pB/q

)n
where Xs is the random variable

(
a, ba · sep

)
and Ys is the

random variable
(
a, ba · sep + e

)
with a← Rq and e← χ.

Since the proof is very similar to the proof of Lemma 1, we defer it to Appendix A.

3 Pseudorandomness of LWR

In this section we prove the following Theorem. We will implicitly assume that algorithms have access to the
prime factorization of the modulus q throughout this section.

Theorem 3. For every ε > 0, n, m, q > 2pB, and algorithm Dist such that∣∣PrA,s
[
Dist

(
A, bAsep

)
= 1
]
− PrA,u

[
Dist

(
A, buep

)
= 1
]∣∣ ≥ ε, (1)



where A← Zm×nq , s← {0, 1}n and u← Zmq there exists an algorithm Learn that runs in time polynomial in
n, m, the number of divisors of q, and the running time of Dist such that

PrA,s
[
Learn

(
A,As + e

)
= s
]
≥
( ε

4qm
− 2n

pm

)2
· 1

(1 + 2Bp/q)m
(2)

for any noise distribution e that is B-bounded and balanced in each coordinate.

One unusual aspect of this theorem is that the secret is a uniformly distributed binary string in Znq . This
assumption can be made essentially without loss of generality: Brakerski et al. [BLP+13] show that under
discrete Gaussian noise, learning a binary secret in {0, 1}n from LWE samples is as hard as learning a secret

uniformly sampled from ZΩ(n/ log q)
q . The assumption (1) can also be stated with s sampled uniformly from

Znq : In Section 3.4 we show that distinguishing LWR samples from random ones is no easier for uniformly
distributed secrets than it is for any other distribution on secrets, including the uniform distribution over
binary secrets. (When q is prime, the proof of Theorem 3 can be carried out for s uniformly distributed over
Znq so these additional steps are not needed.)

To prove Theorem 3 we follow a sequence of standard steps originating from Yao [Yao82], Goldreich and
Levin [GL89]: In Lemma 3 we convert the distinguisher Dist into a predictor that given a sequence of LWR
samples and a label a guesses the inner product 〈a, s〉 in Zq with significant advantage. In Lemma 4 we show
how to use this predictor to efficiently learn the entries of the vector s modulo q′ for some divisor q′ > 1
of q. If the entries of the secret s are bits, s is then fully recovered given LWR samples. By Theorem 1 the
learner’s advantage does not deteriorate significantly when the LWR samples are replaced by LWE samples.

Our proof resembles the work of Micciancio and Mol [MM11] who give, to the best of our knowledge, the
only sample preserving search-to-decision reduction for LWE (including its variants). Unlike our theorem,
theirs imposes certain number-theoretic restrictions on q. Also, while Micciancio and Mol work with a problem
that is “dual” to LWE, we work directly with LWR samples.

3.1 Predicting the Inner Product

Lemma 3. For all ε (possibly negative), n, m, q, every polynomial-time function R over Zq, and every
algorithm Dist such that

PrA,s
[
Dist

(
A, R(As)

)
= 1
]
− PrA,u

[
Dist

(
A, R(u)

)
= 1
]

= ε,

there exists an algorithm Pred whose running time is polynomial in its input size and the running time of
Dist such that

PrA,s,a
[
Pred

(
A, R(As),a

)
= 〈a, s〉

]
=

1

q
+

ε

mq
.

where the probabilities are taken over A← Zm×nq , u← Zmq , the random coins of the algorithms, and secret
s sampled from an arbitrary distribution.

Here, R(y) is the vector obtained by applying R to every coordinate of the vector y.

Proof. Consider the following algorithm Pred. On input (A,b)=((a1, b1), . . . , (am, bm)) (aj ∈ Znq , bj ∈ Zq)
and a ∈ Znq :

1. Sample a random index i← {1, . . . ,m} and a random c← Zq.
2. Obtain A′,b′ from A,b by replacing ai with a, bi with R(c), and every bj for j > i with an independent

element of the form R(uj), uj ← Zq.
3. If Dist(A′,b′) = 1, output c. Otherwise, output a uniformly random element in Zq.

Let hi =
(
R(〈a1, s〉), . . . , R(〈ai, s〉), R(ui+1), . . . , R(um)

)
∈ Zmp , for i ranging from 0 to m. Then hm =

R(As) and h0 = R(u) so by the assumption on Dist it follows that

Ei

[
PrA,s,u

[
Dist

(
A,hi

)
= 1
]
− PrA,s,u

[
Dist

(
A,hi−1

)
= 1
]]

=
ε

m
.



Conditioned on the choice of i,

Pr
[
Pred(A,b,a

)
= 〈a, s〉

]
= Pr

[
Dist(A′,b′) = 1 and c = 〈a, s〉

]
+

1

q
· Pr
[
Dist(A′,b′) 6= 1

]
=

1

q
· Pr
[
Dist(A′,b′) = 1 | c = 〈a, s〉

]
+

1

q
· Pr
[
Dist(A′,b′) 6= 1

]
=

1

q
+

1

q
·
(
Pr
[
Dist(A′,b′) = 1

∣∣c = 〈a, s〉
]
− Pr

[
Dist(A′,b′) = 1

])
when b = R(As), the distribution (A′,b′) is the same as (A,hi−1) while (A′,b′) conditioned on c = 〈a, s〉
is the same as (A,hi). Averaging over i yields the desired advantage of Pred. ut

3.2 Learning the Secret

Lemma 4. There exists an oracle algorithm List such that for every algorithm Pred satisfying |Pr[Pred(a) =
〈a, s〉]−1/q| ≥ ε, ListPred(ε) outputs a list of entries (q′, s′) containing at least one such that q′ > 1, q′ divides
q, and s′ = s mod q′ in time polynomial in n, 1/ε, and the number of divisors of q with probability at least
ε/4. The probabilities are taken over a← Znq , any distribution on s, and the randomness of the algorithms.

When q is a prime number, the conclusion of the theorem implies that the list must contain the secret
s. When q is a composite, the assumption does not in general guarantee full recovery of s. For example, the
predictor Pred(a) = 〈a, s〉 mod q′ has advantage ε = (q′ − 1)/q but does not distinguish between pairs of
secrets that are congruent modulo q′. In this case List cannot hope to learn any information on s beyond the
value s modulo q′.

The proof of Lemma 4 makes use of the following result of Akavia, Goldwasser, and Safra [AGS03] on
learning heavy Fourier coefficients, extending work of Kushilevitz, Mansour, and others. Recall that the
Fourier coefficients of a function h : Znq → C are the complex numbers ĥ(a) = Ex←Zn

q
[h(x)ω−〈a,x〉], where

ω = e2πi/q is a primitive q−th root of unity. Our functions of interest all map into the unit complex circle
T = {c ∈ C : |c| = 1}, so we specialize the result to this setting.

Theorem 4 (Akavia et al. [AGS03]). There is an algorithm AGS that given query access to a function

h : Znq → T outputs a list of size at most 2/ε2 which contains all a ∈ Znq such that |ĥ(a)| ≥ ε in time
polynomial in n, log q, and 1/ε with probability at least 1/2.

We will also need the following property of the Fourier transform of random variables. For completeness
the proof is given below.

Claim. For every random variable Z over Zq there exists a nonzero r in Zq such that |E[ωrZ ]| ≥ |Pr[Z =
0]− 1/q|.

Proof (Proof of Lemma 4). We first replace Pred by the following algorithm: Sample a uniformly random unit
(invertible element) u from Z∗q and output u−1Pred(ua). This transformation does not affect the advantage

of Pred but ensures that for fixed s and randomness of Pred, the value Ea[ωr(Pred(a)−〈a,s〉)] is the same for all
r with the same gcd(r, q).

Algorithm List works as follows: For every divisor r < q of q run AGS with oracle access to the function
hr(a) = ωr·Pred(a) and output (q′ = q/r, s′/r mod q′) for every s′ in the list produced by AGS.

We now assume Pred satisfies the assumption of the lemma and analyze List. By Claim 3.2 there exists a
nonzero r ∈ Zq such that |E[ωr(Pred(a)−〈a,s〉)]| ≥ ε. By Markov’s inequality and the convexity of the absolute
value, with probability at least ε/2 over the choice of s and the randomness of Pred |Ea[ωr(Pred(a)−〈a,s〉)]| is
at least ε/2. We fix s and the randomness of Pred and assume this is the case. By our discussion on Pred,
the expectation of interest is the same for all r with the same gcd(r, q), so we may and will assume without
loss of generality that r is a divisor of q.

Since Ea[ωr(Pred(a)−〈a,s〉)] = ĥr(rs), by Theorem 4, the r-th run of AGS outputs rs with probability at
least 1/2. Since (rs)/r mod q′ = s mod q′ it follows that the entry (q′, s mod q′) must appear in the output
of List with probability at least (1/2)(ε/2) = ε/4. Regarding time complexity, List makes a call to AGS for
every divisor of q except q, so its running time is polynomial in n and the number of divisors of q. ut



Proof (Proof of Claim 3.2). Let ε = Pr[Z = 0]− 1/q and h(a) = q(Pr[Z = a] − Pr[U = a]), where U ← Zq
is a uniform random variable. By Parseval’s identity from Fourier analysis,∑

r∈Zq

|ĥ(r)|2 = Ea←Zq
[h(a)2] ≥ 1

q
h(0)2 = qε2.

On the left hand side, after normalizing we obtain that ĥ(r) = E[ω−rZ ] − E[ω−rU ]. Therefore ĥ(0) = 0, so

|ĥ(r)|2 = |E[ω−rZ ]|2 must be at least as large as qε2/(q − 1) for at least one nonzero value of r, giving a
slightly stronger conclusion than desired. ut

3.3 Proof of Theorem 3

On input (A,b), algorithm Learn runs ListPred(A,bbep,·)(ε/2qm) and outputs any s ∈ {0, 1}n appearing in the
list such that bAsep = bbep (or the message fail if no such s exists). By Theorem 1,

Pr[Learn(A, bAs + eep) = s] ≥
Pr[Learn(A, bAsep) = s]2

(1 + 2Bp/q)m
.

For Learn(A, bAsep) to output s it is sufficient that s appears in the output of ListPred(A,bAsep,·)(ε/2qm) and
that no other s′ ∈ {0, 1}n satisfies bAs′ep = bAsep. By Lemmas 3 and 4, the list contains s mod q′ for some
q′ with probability at least ε/4qm. Since s is binary, s mod q′ = s. By a union bound, the probability that
some bAs′ep = bAsep for some s′ 6= s is at most 2np−m and so

Pr[Learn(A, bAs + eep) = s] ≥ (ε/4qm− 2np−m)2

(1 + 2Bp/q)m
.

3.4 Rerandomizing the Secret

Lemma 5. Let S be any distribution supported on Zn∗q . For every function R on Zq, there is a polynomial-
time transformation that (1) maps the distribution (A, R(As))A←Zm×n

q ,s←S to (A, R(As))A←Zm×n
q ,s←Zn∗

q
and

(2) maps the distributon (A, R(u))A←Zm×n
q ,u←Zm

q
to itself.

In particular, it follows that the distinguishing advantage (1) can be preserved when the secret is chosen
uniformly from Zn∗q instead of uniformly from {0, 1}n−{0n}. The sets Zn∗q and {0, 1}n−{0n} can be replaced
by Znq and {0, 1}n, respectively, if we allow for failure with probability O(2−n).

To prove Lemma 5 we need a basic fact from algebra. We omit the easy proof.

Claim. Multiplication by an n× n invertible matrix over Zq is a transitive action on Zn∗q .

Proof (Proof of Lemma 5). Choose a uniformly random invertible matrix P ∈ Zn×nq and apply the map
f(a, b) = (Pa, b) to every row. Clearly this map satisfies the second condition. For the first condition, we
write f(a, R(〈a, s〉)) = (Pa, R(〈a, s〉)), which is identically distributed as (a, R(〈a,P−ts〉)). By Claim 3.4,
for every s in the support of S the orbit of P−ts is Zn∗q , so by symmetry P−ts is uniformly random in Zn∗q .
Therefore the first condition also holds. ut

4 Reduction from LWE with Uniform Errors to LWR

When the number of LWR samples is not a priori bounded, we show that the pseudorandomness (resp.
one-wayness) of LWR follows from the pseudorandomness (resp. one-wayness) of LWE with a uniform noise
distribution over the range of integers [− q

2p , . . . ,
q
2p ). We use a rejection sampling based approach to reject

LWE samples which are likely to be rounded to the wrong value in Zp. This comes at the cost of throwing
away samples, and indeed the sample complexity of our reduction grows with q.



Theorem 5. Let p and q be integers such that p divides q. Then there is a reduction R with query access to
independent samples such that for every s ∈ Zn∗q :

– Given query access to samples (a, 〈a, s〉 + e), a ← Znq , e ← [− q
2p , . . . ,

q
2p

)
⊂ Zq, R outputs samples from

the distribution (a, b〈a, s〉ep), a← Znq ,
– Given query access to uniform samples (a, u), a ← Znq , u ← Zq, R outputs a uniform sample (a, v),

a← Znq , v ← Zp.

In both cases, the expected running time and sample complexity of the reduction is O(q/p).

Proof. We view the set (q/p)Zp as a subset of Zq. The reduction R queries its oracle until it obtains the first
sample (a, b) ∈ Znq ×Zq such that b is in the set (q/p)Zp and outputs (a, (p/q)b) ∈ Znq ×Zp. In both cases of
interest b is uniformly distributed in Zq, so the expected number of query calls until success is q/p.

When the queried samples are uniformly distributed in Znq ×Zq, the output is also uniformly distributed
in Znq ×Zp. For queried samples of the form (a, 〈a, s〉+ e), we calculate the probability mass function of the
output distribution. For every possible output (a′, b′), we have

Pr
[
R outputs (a′, b′)

]
= Pr

[
a = a′ and 〈a, s〉+ e = b′

∣∣ 〈a, s〉+ e ∈ (q/p)Zp
]

= Pra[a = a′] ·
Pre
[
〈a, s〉+ e = (q/p)b′

∣∣ a = a′
]

Pre
[
〈a, s〉+ e ∈ (q/p)Zp

∣∣ a = a′
]

= q−n ·

{
p/q
p/q , if (q/p)b′ − 〈a′, s〉 ∈

[
− q

2p , . . . ,
q
2p

)
0, otherwise.

=

{
q−n, if b′ = b〈a′, s〉ep
0, otherwise.

This is the probability mass function of the distribution (a, b〈a, s〉ep), as desired. ut

5 Noise Flooding

In this section, let χσ denote the discrete Gaussian distribution on Zq with standard deviation σ: χσ(x) is
proportional to exp

(
−π(x/σ)2

)
. Often in applications of LWE, one is given a sample (a, b) with b = 〈a, s〉+e

for e← χσ and by performing various arithmetic operations obtains a new pair (a′, b′) with b′ = 〈a′, s′〉+ e′.
Sometimes, the noise quantity e′ obtained is not distributed according to a Gaussian, but is only subject to
an overall bound on its absolute value. If the proof of security needs (a′, b′) to be an LWE instance, then
sometimes the “noise flooding” technique is used where a fresh Gaussian x ← χσ′ is drawn and b′ is set to
〈a′, s′〉+e′+x. As long as e′+χσ′ ≈s χσ′ the resulting (a′, b′) is statistically close to a fresh LWE instance. This
technique in some form or another appears in many places, for example [AIK11,GKPV10,DGK+10,OPW11].
Unfortunately, e′ + χσ′ ≈s χσ′ requires q to be large and so the applications also carry this requirement. In
this section we bound the continuous analogue of Rényi divergence between e′ + χσ′ and χσ′ and show that
the noise flooding technique can be used even when q is polynomial in the security parameter, as long as the
number of samples is also bounded.

We remark that our main result in this section, Corollary 1, follows from general results in prior work
which bound the Rényi divergence between Gaussians. For example, Lemma 4.2 of [LSS14] implies Corollary 1
below. However, we are unaware of a theorem in the literature with a simple statement which subsumes
Corollary 1. We include a proof for completeness.

Claim. Let Ψα be the continuous Gaussian on R with standard deviation α: Ψα(x) = α−1e−π(x/α)
2

. Then
for any β ∈ R,

RD2(β + Ψα‖Ψα) = e2π(β/α)
2

.



Proof. We have

RD2(β + Ψα‖Ψα) = α−1
∫ ∞
−∞

e−
(
π/α2

)[
2(x−β)2−x2)

]
dx

= α−1 · e2π
(
β/α
)2 ∫ ∞

−∞
e−
(
π/α2

)[
(x−2β)2

]
dx

= e2π
(
β/α
)2
.

We have used the substitution u = x− 2β and the identity
∫
R e
−πcu2

du = c−1/2 for all c > 0. ut

Corollary 1. Fix m, q, k ∈ Z, a bound B, and a standard deviation σ such that B < σ < q. Moreover, let
e ∈ Zq be such that |e| ≤ B. If σ = Ω

(
B
√
m/ log k

)
, then

RD2

(
(e+ χσ)m‖χmσ

)
= poly(k)

where Xm denotes m independent samples from X.

Proof. Rényi divergence cannot grow by applying a function to both distributions. Since the discrete Gaus-
sians e + χσ and χσ are obtained from the continuous Gaussians β + Ψα and Ψα by scaling and rounding,
where β = |e|/q and α = σ/q, we see that

RD2

(
e+ χσ‖χσ

)
≤ RD2

(
β + Ψα‖Ψα

)
= exp

(
2π(β/α)2

)
≤ exp

(
2π(B/σ)2

)
.

Therefore, RD2

(
(e+ χσ)m‖χmσ

)
≤ exp

(
2πm(B/σ)2

)
, and the result follows. ut
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of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, STOC, pages
575–584. ACM, 2013.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology - EUROCRYPT 2012 - 31st An-
nual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge,
UK, April 15-19, 2012. Proceedings, volume 7237 of Lecture Notes in Computer Science, pages 719–737.
Springer, 2012.

[DGK+10] Yevgeniy Dodis, Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Public-
key encryption schemes with auxiliary inputs. In Theory of Cryptography, 7th Theory of Cryptography
Conference, TCC 2010, Zurich, Switzerland, February 9-11, 2010. Proceedings, pages 361–381, 2010.



[GKPV10] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Robustness of the
learning with errors assumption. In Innovations in Computer Science - ICS 2010, Tsinghua University,
Beijing, China, January 5-7, 2010. Proceedings, pages 230–240, 2010.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In David S.
Johnson, editor, Proceedings of the 21st Annual ACM Symposium on Theory of Computing, May 14-17,
1989, Seattle, Washigton, USA, pages 25–32. ACM, 1989.

[Lev86] Leonid A Levin. Average case complete problems. SIAM J. Comput., 15(1):285–286, February 1986.
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A Proof of Lemma 2

Proof. By the definition of Rényi divergence,

RD2

(
Xs‖Ys

)
= Ea←Rq

Pr
(
Xs = (a, ba · sep)

)
Pr
(
Ys = (a, ba · sep)

)
= Ea←Rq

1

Pre←χ
(
ba · s+ eep = ba · sep

) .
We define the set borderp,q(B) =

{
x ∈ Zq :

∣∣x− q
p bxep

∣∣ < B
}

. For a ring element a ∈ Rq, we use ai denote the

ith coefficient in the power basis. For t = 0, . . . , n and for any t ∈ {0, . . . , n}, we define the set BADs,t =
{
a ∈

Rq : |{i ∈ [n], (a ·s)i ∈ borderp,q(B)}| = t}
}

. These are the a for which a ·s has exactly t coefficients which are
dangerously close to the rounding boundary. Fix arbitrary t and a ∈ BADs,t. For any i ∈ [n] such that (a·s)i /∈
borderp,q(B), Prei [b(a · s)i + eiep = b(a · s)iep] = 1. For any i ∈ [n] such that (a ·s)i ∈ borderp,q(B), the event
b(a · s)i + eiep = b(a · s)iep still holds in one of the two cases ei ∈ [−B, . . . , 0] and ei ∈ [0, . . . , B]. By the
assumption on the noise distribution Prei [b(a · s)i + eiep = b(a · s)iep] ≥ 1/2. Because e is independent over

all coefficients and a has exactly t coefficients in borderp,q(B), Pre←χ
(
ba · s+ eep = ba · sep

)
≥ 1

2t . Because s

is a unit inRq so that a·s is uniform overRq and Pr[a ∈ BADs,t] ≤
(
n
t

) (
1− |borderp,q(B)|

q

)n−t ( |borderp,q(B)|
q

)t
.

Conditioning over the event a ∈ BADs,t, we conclude

RD2

(
Xs‖Ys

)
≤

n∑
t=0

2t · Pr[a ∈ BADs,t] =

(
1 +
|borderp,q(B)|

q

)n
.

The desired conclusion follows from |borderp,q(B)| ≤ 2pB. ut


