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Abstract

To achieve robustness in dynamic and uncertain environments, robotic systems must
monitor the progress of their plans during execution. This thesis develops a plan
executive called Pike that is capable of executing and monitoring plans. The execution
monitor at its core quickly and efficiently detects relevant disturbances that threaten
future actions in the plan. We present a set of novel offline algorithms that extract sets
of candidate causal links from temporally-flexible plans. A second set of algorithms
uses these causal links to monitor the execution online and detect problems with
low latency. We additionally introduce the TBurton executive, a system capable of
robustly meeting a user’s high-level goals through the combined use of Pike and a
temporal generative planner. An innovative voice-commanded robot is demonstrated
in hardware and simulation that robustly meets high level goals and verbalizes any
causes of failure using the execution monitor.1

Thesis Supervisor: Brian C. Williams
Title: Professor of Aeronautics and Astronautics

1This research is generously funded by the Boeing Company grant MIT-BA-GTA-1.
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Chapter 1

Introduction

It has long been a hallmark of artificial intelligence to develop robotic systems that

accept user-commanded goals at a high level, generate and execute plans designed to

meet those goals, and if necessary generate new plans that overcome any unexpected

problems that arise during execution. This thesis works towards that goal, placing

special focus on the subproblem of quickly detecting unexpected problems.

Specifically, this thesis is concerned with the advancement of robotic systems that

are capable of robustly recovering from disturbances via model-based reasoning over

plans and environmental observations. We envision robots that are highly adept at

seamlessly detecting and recovering from failures in their plans early and proactively,

before they become catastrophic later on. We argue that monitoring the online ex-

ecution of plans is crucial for achieving robustness, and hence for building robots

that seem to act intelligently in their environment. Chapter 2 introduces the core

technical contribution of this thesis, which is a set of algorithms for automatically

extracting causal rationale from temporally flexible plans. This information is used

in a set of online plan execution algorithms to detect unexpected disturbances that

jeopardize future actions in the plan with very low latency. In Chapter 3, we intro-

duce a system that re-plans once these disturbances are detected in order to meet a

user’s high-level goals. We combine the merits of temporal generative planning with

plan execution and monitoring. In Chapter 4, we demonstrate an implementation of

a robot that is capable of achieving robustness in the face of unexpected disturbances

15



Figure 1-1: Our voice interactive robot using the technologies we develop. The left
shows the actual robot in our testbed, a block stacking WAM arm. At right is our
simulation environment. The user can talk to this robot and give it goals verbally,
which it carries out in the face of disturbances and moving blocks. When something
unexpected happens, the robot explains the cause of failure and why it is a problem
with respect to its current plan.

while simultaneously interacting verbally with the user.

1.1 Robotics Scenario

We first briefly introduce the end result of the system we develop - a voice interactive

robot capable of robustly meeting user goals within the context of block stacking.

Please see Figure 1-1. This system employs a task executive complete with execu-

tion monitoring and generative planning. A user is able to specify a desired block

configuration by verbally interacting with the robot. For example, a person may say

“Make pallet,” after which the robot will proceed to make the desired tower. Dis-

turbances about in this scenario - the robot may accidentally drop blocks, a human

may come and move blocks (either helping or hindering the plan), etc. The robot is

able to immediately detect all of these disturbances and produce new plans to correct

them and meet the users original goals. When one of these disturbances occurs and

replanning is required, the robot provides intuitive explanations for the problem with

such phrases as ”I can’t stack the pink block on the red block because the red block

isn’t free above.”
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This thesis describes the core components that make the above robot possible.

We briefly highlight this subcomponents in the following sections.

1.2 Plan Execution and Monitoring

In Chapter 2 of this thesis, we present Pike - a system for plan execution and monitor-

ing. Execution monitoring is crucial for developing robotic systems that can robustly

recover from disturbances. It is necessary to make use of observed data about the

world state in order to judge whether a plan being executed is evolving correctly or

not. The job of execution monitoring is to detect problems in a plan early, before

they escalate and compound to much larger problems later in the plan. By detecting

relevant disturbances early, we argue that robotic systems will have greater flexibility

in replanning and will thus be considerably more robust.

Our approach to constructing the Pike plan executive is to divide the task of

plan execution into two steps: 1.) that of temporal scheduling, dispatching, and

monitoring, and 2.) that of monitoring state constraints of the actions in the plan.

This thesis focuses mainly on the second point, and is what we refer to as execution

monitoring.

Our approach introduces two sets of algorithms: an offline set responsible for

extracting the cause or rationale behind actions in the plan (called causal links),

and an online set that is responsible for using this information to monitor relevant

conditions in the world during plan execution. A key novel contribution of this

thesis is the automatic extraction of sets of candidate causal links for plans with

temporal flexibility. Prior work has generally assumed causal links can be obtained

as a side effect of the planning process, or can be extracted from totally-ordered

plans ([29], [24], [20], [8], [19]). We wish however to provide a general framework

capable of extracting causal links from plans generated by any temporal planner,

and hence can make no such assumptions. Such a framework would be of use to the

planning community, as it would effectively allow any temporal generative planner to

be function as a continuous planning and execution system. We present the algorithms

17



for causal link extraction and monitoring in this chapter, as well as provide proofs

and correctness guarantees. We further provide empirical simulation results that show

very low latencies in detecting violated plans (around 20-80 milliseconds).

1.3 The TBurton Executive

Chapter 3 of this thesis introduces the TBurton executive, a system that combines

the plan execution proficiencies of Pike with a temporal generative planning algo-

rithm in order to achieve robustness with respect to user-specified goals in the face of

disturbances. Intuitively, the TBurton executive employs re-planning to chart out a

new course of action when the execution monitoring component of Pike signals that

a relevant disturbance has occurred that threatens the current plan. By replanning

at fast time-scales, we are capable of achieving robotic systems that are persistent at

reaching a user’s goal, and are successful under some mild assumptions.

1.4 Innovative Application: Voice-Interactive

Robotic Manufacturing

Chapter 4 of this thesis applies the ideas of the first two chapters and describes

the innovative application noted above. We demonstrate a robot, implemented in

hardware and in simulation, that is capable of robustly achieving user goals specified

at a high level and explaining any causes of failures, all within the limited context

of robotic manufacturing. This robotic system can be commanded verbally, and is

able to additionally explain the reason why a disturbance is relevant at the plan level.

This chapter describes in detail the key features and implementation of our robotic

system.
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Chapter 2

Plan Execution and Monitoring

Execution monitoring is the problem of verifying that a robotic system is executing

a task correctly, and signaling an error as early as possible should a disturbance be

detected. Classical planning deals only with the problem of generating high-level

plans for a system. However, the continuous planning and execution that is required

for deliberative, robust task execution requires an execution monitoring capability to

detect the unexpected.

Our approach to execution monitoring is based on the use of causal links. While

previous work has explored using causal links to generate plans ([24], [20]) and sub-

sequently using these planner-generated causal links for online monitoring ([29], [8],

[19]), our approach is novel in that it extracts sets of causal links from already-existing

least-commitment plans, allowing plans with temporal flexibility to be effectively mon-

itored independent of the planning algorithm used to generate them. A key contri-

bution of this thesis is the set of algorithms that automatically extract causal links

from temporally flexible plans. By working with least-commitment plans that include

temporal flexibility as opposed to inflexible points with rigid time requirements, our

robotic systems will be less brittle and more realistic. An additional benefit of our

approach is that it is independent of the planning algorithm that produced the plans,

and hence can be easily plugged into related systems that use different planning

algorithms.

This chapter develops a plan executive for executing and monitoring temporal
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plans on robotic system. Our main focus will be on the execution monitoring com-

ponent. We hence begin by motivating the need for execution monitoring in real

robotic systems. We then proceed to introduce certain necessary prerequisites to the

plan execution problem - namely action planning and temporal plans - allowing us

to formalize a problem statement. Then, we proceed to describe our algorithms for

plan execution and monitoring, which consist of an offline causal link preprocessing

phase as well as an online dispatching and monitoring phase. Proofs of correctness are

included, as well as a theoretical asymptotic performance analysis. We then conclude

this chapter with experimental test results.

2.1 Motivation and Goals

In this section, we motivate the need for and importance of execution monitoring.

We begin by discussing some of the key assumptions used in classical planning, and

discuss why some of these assumptions are not realistic for real-world task execution.

2.1.1 Assumptions used in Classical Planning

Task execution is very different in a highly-dynamic environment than in the clean,

deterministic setting assumed in classical planning. In particular, traditional classical

planners make several implicit assumptions about how their plans will be executed

that do not necessarily hold in the real world:

• Sole agent of change. Classical planners consider only static environments,

where the environment changes only through deliberate actions by a single

agent. In other words, properties of the environment only change when they

are modified by the agent. However, this assumption does not hold in many

real-world situations, particularly those that are dynamic, uncertain, or un-

controllable. Properties and objects in these sorts of environments can change

spontaneously and without warning, possibly in disruptive ways that can cause

a preconceived plan to fail.
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Figure 2-1: An idealized rendition of the classic BlocksWorld domain. The robotic
gripper can move around to pick up and put down a single block at a time. The goal
here is to stack the pyramid ”1, 2, 3” on the ground. In this depiction, there are no
sources of uncertainty, and similarly there will be no disturbances to the system. This
is representative of the nominal environment used by traditional classical planners.

• Instantaneous actions and state transitions. Traditional classical planning

has no notion of time. Actions are assumed to have no duration, and discrete

state transitions happen instantly.

We now present an example scenario that makes use of these assumptions. Con-

sider the well-known BlocksWorld domain, illustrated in Figure 2-1. In this do-

main, a robot with a gripper is tasked with manipulating blocks. The gripper is

capable of picking up blocks that are either on the ground or on top of other blocks,

and also putting blocks down (again, either on the ground or on top of other blocks).

In the illustration, the robot’s goal is to create a pyramidal stack. A typical classical

planner will generate a plan like: 1.) Pick up Block 2, 2.) Stack Block 2 on top of

Block 3, 3.) Pick up Block 1 from the ground, 4.) Stack Block 1 on top of Block 2.

The BlocksWorld domain makes the assumptions noted above, which do not

necessarily hold for real-world task execution. Specifically, BlocksWorld assumes

a completely deterministic environment in which the robot is the sole agent of change.

No blocks will spontaneously move by themselves or fall over. There are no unmodeled

agents that may move blocks (either malicious or benevolent) without the planner
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Figure 2-2: A real-world and hence much “messier” implementation of the
BlocksWorld domain. Many of the assumptions made by classical planners about
the world in which their tasks will execute are not valid. For example, actions may
fail, blocks may fall, additional autonomous agents (either malicious or benevolent)
may unexpectedly change the world state, etc.

telling them to do so. Traditional classical planners assume that, should the robotic

agent place Block 2 on top of Block 3, that it will stay there indefinitely unless the

robot proceeds to manipulate it in the future.

While very useful from a planning perspective, these assumptions are not valid

in real-world execution environments. For example, consider the much more realistic

implementation of BlocksWorld depicted in Figure 2-2. When executing in the

real world with faulty hardware and uncertain sensor data, it is quite possible (and

even likely) that actions will fail. A command generated by the planner such as

“stack Block 2 on top of Block 3” may very well result in any of the following actually

happening: the robot placing Block 2 on top of Block 3 (normal behavior), the robot

placing Block 2 on on the edge of Block 3 immediately after which it falls off, the

robot accidentally dropping Block 2 in transit, the robot accidentally knocking over

Block 3’s tower while approaching with Block 2, a small nearby toddler grabbing the
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block from the robot’s gripper, or any number of other unexpected activities. In short,

the real world can be characterized by the existence of unexpected and oftentimes

unmodeled disturbances.

The clean world for which classical planners generate their plans is perfectly reli-

able and deterministic. Real world robotic systems that make these assumptions are

however often somewhat brittle in practice; it is usually difficult to guarantee the ac-

tual outcome of dispatching a command to a robot. Systems that operate open-loop

without any feedback often succeed only in nominal environments where no distur-

bances occur. Continuing with the example above, suppose that the action “stack

block B on top of block C” fails because the robot accidentally drops the block on

the ground while in transit. If the system were to naively continue on to the next

step in the plan regardless of the failure, the robot would pick up Block 1 and try

to stack it on Block 2 (which is on the ground). This action will also therefore fail,

since Block 2 is not where the open-loop task executive expected it to be. Failures

will compound; a single problem can cascade and cause the entire plan to fail.

Therefore, in dynamic and unstructured environments, it is necessary to detect

in real-time those disturbances which will prevent an executing task from completing

successfully. Once these disturbances are detected, a high-level planner can subse-

quently resolve the issue by generating a contingency that circumvents the exception

condition. This is the goal of execution monitoring - to detect in real time when

relevant disturbances to the plan occur. Execution monitoring is therefore necessary

for building robotic systems that operate robustly in practice.

2.1.2 Need for Immediate Fault Detection

In the previous section, we motivated the need for monitoring by noting some of

the assumptions made by classical planners and describing how they do not hold in

systems operating in the world. Specifically, the robot is often not the sole agent of

change since disturbances can occur spontaneously outside of the robot’s control. In

this section, we aim to motivate the need to detect these disturbances as early as

possible, as opposed to lazily detecting them later.
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Intuitively, the key idea of this section is that by detecting a potential problem

early, we maximize our flexibility in replanning. There will likely be more contingency

options available in this case. On the other hand, if we wait until later, we may waste

time taking remedial actions that could have been avoided had the problem been

dealt with earlier, even though the disturbances may have been simpler to detect.

Consider the two plausible monitoring schemes, both of which check to see if an

action if capable of running [25]:

• Action Monitoring. Immediately before executing each action in a plan,

check to make sure that the action can run correctly. If it can, run it. If not,

make a new plan.

• Execution Monitoring. Whenever something changes in the world, check to

see if it will make any action later in the plan unable to run. If not, then ignore

this change. If so, then make a new plan.

Though both of the schemes appear similar at first glance and will prevent a

system from executing invalid actions (such as stacking Block 1 on Block 2 if block

isn’t there), they result in qualitatively different behavior. Action monitoring lazily

checks that the preconditions necessary for each action to run only immediately before

running that action, whereas execution monitoring looks deep into the plan whenever

anything in the world changes to see if it will be a problem later on. To clearly

illustrate the difference between these two strategies and demonstrate why immediate

detection is crucial, we once again embrace our beloved block stacking robot as an

example. This time, the robot is asked,

“Friendly robot, could you please build a pyramid in 20 seconds?”

The results of this timed-goal are illustrated in Figure 2-3 for Action Monitoring

and 2-4 for Execution Monitoring, as well as summarized in 2-5.

The robot begins by stacking Block 2 on top of Block 3 in both monitoring cases.

However, at time t = 6.5 we introduce an unexpected disturbance into the system.

Block 2 falls off of Block 3 and lands nearby on the ground. This is where Action
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Figure 2-3: Action Monitoring. The block stacking robot using action monitoring
instead of execution monitoring. The robot lazily checks if actions are valid only
right before executing them. The robot begins at t = 0, tasked with stacking the
three blocks into a pyramid. It continues successfully through t = 6, completing
Block 2. However at t = 6.5, a disturbance is introduced. The robot doesn’t care
however because the disturbance isn’t a problem yet; Block 2 doesn’t affect the next
action (which is to pick up Block 1). Hence the robot continues on through t = 9,
obliviously picking up Block 1. It does not care about the problem until t = 11, when
it is about to put Block 1 on top of where Block 2 used to be, but Block 2 is not
present. Hence, to recover from the problem, the robot must take remedial action
and put down the block it’s holding (t = 14) before continuing. It succesfully puts
Block 2 back on top of Block 3 by t = 20 and finishes the task at t = 26.
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Figure 2-4: Execution Monitoring. Our beloved block-stacking robot is now using
execution monitoring instead of action monitoring. It notices relevant disturbances
immediately without waiting until the disturbance actually becomes a problem. The
bot begins at t = 0, and accomplishes stacking Block 2 on top of Block 3 by time t = 6.
Again at t = 6.5, a disturbance is introduced. With execution monitoring, the robot
notices the problem immediately (as opposed to execution monitoring, where a fault
isn’t detected until a few seconds later). Realizing that the disturbance will threaten
a future step in the plan (namely, stacking Block 1), the robot takes corrective action
now while it is still easy. At t = 9.5, our bot picks up fallen Block 2 and has restacked
it on Block 3 by t = 12.5. It’s clear sailing from there to the goal, which is completed
at t = 18.5, 7.5 seconds earlier than execution monitoring’s completion time.
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Figure 2-5: A performance comparison of action monitoring versus execution moni-
toring for a task with a disturbance. Each red, move-to or move-above action takes
2 seconds, and the blue gripper actions each take 1 second. The red dotted line de-
notes the disturbance of moving Block 2 to the ground. Action monitoring results
in suboptimal execution, which are shown in the gray shaded region between the
red and orange dotted lines. Execution monitoring completely avoids these unnces-
sary actions, and hence is able to finish 7.5 seconds faster and completely the goal
successfully.

Monitoring and Execution Monitoring diverge. Action monitoring does not care about

this disturbance at the time when it happens, because it is engrossed with picking

up Block 1 (of which the fallen Block 2 is completely irrelevant). It is not until later

(namely, t = 11 when the bot tries to put the now-acquired Block 1 on top of Block

2) that it starts caring about the fallen block. By this point however, the situation

is more complicated and the available contingency options are more costly. Since the

bot is currently holding Block 1, it has to put this down before it can continue on

and re-stack Block 2 on top of Block 3. It finishes the pyramid in 26 seconds, thereby

not meeting the user’s temporal requirement.

With execution monitoring however, the robot is able to detect immediately that

the fallen Block 2 is a problem. Instead of postponing resolution, the robot selects a

less-costly contingency option since it is not burdened with holding a block as was the

case with Action Monitoring. The robot is able to immediately correct the problem

by restacking Block 2 onto Block 3, and then proceeding to stack Block 1 on top. As
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a direct result of it’s immediate response and better contingency selection, the robot

with execution monitoring can complete the task in 18.5 seconds, meeting the user’s

temporal requirement. A detailed comparison of the actions taken by the robot in

each case is shown in Figure 2-5.

The crucial idea we wish to illustrate is that proactive approaches that detect

and resolve problems early maximize available contingency options and can allow

robots to meet goal constraints that may otherwise be unachievable if lazy monitoring

schemes are used. The remainder of this chapter is devoted to developing an execution

monitoring system that uses this proactive approach to detecting disturbances.

2.1.3 Goals for our Execution Monitoring System

The previous sections motivated the need for fast execution monitoring. Here, we

boil down the salient features from these examples into a set of desired capabilities

for our execution monitoring system:

1. Detect disturbances as early as possible. By detecting problems early, we

maximize the chance of finding a new plan that resolves the issues. Detecting

disturbances before they actually inhibit a robot from proceeding in its task

may allow for more efficient contingency plans to be found.

2. Detect only those disturbances which are relevant. The environments in

which robots operate is oftentimes very large and complex. It is therefore very

useful to have guidance regarding which properties in the world are relevant

to a given robotic plan. This can allow robots with limited sensing resources

to focus their efforts most effectively by monitoring only properties which are

relevant to the system.

3. Operate on plans that include flexibility. As noted earlier, it is very

beneficial for generated plans to contain built-in flexibility. We therefore require

that our execution monitor be able to operate with temporally flexible plans.
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2.2 Prior Work

The basis for many of the ideas presented in this thesis come from prior work. In

this section, we briefly describe some of these past ideas. We additionally note other

contributions to the field of plan execution and monitoring that have a degree of

similarity to this thesis, noting our key similarities and differences.

Perhaps the earliest robotic system to extensively use execution monitoring was

the PLANEX system, which controlled a robot named Shakey at the Stanford Re-

search Institute [10]. Their STRIPS-based system used the notion of triangle tables

to monitor the execution of totally-ordered plans online as they were executing. A

triangle table is a tabular array generated during planning that captures information

about the the state of the world at different points during execution. During execu-

tion, the actual state of the world can be cross-referenced to this table, allowing the

system to detect unexpected operator failures or serendipitous conditions in which

certain actions in the plan may no longer be necessary and can be skipped. The

Shakey robot used integrated planning and monitoring to alter the current plan such

that the shortest executable action to reach the goal would be selected for execution.

If no suitable action can be found, then replanning occurs. The execution monitoring

system discussed in this thesis is similar to that used by PLANEX in that it is capa-

ble of discerning which world state changes are relevant to the world. Our approach

is different in that we consider temporally flexible plans rather than totally ordered

plans with no notion of time.

The SNLP planning system makes extensive use of causal links during the STRIPS

planning process [20]. SNLP is a nonlinear planner, meaning that it reasons over

partially ordered plans rather than totally ordered plans. SNLP is based off of the

NONLIN planner ([28]), and solves the planning problem using causal links. SNLP

deals with threats to causal links by adding ordering constraints to the partially-

ordered plan being constructed. Much of the ground work for causal links in this

thesis builds upon the definitions presented in [20]. Another planning algorithm

that also makes use of causal links during the planning process is UCPOP [24]. The
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UCPOP planner is able to plan over a superset of STRIPS with universally quanitifed

preconditions, effects, and goals. While neither of these planners can be considered

executives since they do not address plan execution, we mention them nonetheless

due to their use of causal links.

Seminal work regarding the online dispatch of temporally-flexible plans is pre-

sented in [22]. This thesis makes extensive use of these techniques, and builds off of

them to additionally provide facilities for state monitoring in addition to temporal

monitoring. The approach taken in [22] is to execute a temporal plan by first mak-

ing explicit all implicit temporal constraints via running an all-pairs shortest path

algorithm. Subsequently, unnecessary constraints are pruned, leaving a minimal dis-

patchable network formulation that can be dispatched quickly without traversing the

entire network.

Veloso et al. introduce the notion of rationale-based monitors, which are similar

in spirit to the causal links used in this thesis for execution monitoring ([29]). Like

causal links, rationale-based monitors capture a set of conditions about the world that

are relevant to plan success, thereby allowing spurious or irrelevant conditions and

changes in the world to be ignored. The approach taken in [29] generates rationale-

based monitors during the planning process, which is unified with execution process,

to construct a continuous planning and execution system. By extracting rationale-

based monitors not only for plan conditions but also for alternative planning options

that were not chosen during the planning process, plans may be quickly updated when

rationale-based monitors fire. For example, it may be possible to quickly change focus

and use an originally-not-chosen alternative should conditions become favorable as

dictated by fired rationale-based monitors. This thesis is similar to [29] in that we

also monitor only relevant conditions in the plans, with the end goal of providing a

general framework for a continuous planning and execution system. Unlike that of

[29], our approach is specifically interested in the explicit model of time in temporal

plans and in the extraction of causal links independent of the planning algorithm

used.

The Remote Agent system provides an executive capable of generating and mon-
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itoring temporal plans via model-based reasoning ([23]). It was implemented and

tested on NASA’s Deep Space One. Remote Agent employs a mode identification

and reconfiguration unit called Livingston that was responsible for monitoring the

state of the spacecraft by processing low-level sensor information, and reconfiguring

the spacecraft should a fault be detected.

Most prior work has considered the problem of execution monitoring plans in

order to ensure that they execute correctly. Some however have also considered the

problem of monitoring plan optimality [14]. This work brings up the interesting idea

that, although many planning algorithms generate optimal plans, they in practice

run suboptimally when dispatched in the real world. It is therefore desirable to

annotate plans with conditions that can be continuously checked during execution

time to query plan optimality. Since disturbances that are irrelevant with respect to

optimality need not cause alarm, replanning can be minimized while simultaneously

ensuring plan optimality.

The Drake system is capable of efficiently executing temporal plans with choice

[3]. Temporal plans are compiled offline via labeled distance graphs. These labeled

distance graphs can be dispatched efficiently online, and provide robustness at quickly

making choices in the plan based on monitoring the results of the monitored sched-

ule during execution. This can be viewed as a type of execution monitoring, as the

result of sensing timing events causes Drake to react quickly and choose a differ-

ent path through the plan. The Drake system is primarily concerned with making

choices between contingency options with low latency at run time based on temporal

constraints, not based on state constraints.

Execution monitoring has also been used to dynamically re-order actions in partially-

ordered plans [21]. This approach constructs a policy via a plan regression that en-

ables actions in these partially-ordered plans to be re-ordered based on state and

action constraints, thereby improving robustness with respect to the monitoring of

sequentially ordered plans. The work in this thesis is primarily concerned with moni-

toring temporal plans, which can be considered a super set of partially ordered plans.

Several past approaches have examined various forms of temporal logic for use in
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execution monitoring systems. In [1], a temporal logic called Eagle is developed that is

a superset of linear temporal logic. Their system is demonstrated on an experimental

interplanetary rover in a scenario involving the detection of temporal inconsistencies in

durative-action plans expressed with linear temporal logic. Our problem formulation

differs in that we are also concerned with monitoring state constraints in addition to

temporal constraints. These state constraints play a central role in the extraction of

our causal links.

Another interesting prior approach is based on a formalism called TAL, or Tempo-

ral Action Logic ([8], [18]). This work associates monitor conditions with each action,

allowing progress to be monitored. The expressive representation used allows such

operator-specific monitors as “when executing pick-up-box, the box must be picked

up within 2 seconds and cannot be dropped until the action completes.” Granularity

within each action is therefore achieved. Conditions can be constructed that monitor

preconditions, prevail conditions (very similar to our maintenance conditions), effects,

temporal constraints with set-bounded time invervals, and causal links between ac-

tions. Our works differ however in the manner in which these monitor conditions are

generated. The approach taken in ([8], [18]) assumes that these conditions are gen-

erated automatically from the planning process (namely, the TALPlanner presented

must generate all causal link monitor conditions). We however take a different ap-

proach that is independent of the planner used, focusing on modularity and placing

special effort on the problem of extracting causal links from an existing plan.

Another system in which causal links are generated during the planning process is

presented in ([19]). This work focuses on developing a temporal executive capable of

modifying plans online by adding or removing causal links based on sensory informa-

tion measuring resources and world states. Their approach uses a similar temporal

plan representation, namely the STN ([5]). Our approaches differ in the manner of

generating causal links, however. The work in ([19]) seems to obtain causal links as a

consequence of the planning process, whereas we consider the problem of extracting

causal links from plans independent of the planner used.

The approach taken in [2] develops the Quantitative Temporal Bayesian Network
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(QTBN), a structure which can be used for execution monitoring of temporal plans

in uncertain environments. Like the approaches presented above, [2] seems to ob-

tain causal links from the planning process and is not concerned with the details of

extracting them automatically from an existing plan.

The work in [27] is concerned with the monitoring of temporal plans encoded in a

language called Golog. Should the execution monitor determine that the extension to

the current execution trace is no longer feasible, the planner may backtrack and make

different choices in the restartable plan. Our formulation of the execution monitoring

problem differs greatly in that [27] does not seem to consider set-bounded duration

temporal constraints, which is central to our set of algorithms.

2.3 Plan Executive Problem Statement

In this section, we provide an intuitive overview of the core technical problem solved

in this thesis. Specifically, we will provide textual descriptions of a plan executive and

an execution monitor, as well as plain-text and intuitive descriptions of the problems

they solve. This section is intended to provide the broad, high-level overview of

how different subcomponents fit together in this thesis. In the sections following

this, we will define each of these subcomponents more formally and in order, thereby

building up the requisites to present a formal definition of the plan executive and

execution monitor in terms of these formalisms. These formal problem statements

will be presented at the end of this section, once the requisites have been defined

rigorously. We begin, however, by providing the more intuitive problem statements

so that the formalisms that follow can be placed into context.

Intuitively, a plan executive is a system that is responsible for executing a plan in a

robotic system. For plans with temporal constraints, plan execution entails two main

sub problems. First, specific timing values for each action must be chosen and then

the actions must be dispatched at those times. Second, the plan must be continually

monitored to ensure that it is evolving properly. This task is of course execution

monitoring.
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Figure 2-6: A high level overview of Pike, consisting of the dispatcher and execution
monitor. The scheduler and dispatcher are loosely responsible for handing temporal
constraints, and the execution monitor is responsible for handling state constraints.

Since plan execution and execution monitoring are so tightly intertwined and must

both be considered when constructing a robust robotic system, we present the problem

statement for a plan executive (and not just the execution monitor) in this section.

In fact, we will regard the execution monitor as subroutine of the plan executive.

We thus introduce Pike, a plan executive capable of executing and monitoring

temporal plans. Pike must be given as input a temporal plan, a description of actions

in the plan, and the initial state and user specified goals. While executing the plan,

Pike must also be given observations of the world in order to monitor the plan’s

progress. As its output, Pike must dispatch each of the activities in the plan at

their proper times, and also monitor for progress and signal an error immediately if

a disturbance is detected while executing the plan.

Pike is divided into two major subcomponents: 1.) a scheduler and dispatcher

responsible for executing actions at their proper times, and 2.) the execution monitor

that ensures that the state of the world is evolving as expected throughout the course

of execution. Please see Figure 2-6 for an architecture diagram of Pike.

We will now elaborate on the inputs and outputs to Pike, starting with a descrip-

tion of a temporal plan. A temporal plan can be thought of as a sequence of actions

to be carried out by a robotic system with temporal constraints that govern how long

and when those actions may occur. It is key to note that these temporal plans are
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flexible in terms of their timing constraints, as this temporal flexibility will play a key

role in the formulation of our execution monitoring system. An example plan may

contain constraints that can can be interpreted loosely as “2 to 3 minutes after the

last action, move the red block on top of the blue block and take between 10 and 40

seconds to do so.” A set of actions of this nature define a plan, and outline a way for

the robot to achieve some goal given the current state of the world. We assume that

we are given such a plan and do not consider the problem of generating plans in this

thesis.

In addition to the temporal plan, Pike must also be given a description of the

actions in the plan. This description must define requirements for each of the actions

to run (preconditions), requirements that must hold true while the action is in progress

(maintenance conditions), and changes to the world that occur as a direct result of

executing the action (effects). As an example, let us consider the “pick up block from

ground” for a robot. Preconditions for this include such requirements as the block

being currently on the ground, the robot’s gripper not holding anything else, and

the block not having anything stacked on top of it that would preclude the robot’s

ability to pick up. All of these conditions must hold true in order for the “pick up

block from ground” action to execute properly. A condition that must be maintained

throughout the course of the action is that the robot must be able to reach the block

at all times. If this is violated in the middle of the action, the action will fail. Finally,

the “pick up block from ground” action makes several changes to the state of the

world. After it finishes executing, the robot should be holding the block and the

block should no longer be on the ground. The execution monitor must be given

such operator descriptions of each action’s preconditions, maintenance conditions,

and effects in a generic way that can be applied to different blocks and objects in the

world. Intuitively, the execution monitor needs this in order to back-infer potential

problems that go wrong in the plan. For example, if some disturbance in the world

makes it impossible for the block to ever be on the ground, the execution monitor

must immediately infer that the “pick up block from ground” action will no longer

be able to execute properly.
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Pike must also be given the initial state of the world and the desired goal conditions

to be satisfied from which the plan was generated. The initial state of the world is

a complete set of facts that describe the state of the world - if the gripper is empty,

which blocks are on the ground and which blocks are on other blocks, etc. The

goal conditions need not specify the complete state of the world, but only provide

constraints that the user desires to be true after execution (ex., “the red block is on

top of the blue block”). The temporal plan provided to the execution monitor must

achieve this goal starting from the initial conditions. That is, the sequence of actions

specified by the plan must cause the state of the world to evolve in such a way that,

by its end, the goal conditions are satisfied.

Finally, Pike must be given a continuous stream of state observations that describe

the world at different points in time. This is crucial for the execution monitor to detect

when disturbances occur.

Once the Pike plan executive is provided with all of these inputs, it proceeds to

execute the plan by scheduling times for all of the activities in the plan (satisfying all

temporal constraints), dispatching the activities at their proper times, and monitoring

the execution for problems. Should it be determine during the midst of execution that

the plan will no longer be able to succeed, Pike must immediately signal failure.

We can thus intuitively define the Pike problem statement as follows. Pike takes

in the following inputs:

• A temporal plan containing actions to be executed,

• A set of operator descriptions describing the preconditions, maintenance condi-

tions, and effects of the actions in the plan,

• The initial world state and the goal from which the plan was generated, and

• A continuous stream of world state observations which define the observed state

in the present and past.

Pike generates the following outputs:
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• Upon returning: a boolean value indicating whether the plan was executed

successfully or if execution was terminated early because a problem occurred

• Upon returning: if the plan did not complete successfully, a conflict that illus-

trates the cause of failure

• During execution: Pike must dispatch all of the actions in the plan at the

proper times so as to satisfy the temporal requirements of the plan and the

preconditions/maintenance conditions of each action

• During execution: Pike must return either as soon as the plan finishes executing,

or as soon as a relevant disturbance that threatens the plan is detected.

We formalize each of the above concepts in the following sections. Specifically, we

discuss actions, temporal plans, the execution of temporal plans, and disturbances in

the world in much greater detail. A specific problem statement rewritten in terms of

formalisms for these concepts is provided afterwards. The intent of the this current

section to place each of the following formalisms into context with respect to the

problem we are solving, namely plan execution and monitoring.

2.3.1 Action Planning

In this section, we describe intuitively and formally the notion of actions in a plan.

Actions are fundamental to execution monitoring and plan execution, as they provide

the basis for conditions which must be monitored online. We begin by reviewing prior

work in defining action models for robotic systems. We then select one of these models

and formalize it in this section, providing the groundwork for future sections of this

thesis.

STRIPS (Stanford Research Institute Problem Solver) planning was introduced

in [11], and defines an action to be a name, a set of prerequisite facts that must be

true for the action to run, as well as a set of facts that become true (the add list) and

a set of facts that are no longer true (the delete list) after the action is run. Together,

the add and delete lists specify changes to the world state that result from executing
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the action. Given a set of initial facts about the world and a desired set of facts

about the goal state, the STRIPS planning task is then to find an ordered sequence

of actions such that the prerequisites of each action are true at the time the action is

run, and that the actions modify the true facts starting from the given initial facts

to take us to the goal state. Any such sequence of actions that is a solution to the

STRIPs planning problem is called a complete plan [20].

Over the years, a number of additional planning domain languages have been

developed. One of these, the Planning Domain Definition Language (or PDDL for

short) is the one that we embrace in this thesis [13]. PDDL is expressed in a LISP-

like syntax and adds a number of features to STRIPS, including typing, numerical

fluents, time, and more. In this thesis, we focus on its semantics that are most similar

in spirit to STRIPS with the addition of durative actions. From now on in this thesis,

whenever we refer to PDDL, we refer to the subset of PDDL containing STRIPS and

durative actions. Like STRIPS, PDDL allows actions to be specified in terms of

their preconditions and effects. PDDL adds the notion that each action may have a

range of possible durations. Additionally, we also consider maintenance conditions,

or conditions that must hold true throughout the duration of the action. These

preconditions, maintenance conditions, and effects are expressed in terms of objects,

which are symbolic constants in PDDL that represent real-world objects. Examples

of PDDL objects may be RedBlock or Robot1.

We now define the subset of PDDL that is relevant to this thesis. We begin with

the PDDL predicate, which intuitively represents some property about the world.

Definition 2.3.1 (PDDL Predicate). A PDDL predicate is denoted by

(property arg1 arg2 ... )

where property identifies the name of the PDDL predicate, and all of the subsequent

parameters are known as arguments. The arguments may either all be variables, in

which case the PDDL predicate is referred to as ungrounded or uninstantiated, or

the arguments may all refer to specific objects in the world, in which case the PDDL
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predicate is referred to as grounded or instantiated.

Examples of ungrounded PDDL predicates that are relevant to our block-stacking

domain include (on ?b1 ?b2 ) and (empty-gripper ?r ). The arguments to these

predicates are variables, which we denote with a question mark prefix. Two possible

instantiations of these predicates are (on RedBlock BlueBlock ) and (empty-gripper

Robot1 ), respectively. These PDDL predicates are grounded because their arguments

are not variables; they are objects representing the real world. Collectively, the set

of all grounded PDDL predicates represent the state of the world.

Definition 2.3.2. The world state at some time is the set of all grounded PDDL

predicates in the world that hold true.

Now that we have defined properties of the world expressed in PDDL, we con-

tinue by describing how the world changes. PDDL actions modify the world state

and are instantiated from PDDL operator schemas. We first begin by describing a

PDDL Operator Schema, which intuitively represents an abstract action before it is

instantiated with specific objects (i.e., akin to how “move” is different than “move

this block”):

Definition 2.3.3 (PDDL Operator Schema). A PDDL operator schema O, also

known as an ungrounded PDDL operator or an uninstantiated PDDL operator, is a

tuple

O = 〈name,X ,Precond(X ),Maintenance(X ),Effects(X )〉

where name is a string representing the name for this operator, X is a set of variables

(later, each variable will be bound to a specific object in the world to ground this

operator), Precond(X ) is a conjunction of ungrounded predicates over the vari-

ables in X representing the preconditions of the operator, Maintenance(X ) is a

conjunction of ungrounded predicates over the variables in X representing conditions

that must hold true while the operator is being executed, and Effects(X ) is a con-

junction of literals of ungrounded predicates over the variables in X representing the

modifications to the world that result from executing this operator. Note that since
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(:durative-action pick-up-block-from-ground

:parameters (?r - robot ?t - block)

:duration (and (>= ?duration 10) (<= ?duration 30))

:condition (and (at start (clear-above ?t))

(at start (empty-gripper ?r))

(over all (can-reach ?r ?t))

(at start (on-ground ?t)))

:effect (and (at end (not (empty-gripper ?r)))

(at end (not (on-ground ?t)))

(at end (holding ?r ?t))

(at end (not (clear-above ?t))))

Figure 2-7: An example of a PDDL version 2.1 operator schema representing the
“pick-up-block-from-ground” action. Note precondition and effect lists, which when
bound with values specified in the parameters list, yield a grounded or instantiated
PDDL operator. PDDL uses a LISP-like syntax.

conjunctions of literals (i.e., conjunctions of a or ¬a where a is a PDDL predicate)

are used, Effects(X ) describes both the add and delete lists from STRIPS.

An example of a PDDL operator schema is shown in Figure 2-7 for the generic

action of picking up a block from the ground. The parameters in a PDDL operator

schema are abstract variables that can be bound to specific objects in the world. A

PDDL operator schema conceptually defines a set of possible actions that can be

produced, and a binding specifies to which specific objects in the world the action

applies. Since many different bindings are possible, an operator schema represents

many different possible specific actions. We can produce a specific PDDL action

by substituting the binding assignments into an operator schema’s precondition and

effects predicates. This is a process known as grounding or instantiation, and yields

a PDDL action as a result.

We formally define a binding and PDDL action as follows:

Definition 2.3.4 (Binding). The binding of an ungrounded PDDL operator O refers

to making a full assignment to each of the variables in the parameters X of O.
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Formally, a binding is a set of pairs {(xi, oi), ...} for each xi ∈ X representing xi = oi,

where oi is an object in the world.

Definition 2.3.5 (PDDL Action). A PDDL action α, other known as a grounded

PDDL operator or an instantiated PDDL operator, is a tuple

α = 〈name,Preconds,Maintenance,Effects〉

where name is the name of the PDDL action (same as the operator from which it

is derived), Preconds is a set of grounded PDDL predicates representing a con-

junction of preconditions for the action, Maintenance is a set of grounded PDDL

predicates representing a conjunction of maintenance conditions that must hold true

throughout the duration of the operator, and Effects is a conjunction of literals of

grounded PDDL predicates representing the effects of each action. When we refer to

the conditions of a PDDL action, we mean all of its preconditions and maintenance

conditions (namely Preconds ∪Maintenance).

Please note that, unlike an ungrounded PDDL operator, a PDDL action’s precon-

ditions and effects are no longer dependent on the operator’s parameters. Rather, they

are grounded to specific objects in the world. For example, taking again the general

PDDL operator schema in Figure 2-7 and the binding {(?r, Robot1 ), (?t, RedBlock )},

we produce a specific PDDL action, referred to in LISP-like syntax, (pick-up-block-

from-ground Robot1 RedBlock ). This PDDL action has the preconditions

(and (clear-above RedBlock)

(empty-gripper Robot1)

(can-reach Robot1 RedBlock)

(on-ground RedBlock))

and the effects

(and (not (empty-gripper Robot1))

(not (on-ground RedBlock))
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(holding Robot1 RedBlock1)

(not (clear-above RedBlock1))))

The notion of PDDL operator schemas and actions are central to this thesis.

Recall that we mentioned earlier that Pike must take as input a description of each

action in the plan. These descriptions are PDDL operator schemas.

2.3.2 Temporal Plans

Now that we have defined actions formally, we proceed to piece them together (along

with timing information) to form plans. Pike takes these plans as input, and is

responsible for executing and monitoring them throughout the course of execution.

Many classical planners consider a plan to be an ordered sequence of actions

which, when carried out starting at some fixed world state, will yield a given desired

state. For example, a totally or partially ordered sequence of PDDL actions would

be considered a plan. In this section, we discuss an augmentation to these classical

plans that includes an explicit notion of time and flexibility. Intuitively, we associate

a flexible start time and duration with each action in the plan.

The techniques in this section are based on previous work in formulating temporal

constraint networks. The general Temporal Constraint Network (TCN) is formulated

in [5], and is additionally simplified into the Simple Temporal Network (STN). These

approaches associate set-bounded binary constraints between nodes in a graph called

events, each of which represents a specific point in time.

Intuitively, a temporal plan is a set of actions to which temporal constraints have

been applied. These timing requirements are imposed over events in the plan, which

represent time points such as the start or finish of executable actions (see Figure

2-8). We use simple temporal constraints to represent our time constraints for their

intuitive nature as well as for their balance between expressiveness and computational

tractability ([5]). A simple temporal constraint specifies a lower bound and upper

bound duration on the time difference between two events. For example, we could

specify that the beginning of a “start cooking dinner” event must occur between
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e3e2e1

estar t e5

e4
pickUpBall()[2, 10]moveToBall()[3, 40]

[0, 45]

Figure 2-8: A temporal plan can be interpreted visually as a graph. The circular
vertices represents events e ∈ E . Directional arcs connecting vertices contain instan-
tiated actions as well as temporal constraints in the form [lb, ub]. Arcs without labels
have no actions, and default to a temporal constraint of [0, 0] (the two events occur
at exactly the same time).

60 and 120 seconds after a “finish finding ingredients” event. We define the simple

temporal constraint as follows:

Definition 2.3.6 (Simple Temporal Constraint). A simple temporal constraint rep-

resents a set-bounded duration between a pair of events. Formally, a simple temporal

constraint c ∈ C is a tuple 〈es, ef , lb, ub〉 where es, ef ∈ E , and lb (lowerbound) and

ub (upperbound) are values in R such that ub ≥ lb. The meaning of the constraint is

that lb ≤ tef − tes ≤ ub.

We are now equipped to define the temporal plan:

Definition 2.3.7 (Temporal Plan). A temporal plan P is a tuple 〈E , C,A〉, such that:

• E is a set of events. Each event e ∈ E is associated with a specific point in time

te ∈ R. Additionally, there is a distinguished event estart that represents the

first event and for which testart = 0.

• C is a set of simple temporal constraints over the time points in E .

• A is a set of actions in the plan.

The definition of a temporal plan refers to actions, which we define below. Intu-

itively, an action specifies a PDDL action (i.e., an instantiated predicate) as well as

a start event and end event from the plan that constrain the duration of the action.

43



Definition 2.3.8 (Action). Given a plan P = 〈E , C,A〉, an action a ∈ A is a tuple

〈α, es, ef〉 where α is a PDDL action (i.e., an instantiated PDDL operator) and

es, ef ∈ E . The start time of a is tes , or the time of event es, and the finish time of

a is tef . The duration of a is therefore tef - tes and, we constraint this to be strictly

positive. In other words, tef − tes > 0.

It is critical to note that these plans are least-commitment in the temporal sense.

By allowing ranges in the durations between events, a dynamic dispatcher is capable of

deferring commitment to a specific schedule until the latest point, thereby maximizing

its flexibility.

2.3.3 Execution of Temporal Plans

Now that we have introduced temporal plans and PDDL actions, we proceed to

describe the execution of these plans. We begin by defining the notion of an execution

trace and a schedule for a temporal plan. We then proceed to describe a method

for evaluating the preconditions and maintenance conditions of actions in a plan

with respect to the worlds state by using what we call world state functions. The

culmination of this section follows, with definitions of what it means for a schedule

to be executable and an execution trace to be healthy. These two key definitions play

an important role in the execution monitor’s output.

Execution Traces and Schedules

We begin by defining the execution trace for a temporal plan. Since our monitoring

runs continuously online, at most points during execution the plan will not be finished

executing. Specifically, of the events in e ∈ E for a temporal plan, only a subset of

these events will have been dispatched thus far by time tnow. The remaining events

will occur in the future, scheduled at times for which t ≥ tnow. Intuitively, the notion

of an execution trace Ttrace captures the subset of events that have been dispatched

up to tnow, and orders these events by their dispatch times:

Definition 2.3.9 (Execution Trace of a Temporal Plan). An execution trace Ttrace
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for a temporal plan P = 〈E , C,A〉 is a partial assignment to the event times in E .

Formally, an execution trace Ttrace up to time tnow is a set of pairs {(t1, e1), (t2, e2), ...}

such that ti is the execution time of ei (denoted tei = ti), ti ≤ tnow, and
⋃
i

ei ⊆ E .

Without loss of generality we order these assignments such that ti ≤ ti+1.

Once execution has completed, all of the events in E will have been dispatched and

assigned specific time values. As a result, the execution trace at the end of execution

must contain an assignment for every event. We call this full-assignment a schedule

Tfull:

Definition 2.3.10 (Schedule for a Temporal Plan). A schedule Tfull for a temporal

plan P = 〈E , C,A〉 is a full assignment to the event times in E . Formally, a schedule

Tfull is an execution trace {(t1, e1), (t2, e2), (t3, e3), ...} such that
⋃
i

ei = E , and all ei

are unique.

A schedule is called consistent if it satisfies all of the temporal constraints of the

plan. For Pike to be successful, the schedule it produces must be consistent.

Definition 2.3.11 (Consistent Schedule). A schedule for a plan is called consistent

or temporally consistent if it satisfies all of the temporal constraints of the plan. For-

mally, a schedule Tfull = {(tei , ei), ...} for a temporal plan P = 〈E , C,A〉 is consistent

if the event time assignments satisfy all c ∈ C.

Finally, we define the notion of an extension to an execution trace. Intuitively,

an extension to an execution trace is a full schedule in which all future events left

unassigned in the execution trace are now assigned values. Given an execution trace

for time up to tnow, a full schedule extension can be constructed by assigning values

t > tnow to the unassigned events in the execution trace.

Definition 2.3.12 (Extension to an Execution Trace). An extension to an execution

trace Ttrace is a schedule (i.e., a full assignment to all event times) such that those

events not assigned in Ttrace are assigned values. Formally, an extension Tfull to an

execution trace Ttrace is a schedule such that every assignment (ti, ei) ∈ Ttrace is also

in Tfull.
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Figure 2-9: A visualization of an example world state functionW(t). Time progresses
along the x-axis, and the y-axis represents world state. Each of the labels on the y-
axis represents a particular PDDL predicate that can be either True or False. The
colored bars indicate the duration for which the given predicate is True. Note that
by taking a vertical slice representing some fixed time, we have the world state at
that time.

World State Functions

Thus far, we have mainly been concerned with temporal constraints. A consistent

schedule satisfies the temporal constraints of a plan. We would like to define a similar

notion for a schedule, called an executable schedule, that takes into account the pre-

conditions and maintenance conditions of actions in the plan. Intuitively, we will call

a schedule executable if it is both temporally consistent and the preconditions and

maintenance conditions of actions will be met when when each action is dispatched.

We approach the task of rigorously defining executability using what we call world

state functions. A world state function defines the state of the world as evaluated at

different points in time. Recall that the world state is the complete set of all PDDL

predicates that hold True. For any time t, a world state function returns a world

state for that time (see Figure 2-9).

Definition 2.3.13 (World State Function). A world state function W(t) returns a

world state (i.e., thea set of all PDDL predicates that are True) as a function of

time. If some predicate p is True at some time t according to W , we write that
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p ∈ W(t). Otherwise, if p is not in the set of PDDL predicates at time t and hence

does not hold True, we write that ¬p ∈ W(t).

There are several different world state functions that each have different properties

and make different assumptions about the world: Wobs(t),Wideal(t), andWpred(t). We

introduce these below, and make use of them in our definitions and proofs throughout

this thesis. Of these three,Wpred(t) is the most important, and we defineWobs(t) and

Wideal(t) mainly in order to define Wpred(t).

First, and perhaps the most conceptually simple, is the observed world state

function denoted Wobs(t). This world state function is only valid for the past up to

the present (t ≤ tnow), and returns state observations that were recorded in the past.

It essentially “plays back” state that was observed previously. These observations

may have come from a hybrid estimation module, or any other means of estimating

state.

Definition 2.3.14 (Observed World State Function). Given the current time tnow,

the observed world state function Wobs(t) returns the world state that was observed

in the past. The domain of Wobs(t) is t ≤ tnow.

Next, in contrast to the observed world state function that is based completely on

observed state, we introduce the ideal world state function, denoted Wideal(t). The

ideal world state function, when given an initial world state W0, a set of actions A,

and a schedule Tfull, returns the state over time that would “ideally” result assuming

that each action a ∈ A produces its effects precisely at its finish time as defined in

Tfull. No disturbances, stochasticity, or other forms of non-determinism are taken into

account by Wideal(t). It is assumed that each predicate holds its value indefinitely,

unless changed by the effect of some action (see Figure 2-10). We define Wideal(t)

formally as follows:

Definition 2.3.15 (Ideal World State Function). Given a plan P = 〈E , C,A〉, a corre-

sponding schedule Tfull = {(t1, e1), (t2, e2), (t3, e3), ...(tN , eN)} ordered such that ti ≤
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Figure 2-10: A visualization of Wideal(t) superimposed over an action a1. In Wideal,
predicates hold their values indefinitely unless changed by the effect of some action.
This instantaneous change occurs precisely at the action’s finish event. This is illus-
trated in the image above. Note that at time tef1 , when a1’s finish event is scheduled,
some predicates change truthfulness. They retain their values for all other times when
there is no action finishing.

ti+1, and an initial world stateW0, we first define a discrete sequence (W0,W1, ...,WN):

Wi+1 =

ApplyEffects(Wi,α) if ei+1 = ef for some a = 〈α, es, ef〉 ∈ A

Wi otherwise

This sequence starts from the given initial world state W0. The ApplyEffects

function above adds all of the add-effects of the PDDL action α to the given world

state while removing all of the delete-effects of α. Given this discrete sequence of

states, we now map them to piecewise time intervals as follows to produceWideal(t; ...):

Wideal(t;W0,A, Tfull) =


W0 if t < t1

Wi if t ∈ [ti, ti+1)

WN if t ≥ tN)

The ideal world state function is useful for predicting the future, making nominal
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Figure 2-11: An illustration of the Wpred(t) world state function, which combines
past observations with future predictions assuming an ideal world. For all t ≤ tnow,
Wpred(t) = Wobs(t), namely the observed state of the world (as could be inferred by
a hybrid estimation module). This is illustrated above in orange. Note that here the
world state may not behave cleanly, as it reflects actual world state (and the real
world is certainly not ideal). For all t > tnow, Wpred(t) = Wideal(t) starting from the
observed state Wobs(tnow) at time tnow. Thus Wpred is “continuous” about t = tnow;
any predicate observed to be True at tnow (any orange bar intersecting tnow) will
be assumed to continue holding True until some action modifies it (depicted at the
finish event of a2). Note that by combining past observations and future predictions,
the domain of Wpred(t) is −∞ < t <∞.

assumptions about the behavior of actions in a plan. The observation world state

function is useful for returning what the state actually was in the past. We now

combine these two functions in order to produce the most useful world state function

for execution monitoring. Intuitively, we would like a world state function that, for

the past, returns the observations, and for the future, returns predictions extrapolated

forward from the observed current state of the world. We call this “predicted” world

state function Wpred(t) since it predicts the state of the world currently for all time

past and present. We constructWpred(t) by concatenatingWobs(t) and an instance of

Wideal(t) starting from the current state splitting between them at the present tnow:
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Definition 2.3.16 (Predicted World State Function). Given a world state function

for past observationsWobs(t), the current time tnow, a set of actions A, and a schedule

Tfull, we define the predicted world state function Wpred(t) as follows:

Wpred(t;Wobs, tnow,A, Tfull) =

Wobs(t) if t ≤ tnow

Wideal(t;Wobs(tnow),A, Tfull) if t > tnow

An intuitive illustration ofWpred(t) is shown in Figure 2-11. Note that for all time

in the past,Wpred(t) replays the past observations. For all time in the futureWpred(t)

assumes the world behaves ideally and takes the current world state as measured by

Wobs(tnow) as the initial state. For each value of tnow, Wideal is “seeded” with an

initial value in the above definition so that its future predictions during t > tnow will

be based on the current state at tnow

Executable Schedule and Healthy Execution Trace

Now that we have set up the necessary formalisms for evaluating the truthfulness of

PDDL predicates at various points in time (namely, the world state functions defined

above), we proceed to define what it means for a schedule to be executable.

Intuitively, a schedule is executable if it is temporally consistent, and if each ac-

tion’s preconditions and maintenance conditions will be met at the appropriate times

as defined by the schedule. However, since there are different ways of measuring the

state of the world (observed, predicted, etc.) we define the notion of a schedule being

executable under W .

Definition 2.3.17 (Executable Schedule). A schedule Tfull for a plan is called ex-

ecutable under W if it is temporally consistent, and if all of the preconditions and

maintenance conditions of the actions in P hold true at their proper times according

toW and Tfull. In other words, a schedule Tfull for a plan P = 〈E , C,A〉 is executable

under W if Tfull satisfies all of the temporal constraints in C, and for each action

a = 〈α, es, ef〉 ∈ A the following two conditions hold: 1.) Precond(α) ⊆ W(tes),

and 2.) Maintenance(α) ⊆ W(t) for tes < t < tef .
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The notion of an executable schedule checks to see if each action’s preconditions

and maintenance conditions (the requirements for that operator to run) hold accord-

ing to the given world state function. Depending on the world state function used

for this evaluation, the idealistic effects of actions or past recorded observations will

provide the basis from which these judgements are made. For example, if a schedule

is executable under Wideal, this means that we take into account the effects of all the

actions at the proper times in evaluating the other actions’ conditions.

The goal of the plan executive is to dispatch events such that the schedule re-

sulting at the end of execution Tfull is executable under Wobs. Namely, all temporal

and precondition/maintenance condition constraints were satisfied during execution.

Similarly, the goal of the execution monitor is to judge whether or not the execution

trace at the current time instant tnow can possibly be extended into a full schedule

that is executable. This leads us to the notion of a healthy execution trace.

Definition 2.3.18 (Healthy Execution Trace). An execution trace of a plan P up to

tnow is healthy if and only if there exists a full-schedule extension to the trace that is

executable under Wpred.

If the execution trace up to some tnow is healthy, we can expect that the plan

executive will be able to successfully complete the plan and satisfy all temporal con-

straints and precondition/maintenance condition requirements - both those for actions

occuring in the past, and also for those in the future. However, it is important to

note several important assumptions we make when we talk about an execution trace’s

healthiness. We assume that all actions in the future produce their effects as promised

at their finish times, and that predicates hold their values until unchanged. However,

this means that an execution trace’s health status must be taken with a grain of salt.

If an execution trace is deemed to be healthy, we mean that it will proceed success-

fully if the above assumptions are true. We expect an execution trace that is healthy

to finish properly in the absence of any data to the contrary. However, as our models

afford no way to predict disturbances in the future, it is very possible that a healthy

execution trace may later become unhealthy should a disturbance occur in the fu-

51



ture. A trace initially measured as healthy may actually fail as a result of unmodeled

disturbances. Analogously, an execution trace that is deemed to be unhealthy may

actually turn out to be executable, should a second disturbance occur that corrects

the original (i.e., “two wrongs may make a right”). With no way of obtaining an

oracle for the future, we accept these limitations in this thesis.

2.3.4 Disturbances in the World

Thus far in introducing action planning and temporal plans, we have imagined a

perfect world void of disturbances. However, since the real world often changes in

unpredictable ways, we introduce a model for disturbances and unexpected errors. In

this section, we build upon the notion of the world state function presented earlier. We

first introduce a disturbance, and then provide intuition differentiating the notion of

a relevant disturbance from that of an irrelevant disturbance (these will be formalized

in later sections).

First, we begin with the definition of a disturbance.

Definition 2.3.19 (Disturbance). A disturbance with respect to a plan is a change

to the world state that is not described by the actions of the plan. Formally, given

an initial state W0 and a plan P , a disturbance occurs at time t if t is the first time

at which Wobs(t; ...) 6= Wpred(t; ...). In other words, any instant at which the world

state suddenly deviates with respect to what would be expected via Wpred is called a

disturbance.

There are many kinds of disturbances that satisfy this intentionally broad defini-

tion. PDDL actions that fail to yield their promised effects (ex., the pick-up-block

action failing to actually pick up the block) is an example of a disturbance. However,

disturbances need not only be caused by action failures - they can also be caused by

unexpected and spontaneous events. For example, a toddler grabbing the block from

out of the robot’s gripper is also considered a disturbance. Broadly speaking, any

change that would not be predicted naturally from the plan is a disturbance.

We further distinguish disturbances into types: relevant and irrelevant. We design
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our execution monitoring to only detect the relevant disturbances and to ignore the

irrelevant ones. Intuitively, a relevant disturbance is a change that will affect the

future outcome of the plan. An irrelevant disturbance, while indeed changing the

world state, will not require replanning. An example of an irrelevant disturbance

would be removing some never-used blocks from the work area. Since they are never

used, these blocks will not interfere with the robot’s plan.

In the ideal world where there are no relevant disturbances, replanning will never

be required and an execution monitor is unnecessary. The sole agent of change as-

sumption used by classical planners would hold perfectly.

2.3.5 Conflicts

The final formalism we introduce is the notion of a conflict. A conflict can be thought

of as set of constraints that are logically inconsistent. If Pike encounters an error

during execution, it returns a conflict that is indicative of the problem.

Conflicts have been used in many different areas of artificial intelligence. For

example, conflicts can be used in the process of isolating faults in a system ([4]) or

to improve search efficiency by dramatically pruning the search space ([31]). As will

be discussed in the following chapter of this thesis in greater detail, Pike returns a

conflict so that a planning algorithm calling Pike as a subroutine will have the ability

to generate new plans efficiently.

Formally, we define a conflict as follows:

Definition 2.3.20 (Conflict). A conflict is a set of constraints or observations that

entail a logical inconsistency. Put another way, it is not logically possible for all

constraints in the conflict to hold True simultaneously.

For example, consider the case of a block stacking robot in the midst of building

a tower. Further suppose that the robot accidentally drops a block that it is trying

to stack on the tower. Then, the set of constraints {“Action 1 puts the block on the

tower”, “the block will remain on the tower”, “Action 1 has executed”, “Observa-

tion: the block is not on the tower”, “the sky is blue”} is a conflict, because all of
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these constraints cannot be simultaneously True. We notice however that the final

constraint is superfluous. This leads us to define the minimal conflict:

Definition 2.3.21 (Minimal Conflict). A minimal conflict is a conflict such that the

removal of any constraint from the set would resolve the conflict.

The above conflict is not minimal, since removing “they sky is blue” still results

in a conflict. However, if we do remove it to yield {“Action 1 puts the block on the

tower”, “the block will remain on the tower”, “Action 1 has executed”, “Observation:

the block is not on the tower”, “the sky is blue”}, then this is indeed a minimal

conflict. Should any of these constraints be removed, it would be possible for all

constraints in the set to then hold True simultaneously. Intuitively, a minimal

conflict therefore captures the essence of the inconsistency by only admitting relevant

constraints.

As will be discussed in our algorithmic sections in greater detail, Pike is capable

of returning conflicts containing state and temporal constraints from the plan.

2.3.6 Formal Pike Problem Statement

At this point, we have described an intuitive problem statement for the Pike plan

executive which uses the execution monitor as a core subcomponent. We have also

discussed the necessary formalisms to describe the inputs and outputs of Pike rigor-

ously. This section is devoted to tying all of these pieces together; we now express

the intuitive problem statement of Pike in formal terms now that all of the necessary

requisites have been defined.

Pike takes in the following inputs:

• A temporal plan P = 〈E , C,A〉 that is to be executed

• A set {O1,O2, ...} of PDDL operator schema that describe the preconditions,

maintenance conditions, and effects of the actions in P

• The initial world state W0
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• A conjunction of PDDL predicates representing the goal g from which the plan

P was generated

• A stream of world state observations Wobs(t) valid for all t ≤ tnow which define

the observed state in the present and past.

Pike obeys the following while in the midst of executing P :

• Pike must dispatch events e ∈ E at their proper times so as to satisfy all of the

temporal constraints in C, and

• Pike must return immediately if the execution trace becomes unhealthy. For-

mally, should the execution trace transition from being healthy to unhealthy at

time t, then Pike must return at time t.

Additionally, Pike generates the following outputs when it returns:

• A boolean value Success indicating whether the execution completed success-

fully. Success = True if and only if all events e ∈ E were dispatched and the

resulting schedule is executable under Wobs

• A set of minimal conflicts Γ, only if Success = False. Γ may contain conflicts

with temporal constraints as well as and precondition/maintenance condition

constraints from P .

2.4 Causal Link Execution Monitoring System

Now that we have defined the problem statements for the Pike plan executive, we

present our approach to solving this problem. From a high level, our approach consists

of two sets of algorithms: a set of offline algorithms that run before the plan is

dispatched by the plan executive, and a second set of online algorithms that run while

the plan is executing. We provide intuition regarding how both sets of algorithms

work, discussing both execution monitoring and plan execution.

The offline stage of the execution monitor infers the intent or rationale behind

actions in a plan. Intuitively, we extract such information as “Action 1 is what
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produces a predicate required by some later Action 2.” This idea is called a causal

link and allows us to infer that Action 1 is needed because it is the provider of

the predicate needed by Action 2 ([20]). Most importantly, if Action 1 were to fail,

or if the predicate were to suddenly disappear during some time between Action 1

and Action 2, we know that Action 2 would fail because its preconditions would not

be met. By extracting causal links from a plan, we can infer the requirements of

each action and also compute a set of conditions that must hold true under nominal

circumstances for a plan to be executable. The goal of the offline preprocessing stage

is to deduce these causal links, whose predicates will then be continuously monitored

during the online phase.

Prior work assumes that a unique set of causal links can be determined from the

planning process, or can be computed uniquely from a totally-ordered plan ([24], [21]).

It is these conditions that are then monitored during the online phase. However, this

story is complicated by the fact that for an arbitrary temporal plan, a unique set of

causal links cannot always be extracted. Rather, uncertainty in when actions complete

can lead to uncertainty in which actions will actually produce the predicates required

by later consuming actions. In other words, it may not be possible to guarantee

which action must be the producer for a given consumer action during the offline

stage when a precise schedule is not known. This idea of a non-unique set of causal

links is a novel development in this thesis. Our approach to solving this problem is

to extract sets of candidate causal links during the offline preprocessing phase, which

will be refined during the online phase as execution progresses and more information

is known.

During the online stage, the plan executive dispatches actions in the plan in such

a way as to satisfy the plan’s temporal constraints. The executive consists of two

components: a scheduler that selects appropriate times for each event in the plan,

and a dispatcher which is responsible for executing those events at the scheduled

time. During this process, the execution monitor continually checks a set of active

monitor conditions representing a minimal set of conditions that must hold true in

the world in order for the current execution trace to be healthy. As mentioned above,
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the offline preprocessing stage extracts sets of candidate causal links. During online

execution, one candidate from each of these sets is activated at the appropriate time

and monitored during a certain period. Intuitively, the execution monitor activates

the causal link with the latest producer finish event from within each candidate set.

This strategy exploits scheduling information from the execution trace in order to

guarantee that the other causal links in the candidate set must have had earlier

producer finish events, and would hence not have been the sole cause of producing

the consumer’s precondition.

In the following sections, we formally present the notion of causal links, as they are

the cornerstone of our execution monitoring approach. We then describe the process

through which we extract causal links from least-commitment temporal plans. We

proceed by describing the online monitoring algorithms. Each section will be accom-

panied with relevant proofs of various properties, such soundness and completeness.

Finally, we conclude with a theoretical performance analysis of these algorithms,

as well results from experimental validation on a number of different domains.

2.4.1 Algorithmic Approach

In this section, we give a more detailed overview of the specific algorithms and ap-

proaches we propose for our plan executive, Pike, and our execution monitor. The

previous sections discussed some goals for some of these algorithms. We now delve

further, illustrating from a high level our approach to designing the algorithms that

will meet these goals. Each of the subsequent sections will provide details, formalisms,

and proofs of correctness for these subpieces. Our aim is to illustrate how our algo-

rithms function from a birds-eye view in this section, in order to make the context of

each subpiece more clear in the later sections.

Let us begin by recalling that the offline portion of the execution monitor is

responsible for generating candidate sets of causal links, each of which represents

the idea that some producing action a1 produces some predicate p that is required

by some later consuming action a2, and that no other action athreat occurs in time

between a1 and a2 that asserts ¬p. Once sets of causal links are extracted, they
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will be monitored using an online algorithm that is closely intertwined with the plan

executive’s online dispatching algorithm.

The plans we wish to operate on and extract causal links from are temporally

flexible. Due to the use of flexible simple temporal constraints as opposed to rigid

time requirements (i.e., “action a1 may start between 1 and 10 minutes in the future,

and take between 5 and 20 seconds” versus “action a1 must start in exactly 2 minutes

and take exactly 3 seconds”), we cannot in general determine a total ordering of each

action in the plan. Before the plan is dispatched, we do not yet know at what time

each action will be executed and what its duration will be. This presents a challenge

for causal link extraction, which requires that the producing action temporally precede

the consuming action. However, using a set of algorithms developed in prior work

that are designed to reason over networks of simple temporal constraints, we are able

to make some guarantees in some situations about some event orderings ([5]). We

make heavy use of this in our candidate causal link extraction algorithms.

Given a temporal plan P , it is possible to expose explicit constraint by converting

the P to a distance graph and subsequently running an all-pairs shortest path (APSP)

algorithm such as Floyd Warshall on this distance graph ([5]). We will not describe

the details of this well-known process in this thesis, but will use it as a subroutine

in our algorithms. Once computed, the distance graph supports a number of useful

queries, such as asking if one event is guaranteed to proceed some other event in all

possible temporally consistent schedules of the plan.

As mentioned above, we cannot in general determine a temporal total ordering over

all actions in the plan to determine which actions will come first. We can, however, use

the APSP query functions to construct a partial ordering over all actions. Our causal

link extraction algorithm begins by processing P = 〈E , C,A〉 in order to produce

what we refer to as an action graph, which is a graph where each vertex represents

an action a ∈ A, and each directed edge represents an ordering constraint. Note that

some pairs of vertices in this graph may not be connected with an edge if the APSP

is inconclusive at providing an ordering for those actions.

Using this action graph, we are able to extract candidate sets of causal links. For
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every action a ∈ P , and for every condition p of that action, we extract a candidate

causal link set. The method GetCausalLinkCandidates returns such a set of

candidates given such an a and p. During run time when P is dispatched, exactly one

candidate causal link from every candidate causal link set will be activated, meaning

that its associated predicate will be monitored. This guarantees that we will monitor

all relevant conditions in our plan. Our approach to extracting these candidate causal

links is based on reasoning over the conditions and effects of each action, as well as

the partial ordering over those actions as defined by the action graph. The core offline

algorithm PreprocessPlan returns as output a set of candidate causal link sets for

subsequent use by the online stage.

The online suite of algorithms is responsible for dispatching the events, activat-

ing causal links, and monitoring those activated causal links. The scheduler and

dispatcher once again make use of the APSP formulation, constructing a minimal

dispatchable network in order to select time points for each event. As events are

dispatched, the execution monitor updates the candidates from the candidate causal

link sets, until it can be sure that a causal link should be activated. Once activated,

the causal link will be monitored continuously until it is deactivated and no longer

relevant. When no causal links are violated, we can guarantee that the current ex-

ecution trace is healthy. Furthermore, should a causal link be violated, we can also

guarantee that the execution trace is unhealthy. If such an unhealthy trace is de-

tected, Pike returns a conflict in the form of a minimal set of constraints that cannot

simultaneously hold true.

Now that we have provided a high level overview of our algorithmic approach and

how these pieces fit together, the following sections will dive into greater detail in each

of these algorithms. Each section will provide further details, pseudo code, and proofs

of various guarantees made by these algorithms. Once we have finished presenting

our solution to the plan executive, this chapter will conclude with theoretical and

empircal analyses of these algorithms.
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2.4.2 Partial Ordering over Actions

Although it is not generally possible to construct a total ordering of actions in a plan,

it is crucial for the execution monitor’s causal link extraction algorithms to make use

of a partial ordering of actions in a plan. This section details the process through

which we take a temporally flexible plan P and derive such a partial ordering, which

we store in the action graph.

Intuitively, we say that some action in a plan precedes some other action if the first

action is guaranteed to finish before the second action starts. Put another way, the

first action’s finish event must precede the second action’s start event in all consistent

schedules. In general for any two actions a1 and a2, there are three possibilities: 1.)

a1 may precede a2, 2.) a2 may precede a1, xor 3.) neither a1 and a2 precedes the

other. In this case a1 and a2 may overlap temporally, or a precise ordering cannot

be determined in the absence of a schedule, and so we cannot say that either action

precedes the other. We refer to this last case as the actions being incomparable.

This precedence relation can be formalized as a partial ordering over the actions

in a plan as follows:

Definition 2.4.1 (Partial Ordering of Actions in a Temporal Plan). Given a temporal

plan P = 〈E , C,A〉 and any two actions a1, a2 ∈ A, we say that a1 precedes a2

or a1 ≺ a2 if a1 finishes at or before the time that a2 starts. Formally, letting

a1 = 〈α1, es1 , ef1〉 and a2 = 〈α2, es2 , ef2〉, we say a1 ≺ a2 iff tef1 ≤ tes2 in all consistent

schedules of P . In general, exactly one of the following will hold: 1.) a1 ≺ a2, 2.)

a2 ≺ a1, xor 3.) a1 ‖ a2 (a1 and a2 are incomparable - it is unknown whether one

action will precede the other without being given a specific schedule).

There are several useful facts about this partial ordering that are useful and will

be built upon later in this thesis. We introduce them below:

Lemma 2.4.1. The ≺ relation is transitive: a1 ≺ a2
∧
a2 ≺ a3 ⇒ a1 ≺ a3.

Lemma 2.4.2. The ‖ relation is not transitive: a1 ‖ a2
∧
a2 ‖ a3 ; a1 ‖ a3.

Lemma 2.4.3. For any action a, a ‖ a holds true.
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Lemma 2.4.4. For any pair of actions a1 and a2, it cannot be the case that a1 ≺

a2
∧
a2 ≺ a1. Intuitively, this is not possible because we constrain each action to have

positive (> 0) duration.

When we have a fixed schedule for a plan, it is possible to determine a total or-

dering over actions within the plan by evaluating the criteria above with the assigned

time values for each event. The above definition however holds true not for some fixed

schedule, but for all consistent schedules in a plan. It is designed so that, during the

offline stage when a precise schedule has not yet been determined, we can still deduce

ordering relations between some pairs of events. This is depicted visually in Figure

2-12.

The causal link extraction algorithms that follow require the ability to query this

partial order relation for any pair of actions in the plan. As such, we choose to

represent the precedence relations in graph structure we call the action graph for a

plan:

Definition 2.4.2 (Action Graph). The action graph for a plan P = 〈E , C,A〉 is a

graph G = (V,E) such that V = A, and there is an edge (a1, a2) ∈ E if and only if

a1 ≺ a2.

The action graph also satisfies the following properties:

Corollary (Action Graph Edges). For every pair of actions in the action graph,

exactly one of the following will hold true:

• An edge (a1, a2) will exist, representing a1 ≺ a2

• An edge (a2, a1) will exist, representing a2 ≺ a1

• No edge between a1 and a2 will exist, representing that a1 ‖ a2.

The algorithm ConstructActionGraph (shown in Algorithm 1) constructs

this action graph. After initialization, the algorithm first generates a distance graph

from the plan P and proceeds to apply the Floyd Warshall all-pairs shortest path

algorithm ([12]). This returns a look up table dist(e1, e2) valid over any e1, e2 in P ’s
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Figure 2-12: Illustrations of the various partial order precedence relations for plans
with temporal flexibility. The actions a1 and a2 are shown, each with their corre-
sponding start and finish events. Time flows from left to right, and the gray bar
underneath each event indicates the range of valid scheduled times for that event as
computed by the all pairs shortest path algorithm. In A.) we see that tes2 ≥ tef1
in all possible event timings, so it is guaranteed that a1 ≺ a2 in all schedules. The
results are similar in B.), except reversed where now a2 ≺ a1. In C.) we see that we
cannot guarantee that a1 will finish before a2 starts. While this may occur in some
schedules, it is will not occur in all of them. Therefore the ordering of a1 and a2
cannot be determined before the plan is scheduled, so we say that a1 ‖ a2.
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Algorithm 1: ConstructActionGraph

Data: P =< E , C,A >
Result: An action graph G = (V,E), or Failure.

1 begin
2 V ←− A
3 E ←− ∅
4 distance-graph←− DistanceGraph(P)
5 dist(·, ·)←− FloydWarshall(distance-graph)
6 if dist(e, e) < 0 for any e ∈ E then
7 return Failure
8 end
9 foreach a = 〈α, es, ef〉 ∈ A do

10 if dist(ef , es) ≥ 0 then
11 return Failure
12 end

13 end
14 foreach a1 = 〈α1, es1 , ef1〉 ∈ A do
15 foreach a2 = 〈α2, es2 , ef2〉 ∈ A do
16 if dist(es2 , ef1) ≤ 0 then
17 E = E ∪ (a1, a2)
18 end

19 end

20 end

21 end
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events. A value dist(e1, e2) = d represents the computed explicit constraint that, in

all consistent schedules, te2 − te1 ≤ d.

The first loop in the algorithm checks if dist(ef , es) ≥ 0 for any start and event

times for an action a. If this is so, it represents that in some consistent schedules it

is possible that tes − tef ≤ d for some d ≥ 0, indicating that the action may take 0

or negative duration. This is disallowed, so Failure is returned if this condition is

detected.

The nested “for” loops that iterate over pairs of actions are responsible for adding

edges to the graph. If it is the case that for some pair of actions a1 = 〈α1, es1 , ef1〉

and a2 = 〈α2, es2 , ef2〉 that dist(es2 , ef1) ≤ d for some d ≤ 0, then we can rewrite the

associated constraint as tes2 − tef1 ≥ −d. Since −d ≥ 0, this constraint tells us that

the start event of the a2 must occur at or after the finish event of a1, and so hence

a1 ≺ a2 and we add an edge in the graph. When repeated for all pairs of action, this

constructs the complete action graph.

The action graph is used to evaluate ≺ in all following discussion and algorithms.

Although not explicitly represented in any of the pseudo code in algorithms to come,

whenever we write a1 ≺ a2 for some pair of actions we imply a query to the action

graph to check if an edge (a1, a2) exists.

2.4.3 Causal Links

In this section, we formalize the notion of causal links, which are at the core of our

execution monitoring algorithm.

Intuitively, a causal link captures the notion that “action a1 is the producer of

predicate p, which is required for action a2 to run” [25]. We further enforce that no

other action may threaten the causal link by negating p at some point in time between

a1 and a2. If some action were to do so, presumably p would not hold true by a2’s

start time, and hence the preconditions of the action would be violated.

Building upon the definition in [20], we define a causal link as follows:

Definition 2.4.3 (Causal Link). A causal link for a plan P = 〈E , C,A〉 is a tuple

64



〈ap, p, ac〉, denoted ap
p−→ ac where ap = 〈αp, esp , efp〉 and ac = 〈αc, esc , efc〉 are both

actions in A and p is an instantiated PDDL predicate. We call ap the producing action

and ac the consuming action. The following requirements must hold for ap
p−→ ac:

• The producing action produces p as one of it’s effects: p ∈ Effects(αp).

• The consuming action uses p as one of its preconditions: p ∈ Precond(αc).

• The producing action precedes the consuming action: ap ≺ ac

• There is no action athreat = 〈αthreat, esthreat , efthreat〉 that threatens the causal

link. We say an action athreat threatens the causal link if ¬p ∈ Effects(αthreat)

and any of the following hold true:

– ap ≺ athreat ≺ ac

– ap ‖ athreat

– ac ‖ athreat

Please note that, in the above definition, some action can threaten the causal

link if it is incomparable with either the producer or the consumer actions. This has

the implication that the above definition of causal link is conservative in the sense

that actions deemed as threats may not actually be problematic in all schedules. For

example, consider some threat athreat that produces ¬p and is incomparable with ac.

In some schedules, it may turn out to be the case that athreat actually starts after ac

ends. However, since this determination cannot be made in general for all schedules,

we mark athreat as a potential threat. We are concerned with all consistent schedules,

so if ap ‖ athreat or ac ‖ athreat then we cannot guarantee beforehand that p will not

be threatened. Similarly, we also require that ap ≺ ac, or namely that ap must finish

before ac in all possible consistent schedules of the plan.

In addition to a causal link, we also introduce the notion a candidate causal link.

A candidate causal link meets the definition of a causal link, but has the additional

restriction that it has one of the “latest occurring” producing actions ap. Intuitively,

this is useful because it is the latest-occurring producing action that is the cause of
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X ✔

Figure 2-13: This figure illustrates the importance of candidate causal links, as differ-
entiated from causal links. Suppose we have two candidate producer actions, ap1 and
ap2 . Which would make a better producer in a causal link? Both produce p at their
finish times. However, since ap1 ≺ ap2 , we can guarantee that ap2 producers p later
than ap1 in all schedules. Therefore, even if a disturbance happens and p is negated
(shown by the red X) early on, ap2 will still be there to save the day and produce p
for ac. Therefore, it is most desirable to choose the latest occurring producer action.
We would call ap2

p−→ ac a candidate causal link, but ap1
p−→ ac cannot be considered

a candidate causal link since ap2 will occur after ap1 .

p being True, not some earlier-occurring action. Suppose that for some consuming

action ac and some predicate p, there are two possible producing actions ap1 and ap2

that yield p as an effect. We thus can pick from two otherwise identical causal links:

ap1
p−→ ac and ap2

p−→ ac. Since ap1 ≺ ap2 , we can intuitively think of ap1 as being

dominated by ap2 . This is because in any consistent schedule, we know that ap2 must

produce p after ap1 . As such it is irrelevant if ap1 produces p earlier during execution.

Please see Figure 2-13 for an example that shows this visually.

Definition 2.4.4 (Causal Link Dominance). We say that ap2
p−→ ac dominates

ap1
p−→ ac if ap2 finishes after ap1 . Formally, letting ap2 = 〈α2, es2 , ef2〉 and ap1 =

〈α1, es1 , ef1〉,

We argue that the candidate causal link is more useful than the generic causal

link, and so the algorithms we present in this thesis find only sets of candidate causal

links. We define a candidate causal link formally as follows:
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Definition 2.4.5. A candidate causal link is a causal link such that no other action

in the plan that produces p is guaranteed to come after ap but before ac. Formally,

l is a candidate causal link if l is a causal link ap
p−→ ac, and no other action

a′ = 〈α′, e′s, e
′
f〉 ∈ A that has p ∈ Effects(α′) satisfies ap ≺ a′ ≺ ac.

Please note that, according to this definition, there still may be multiple causal

links for a given ac and condition p. For all of these to be candidate causal links

however, it must be the case that all of their producing actions are mutually incom-

parable. If this were not the case, then at least one would not be a candidate causal

link. Our algorithms extract sets of candidate causal links during the preprocessing

phase. At run time, once scheduling information is known and some events have been

dispatched, we gain more information as to which producers actually occur the latest

in time. We use this to always activate the latest candidate causal link.

2.4.4 Offline Causal Link Extraction Algorithm

Now that we have introduced the necessary formalisms and defined causal links and

the action graph, we proceed to describe the core offline algorithms. The job of these

algorithms is to extract sets of candidate causal links for the conditions of actions in

the plan. These candidate causal links provide predicates and the time intervals over

which they must be monitored online.

Our approach is to extract a set of candidate causal links L = {l1, l2, ...} for each

condition of each action in P , where each li is a candidate causal link. During online

execution, exactly one li from each L will be activated and monitored.

In all of the discussions that follows, we make the assumption that the plan P

has two distinguished actions, called astart and aend. The action astart has no precon-

ditions, and has effects that produce the initial world state. Similarly, aend has no

effects but has preconditions equal to the goal conjunction that was used to construct

P . This simplifies the causal link extraction process by allowing candidate causal

links with producer action astart should some predicate be true because of the initial

conditions (and not because of some other action). Similarly, a candidate causal link
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whose consumer action is aend means that a predicate must hold true not for some

later action to execute, but for the goal condition to be met.

Algorithm 2: PreprocessPlan

Data: A plan P = 〈E , C,A〉 with distinguished start and end actions, a set of
PDDL operator schema {O1,O2, ...}

Result: A mapping D of events to sets of candidate causal link sets, or
Failure if the plan is not executable under Wideal

1 begin
2 G←− ConstructActionGraph(P)
3 ComputeGroundedConditionsAndEffects(P)
4 D[e]←− ∅ for each e ∈ E
5 foreach ac = 〈αc, es, ef〉 ∈ A do
6 foreach p ∈ Precond(αc) ∪Maintenance(αc) do
7 L ←− GetCausalLinkCandidates(p, ac)
8 if L = ∅ then
9 return Failure

10 else

11 foreach l = 〈αp, esp , efp〉
p−→ 〈αc, esc , efc〉 ∈ L do

12 Add L to D[efp ]
13 end

14 end

15 end

16 end
17 return D
18 end

The core preprocessing algorithm, PreprocessPlan, is shown in Algorithm 2.

The algorithm begins by computing the action graph, thereby allowing the ≺ relation

to be evaluated in all subsequent methods. Next, the preconditions, maintenance

conditions, and effects of each action a ∈ A are computed. Namely, a binding is

computed and then applied to each of the preconditions, maintenance conditions, and

effects. This allows the evaluation of such queries as p ∈ Precond(α) in subsequent

methods.

The bulk of PreprocessPlan is a set of nested loops that call GetCausalLink-

Candidates for every action ac and condition p of that ac. GetCausalLinkCan-

didates is the main routine that does the bulk of the work in extracting sets of

candidate causal links, and so most of our attention will focus on this function.
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Algorithm 3: GetCausalLinkCandidates

Data: An action ac = 〈αc, esc , efc〉, a PDDL predicate p ∈ Precond(αc), an
action graph G = (V,E) in order to evaluate precedence ≺, and a plan
P = 〈E , C,A〉

Result: A set of candidate causal links L = {ap
p−→ ac, ...}, or the empty set ∅

if no candidate causal links exist.
1 begin
2 ξ ←− ∅
3 foreach a ∈ A do
4 if a 6= ac and a ‖ ac and ¬p ∈ Effects(α) then
5 return Failure
6 else if either p or ¬p ∈ Effects(α), and a ≺ ac then
7 UpdateProducerCandidates(ξ, a)
8 end

9 end
10 foreach a ∈ ξ do
11 if ¬p ∈ Effects(α) then
12 return Failure
13 end

14 end

15 return {ap
p−→ ac for each ap ∈ ξ}

16 end

Algorithm 4: UpdateProducerCandidates

Data: A list of candidate actions ξ, a new action anew to be processed
Result: Modifies ξ to include the new producing action candidate, if

appropriate.
1 begin
2 foreach a ∈ ξ do
3 if anew ≺ a then
4 return
5 end

6 end
7 foreach a ∈ ξ do
8 if a ≺ anew then
9 Remove a from ξ

10 end

11 end
12 Add anew to ξ

13 end
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The algorithm GetCausalLinkCandidates is shown in Algorithm 3. The in-

put to this method is a temporal plan P , an action ac, and a predicate p that is a

precondition or maintenance condition of ac. The output of GetCausalLinkCan-

didates is a set L of candidate causal links that all have consumer ac and predicate

p. If the algorithm finds no candidate causal links and hence returns the empty set

∅, this means that all schedules of P are not executable under Wideal.

GetCausalLinkCandidates operates by building up a set of producer ac-

tions, which represent the set of possible producers for the candidate causal links

returned in L. These producer candidates are stored in the set ξ. Intuitively, Get-

CausalLinkCandidates iterates over all actions a ∈ A. It continually updates ξ

with actions using the subroutine UpdateProducerCandidates, shown in Algo-

rithm 4. After processing each action, ξ contains the largest set of possible producer

actions that are all mutually incomparable and “closest” to ac (but preceding it). By

ensuring that all of the producer candidates are all as temporally close to ac as possi-

ble and mutually incomparable, we ensure that that each of the causal links returned

in L will in fact be a candidate causal link.

Properties of Candidate Causal Link Extraction Algorithms

In this section, we proceed to outline and prove various useful properties about Get-

CausalLinkCandidates and its UpdateProducerCandidates. We will then

prove that GetCausalLinkCandidates is a sound and complete algorithm.

We begin by proving an important invariant condition of ξ throughout execution.

Namely, after each call to UpdateProducerCandidates(ξ, anew), all elements of

ξ are mutually incomparable.

Theorem 2.4.5 (Mutual Incomparability of ξ). For every pair of elements a1, a2 ∈ ξ,

a1 ‖ a2.

Proof. Proof by Invariance. There are two base cases: when ξ is empty and when

it contains a single element. The base case where ξ = ∅ makes our claim vacuously

true. When ξ = {a} for some a, the claim holds because any action is always incom-
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parable to itself. Now that we have demonstrated that the base cases hold, we prove

the invariant also holds after each call to UpdateProducerCandidates(ξ, anew)

(which may possibly grow anew), thereby proving the claim.

Suppose that UpdateProducerCandidates(ξ, anew) is called. We assume by

our invariant condition that that all elements a ∈ ξ are mutually incomparable.

Therefore, since anew is the only possible addition to ξ, we need only check the

incomparability between the new element anew and each of the elements in ξ. If

anew ≺ a for any a ∈ ξ, lines 2-6 enforce that anew will not be added and hence ξ

will remain unaltered, so the invariant will hold as UpdateProducerCandidates

returns. Lines 7-11 enforce that, should a ≺ anew for any a ∈ ξ, then a will be

removed from ξ. Thus, since neither anew ≺ a nor a ≺ anew can hold for any a ∈ ξ,

it is safe to say that anew ‖ a for all a ∈ ξ. Thus the invariant will hold after

UpdateProducerCandidates returns.

Next, we proceed to prove that, after iterating over each a ∈ A, GetCausalLink-

Candidates contains all actions that are “closest” to ac and affect p by either as-

serting p or ¬p. Put another way, there are no other actions that affect p and are

guaranteed to come closer to ac in all schedules of the plan.

Lemma 2.4.6. Upon reaching line 10 in the GetCausalLinkCandidates algo-

rithm, there is no action that affects p and comes “closer” to ac than any of the

actions in ξ. In other words, there is no acloser ∈ A but not in ξ such that p or

¬p ∈ Effects(acloser) and acand ≺ acloser ≺ ac for any acand ∈ ξ.

Proof. Proof by Contradiction. Suppose that there does exist some action acloser ∈ A

but not in ξ such that p or ¬p ∈ Effects(acloser), and acand ≺ acloser ≺ ac for some

action acand ∈ ξ. Since the loop in lines 3-9 of GetCausalLinkCandidates iterates

over each action in A and acloser meets the else-if requirement, then UpdatePro-

ducerCandidates(ξ, acloser) must have been called in an attempt to add acloser to

ξ, but acloser did not actually get added or did not remain in ξ. There are two pos-

sibilities - either this attempted-addition occurred before acand was added, or after

acand was added. We consider both of these scenarios below:
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1. Suppose that acloser was attempted to be added before acand was added to ξ.

If acand ≺ acloser then it certainly would have been added to ξ. But since

acand ≺ acloser, acand would not be added to ξ later on. This contradicts our

assumption that acand ∈ ξ.

2. Suppose that acand was added to ξ before the attempted addition of acloser.

Then, since acand ≺ acloser, acand would be purged from ξ upon the addition of

acloser. This also contradicts our assumption that acand ∈ ξ.

Therefore, since in either case we reach a contradiction, it must be the case that there

does exist some action acloser ∈ A but not in ξ such that p or ¬p ∈ Effects(acloser),

and acand ≺ acloser ≺ ac for an action acand ∈ ξ.

Now that we have proven the above two useful properties, we proceed to demon-

strate that GetCausalLinkCandidates is sound. Every element of L is a candi-

date causal link.

Theorem 2.4.7 (GetCausalLinkCandidates Soundness). GetCausalLink-

Candidates is sound. In other words, If p ∈ Precond(αc) ∪Maintenance(αc),

then every element in the list L = GetCausalLinkCandidates(p, ac) is a candi-

date causal link.

Proof. We need to prove that each of the l = ap
p−→ ac ∈ L = GetCausalLinkCan-

didates() meets the definition of a candidate causal link (Definition 2.4.5). Namely,

we prove the following that for each l: 1.) p ∈ Effects(αp), 2.) ap ≺ ac, 3.) No

actions threaten the causal link, and 4.) There are no other actions a′ that have

p ∈ Effects(α′) where ap ≺ a′ ≺ ac. Proving all of these claims is sufficient to show

that l is a candidate causal link.

We begin by proving that p ∈ Effects(αp). We note that ap is always drawn

from ξ, which contains only actions that produce either p or ¬p (line 6). The loop in

lines 10 - 14 will return if any actions in ξ produce ¬p. Therefore, when a random ap

is selected it is guaranteed to produce p as an effect.
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Using similar logic, we can see that elements can only be added to ξ should the

condition ap ≺ ac be true (line 6). Therefore we can be sure that ap ≺ ac in any

causal link returned.

Next, we ensure that there are no actions that would threaten the causal link. We

see on line 6 that no causal link can be returned should a threat athreat be detected

such that ¬p ∈ Effects(αthreat) and athreat ‖ ac. Additionally, the loop in lines 10

- 14 ensures that no causal link can be returned where such a threat action would be

incomparable to the producing action, i.e. athreat ‖ ap. The final step remaining is to

show that there is no athreat with ¬p ∈ Effects(αthreat) such that ap ≺ athreat ≺ ac.

This can be shown using Lemma 2.4.6. Since ap is drawn from ξ, and there can be

no action acloser ∈ A that affects p and that satisfies acand ≺ acloser ≺ ac, we can be

sure that no threat could possibly come after ap.

Thus far, we have proven that l is a causal link. We finish by proving that

l is a candidate causal link, or namely that there is no other action a′ that has

p ∈ Effects(α′) where ap ≺ a′ ≺ ac. By Lemma 2.4.6, there can be no action acloser

that affects p where acand ≺ acloser ≺ ac for any element acand ∈ ξ. Therefore no such

a′ can exist, otherwise the candidate causal link would be a′
p−→ ac.

The above conditions satisfy all of the conditions set forth in the definition of

a candidate causal link (Definition 2.4.5). Hence, GetCausalLinkCandidates is

sound.

We conclude this section with our final proof and show that in addition to be-

ing sound, GetCausalLinkCandidates is also complete. That is, it returns all

possible candidate causal links for ac and p.

Theorem 2.4.8 (GetCausalLinkCandidates Completeness). GetCausalLink-

Candidates is complete. In other words, GetCausalLinkCandidates(p, ac) re-

turns all possible candidate causal links for ac and p.

Proof. Proof by contradiction. Suppose that GetCausalLinkCandidates is not

complete, and so there must be some candidate causal link a′
p−→ ac that exists but

is not in the returned set L. The producing actions for the candidate causal links
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returned in L are generated using the producer candidates in ξ. Thus, a′ /∈ ξ since

a′
p−→ ac is not in L.

We will consider three different scenarios, one of which must hold true and each

of which leads to a contradiction. One of the following must hold true: 1.) ap ≺ a′

for some ap ∈ ξ, 2.) a′ ≺ ap for some ap ∈ ξ, or 3.) ap ‖ a′ for all ap ∈ ξ.

1. In the first case, ap ≺ a′ for some ap ∈ ξ. However, this contradicts Lemma

2.4.6, which states that no action a′ /∈ ξ that affects p may satisfy ap ≺ a′ ≺ ac

for all ap ∈ ξ.

2. In the second case, a′ ≺ ap for some ap ∈ ξ. Then a′
p−→ ac cannot be a

candidate causal link (though it is a causal link), contradicting our assumption.

3. In the final case, since neither ap ≺ a′ nor a′ ≺ ap for any element ap ∈ ξ, we can

be sure that ap ‖ a′ for all ap. Since ξ contains the largest set of incomparable

elements closest to ξ, then a′ ∈ ξ. This contradicts our assumption however

that a′ /∈ ξ.

Each of the three cases above leads to a contradiction, so GetCausalLinkCan-

didates must return all possible candidate causal links and is hence complete.

2.4.5 Online Plan Execution and Monitoring Algorithms

Thus far, all algorithmic discussion has focused on the offline preprocessing stage

responsible for extracting sets of candidate causal links for each predicate of each

action of the plan. In this section, we discuss the online algorithms used to implement

execution monitoring. We formalize the Pike plan executive, focusing on the online

dispatcher that is tightly integrated with the execution monitor. We also prove some

strong guarantees about the execution monitor. Namely, we show that by monitoring

activated causal links, the execution monitor will be be able to efficiently deduce

whether the current execution trace is healthy or not.

We begin by presenting the Pike dispatcher, shown in Algorithm 5. This algorithm

is responsible for scheduling events and dispatching activities from a plan online, while
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simultaneously running the execution monitor. This stage makes use of a minimal

dispatchable network computed offline ([22]). This minimal dispatchable network is

computed by running an all pairs shortest path algorithm (APSP), and subsequently

removing unnecessary dominated edges. When complete, the minimal dispatchable

network allows Pike to efficiently query and update the APSP temporal windows for

each event, a step that is key to online event dispatching. It has been proven that

given an execution trace for a plan where each event time assignment falls within

their APSP temporal windows, there exists a temporally consistent extension to the

plan that is temporally feasible (([5]).

Pike also makes the assumption that it does not explicitly schedule the times for

action finish events. Rather, once an the start event for an action is dispatched, the

plant will choose the precise finish event time for that action. Should this action

finish event occur outside of it’s APSP temporal window as dictated by the minimal

dispatchable network, Pike returns a conflict since no extension to the execution trace

can be temporally feasible. In this situation, a conflict containing temporal-related

constraints is returned. The Pike algorithm maintains a set S of dispatched events

and a set Aactive of events that are currently in progress to keep track of dispatched

events and currently active activities for which the finish events have not yet executed.

The Pike algorithm also has hooks that call key algorithms of the execution mon-

itor: InitExecmon, ExecmonEventUpdate, and IsExecutionGood?. These

algorithms will be described in great detail shortly. From a high level, InitExecmon

is responsible for initializing the active monitors, ExecmonEventUpdate processes

events being dispatched in order to activate or deactivate monitor conditions corre-

sponding to causal links or action maintenance conditions, and IsExecutionGood?

monitors the set of current monitor conditions to ensure that all predicates hold True.

If a monitor condition is violated (and hence an activated causal link or maintenance

condition is violated), then Pike returns immediately.
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Algorithm 5: Pike

Data: A plan P = 〈E , C,A〉, a mapping D from events to sets of candidate
causal link sets

Result: A proper dispatch of all events in E at correct times, a minimal
conflict if failure occurs.

1 begin
2 InitExecmon(L)
3 S ←− ∅
4 Aactive ←− ∅
5 while E \ S 6= ∅ do
6 foreach action a = 〈α, es, ef〉 ∈ Aactive that just reported completion do
7 Aactive = Aactive \ {a}
8 S = S ∪ ef
9 ExecmonEventUpdate(ef )

10 end
11 Ecand = all events e ∈ E \ S within their APSP temporal windows now
12 Ecand = Ecand \ {any ef of any action a = 〈α, es, ef〉 ∈ Aactive}
13 foreach e ∈ Ecand do
14 S = S ∪ e
15 if e = es for some a = 〈α, es, ef〉 ∈ A then
16 Aactive = Aactive ∪ {a}
17 DispatchAction(α)
18 ExecmonEventUpdate(es)

19 end

20 end
21 if any e ∈ E \ S is past its window of execution then
22 Error(Temporal infeasibility)
23 return Conflict({e’s temporal window, t = tnow})
24 end
25 ν ←− IsExecutionGood?()
26 if ν 6= ∅ then
27 Error(Activated causal links violated! Replanning needed.)
28 return ν

29 end

30 end

31 end
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Activated Causal Links and Monitor Conditions

Before we dive into these execution monitoring algorithms, we first introduce several

concepts related to causal links. Specifically, we formally define several important

properties of activated causal links, and introduce the notion of a monitor condition.

We begin my defining an activated causal link. Given a set L of candidate causal

links, the activated causal link of this set is the causal link with the latest-occurring

producer finish event.

Definition 2.4.6 (Activated Causal Link). The activated causal link l of a candidate

causal link set L is the single candidate causal link in L that has the latest-scheduled

producer finish event. It is the causal link whose producing action finishes the latest

in time. Formally, given a set of candidate causal links L, the activated causal link

of L is the candidate causal link l = 〈αp, esp , efp〉
p−→ 〈αc, esc , efc〉 ∈ L such that

tefp ≥ te′fp for all other l′ = 〈α′
p, e

′
sp , e

′
fp
〉 p′−→ 〈α′

c, e
′
sc , e

′
fc
〉 ∈ L. In the case of a tie

where two candidate causal links have precisely the same producer finish time, we

choose one arbitrarily.

We proceed by defining a related concept, the activation window for a causal link.

Intuitively, the activation window is the temporal duration during which a causal

link’s predicate must be monitored.

Definition 2.4.7 (Activation Window for a Causal Link). We say that the activation

window for a causal link l is the temporal duration starting from l’s producer finish

event and ending at l’s consumer start event. Formally, the activation window for

a causal link l = 〈αp, esp , efp〉
p−→ 〈αc, esc , efc〉 is the temporal duration tefp ≤ t ≤

tesc . Furthermore, we say that a candidate causal link is activated at time tefp and

deactivated at time tesc .

The execution monitor algorithm activates causal links at the producer event’s

finish time, and deactivates them at the consumer event’s start time. During this

interval, the predicate p must be monitored. Should we find that at some time p does

not hold True, we say that the causal link is violated :
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Definition 2.4.8 (Valid/Violated Causal Link). We say that a causal link is valid

at some time if its predicate is true at that time. Otherwise, if the predicate is false,

we say that the causal link is violated. Formally, a causal link l = ap
p−→ ac is valid

under W at time t if p ∈ W(t). Otherwise, we say that l is violated under W at time

t.

The concept of a violated causal link is central to the execution monitor. As will

be proven shortly, should a causal link be violated, the execution trace is provably

unhealthy.

In addition to causal links, we must also monitor other conditions during exe-

cution. The maintenance conditions of actions fall into this category. Like causal

links, maintenance conditions require some predicate to be monitored continuously

over some duration of time. Thus, in order to generalize the execution monitor, we

introduce the notion of a monitor condition. Intuitively, a monitor condition contains

start and end events from a plan, a predicate to be monitored during the interval be-

tween those start and end events, as well as a reason for being monitored. Both causal

links and action maintenance conditions can be mapped to monitor conditions in a

straightforward way. As such, the online monitor algorithms operate over monitor

conditions to provide a clean formulation (as opposed to causal links and maintenance

conditions dealt with separately). We define a monitor condition as follows:

Definition 2.4.9 (Monitor Condition). A monitor condition is a condition that is

monitored online during the duration between two event in a plan. Formally, a

monitor condition with respect to a plan P = 〈E , C,A〉 is a tuple 〈es, ef , p, r〉 where

es, ef ∈ E , p is a PDDL predicate, and r is a reason. In our context, if r is a causal

link, then the monitor condition represents a causal link whose predicate p is being

monitored. If r is an action a ∈ A, this represents a maintenance condition that is

being monitored over the course of some action being executed.
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Online Execution Monitoring Algorithms

Now that we have introduced all of the necessary formalisms, we describe the execu-

tion monitoring algorithms InitExecmon, ExecmonEventUpdate, and IsExe-

cutionGood?. These online monitoring algorithms make use of a setMactive. Each

element m ∈Mactive is a monitor condition that must be continuously checked. Ini-

tExecmon, shown in Algorithm 6, simply clearsMactive to the empty set. Through-

out the course of execution when ExecmonEventUpdate is called as events are

dispatched, monitor conditions are added and removed from Mactive based on the

causal links and maintenance conditions of actions. The IsExecutionGood? al-

gorithm continuously loops over all m ∈ Mactive to check their validity. We describe

each of these algorithms in more detail in the following paragraphs.

ExecmonEventUpdate The ExecmonEventUpdate is called each time an event

e ∈ E is dispatched (Algorithm 7). It is responsible for performing the following three

tasks: 1.) Adding monitor conditions to Mactive corresponding to causal links being

activated, 2.) Adding monnitor conditions to Mactive corresponding to maintenance

conditions for actions, and 3.) Removing any monitor conditions from Mactive that

are no longer activated. The algorithm as shown executes these three steps sequen-

tially.

Recall from the earlier discussion about candidate causal links that it is benefi-

cial to know which producer actions finish the latest in time. It is this action that

“causes” the consumer action’s preconditions to be met. During the preprocessing

phase, the best that we can do is generate a set of candidate causal links with mu-

tually incomparable producer effects. However, during online execution, we have the

additional information of when certain events have been dispatched. As a result, it is

possible to wait for the latest producer event of all the causal link candidates for some

L. This guarantees that the candidate causal link that we activate is the one with

the latest possible producer event, thereby ensuring that we monitor its associated

predicate only when relevant. The ExecmonEventUpdate algorithm does exactly

this. Each time that ExecmonEventUpdate is called with event e, it will remove
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the candidate causal link from each set of candidate causal links that has a producer

finish event e. If this was the last candidate causal link in the set, then we can be

sure that this causal link has the latest producer action of all other causal links. The

algorithm then activates that causal link.

The offline processing algorithms provide the information about candidate causal

link sets in the form of D, a mapping from events in the plan to sets of candidate

causal link sets. For any event e ∈ E , D[e] = {L1,L2, ...} such that e is the producer

finish event for one of the causal links l ∈ Li. If some action produces multiple

effects, then that action may be the producer in multiple causal links. This is why

D[e] returns a set of candidate causal link sets (as opposed to a single candidate

causal link set); each Li ∈ D[e] represents a different potentially-activated causal link

for which e is the producer finish event. As noted above, the causal link l for which

e is the producer finish event is removed from each Li. If any of these Li are then

empty after the removal, then we know that e is that latest-occurring producer finish

event for all of the candidate causal links that were in Li. Therefore, the algorithm

proceeds to convert the causal link l to a monitor condition m that is subsequently

added to Mactive.

The next step in ExecmonEventUpdate is to create any monitor conditions

corresponding to maintenance conditions that have now become activated. If the

dispatched event e is the start event of any action in the plan, a monitor condition m

is created for each maintenance condition that must be monitored in the plan, ending

at the actions finish event. This m is then added to Mactive.

Finally, the last step in ExecmonEventUpdate is to remove any monitor con-

ditions that have finished. If e is the finish event of any monitor condition m, then m

is removed from Mactive. If m was generated from a causal link, this is equivalent to

deactivating the causal link. If m were generated from a maintenance condition, this

is equivalent to the action ending the maintenance condition no longer being required

to hold True.
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IsExecutionGood? We now describe the IsExecutionGood? method of the

execution monitor, which is called continually at a high frequency fixed interval by

the plan executive Pike algorithm. This method returns a set of conflicts if monitor

conditions/causal links are violated, and otherwise returns the empty set ∅ if no

violations are detected. The algorithm iterates over all monitor conditions m ∈

Mactive, checking to see if the predicate is True. The primitive routine IsTrue

checks observations of the world state, as could be measured by a hybrid estimation

module. Should any violation be detected, a minimal conflict in the form of the

current execution trace, the observed negated predicate, and reason (either a causal

link or a maintenance condition) are returned. This constitutes a minimal conflict,

as removing any of these constraints would resolve any logical inconsistency.

Algorithm 6: InitExecmon

Data: A plan P = 〈E , C,A〉, a set of causal link candidates D
Result: Initializes the execution monitor system.

1 begin
2 Mactive ←− ∅
3 end

Properties and Guarantees of the Execution Monitor

In this section, we prove various properties and guarantees about the execution mon-

itor. These properties related to the proper activation of causal links and the con-

ditions necessary for an execution trace to be healthy. We then proceed with two

crucial proofs: 1.) we prove that if an activated causal link is violated, the execution

trace is unhealthy, and 2.) we prove that if no activated causal link is violated, the

execution trace is healthy.

Lemma 2.4.9. During execution, exactly one candidate causal link will be activated

for every condition p of every action ac in the plan.

Proof. The method GetCausalLinkCandidate is called for every condition p of

every action ac in the plan, and returns a set of candidate causal links L, each with
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Algorithm 7: ExecmonEventUpdate

Data: An event e that is being dispatched, the mapping D from events to sets
of candidate causal link sets

Result: An updated set of activated monitor conditions.
1 begin
2 foreach L ∈ D[e] do
3 Let l = the causal link in L whose producing action’s finish event (efp)

is e
4 L = L \ l
5 if L = ∅ then

6 Let l = 〈αp, esp , efp〉
p−→ 〈αc, esc , efc〉

7 Add 〈efp , esc , p, l〉 to Mactive

8 end

9 end
10 if e = es for some a = 〈α, es, ef〉 ∈ A then
11 foreach p ∈Maintenance(α) do
12 Add 〈es, ef , p, a〉 to Mactive

13 end

14 end
15 Remove from Mactive any m = 〈es, p, ef〉 such that ef = e

16 end

Algorithm 8: IsExecutionGood?

Data: Accesses the set of activated monitor conditions Mactive

Result: A set of conflicts ν, or the empty set ∅ if no relevant disturbances are
detected.

1 begin
2 ν ←− ∅
3 foreach m = 〈es, ef , p, r〉 ∈ Mactive do
4 if Not(IsTrue?(p)) then
5 Add Conflict({r’s constraint, execution trace, ¬p}) to ν
6 end

7 end
8 return ν

9 end
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predicate p and consuming action ac. By the definition of an activated causal link,

exactly one causal link from each L will be activated (the one with the latest producer

finish time). Therefore, there will be an activated causal link corresponding to each

p of each ac in the plan.

We show that all of the activated causal links being valid throughout their activa-

tion windows is a sufficient condition to ensure that the action’s conditions are met

by its start time.

Lemma 2.4.10. If the activated causal link for every condition of an action is valid

under W throughout its entire activation window, the action’s conditions will be met

by its start time under W.

Proof. Let ac = 〈αc, esc , efc〉 be some action in A, with conditions p1, p2, ...pN . Fur-

ther let the causal link candidate sets for each of these conditions be L1,L2, ...,LN ,

and the activated causal link in each of these sets be l1, l2, ..., lN . Each of these li are

deactivated at time tesc , the time at which the conditions must hold true for ac to be

executable. Since we assume that each li is valid under W throughout this window

(up to and including tesc ), we can say that each condition pi ∈ W(tesc ). Therefore,

the action has all of it’s conditions met by its start time under W .

We are now prepared to prove the two most important theorems of this chapter -

namely that the execution monitor is correct. The following two proofs demonstrate

that 1.) if all active causal links have been valid, then the execution trace is healthy,

and 2.) if some causal link is violated, then the execution trace is not healthy.

Theorem 2.4.11. During execution if we observe that all activated causal links have

been valid in their activation windows for time t ≤ tnow, then the execution trace is

healthy at time tnow.

Proof. Proof by construction. Intuitively, our approach to proving this claim is to

construct an extension Tfull to the trace Ttrace, and show that all activated causal

links for this extension will be valid throughout their entire activation windows. We

consider case-by-case activated causal links from the past, present, and future with
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respect to tnow. Since there is an activated causal link for every condition of every

action in the plan (Lemma 2.4.9) that is proved to be valid throughout its entire

activation window, all conditions will be met and our constructed schedule will be

executable. This implies that the current trace is healthy.

We begin by constructing a consistent full schedule extension Tfull to the current

execution trace Ttrace. For each event in the plan unassigned by Ttrace, select any value

within that event’s all pairs shortest path temporal window (as could be computed

by Floyd Warshall). As proven in ([5]), any extension constructed in this way from

a partial assignment will be temporally consistent, so we have constructed a full-

schedule extension Tfull that satisfies all of the temporal constraints of the plan.

Next, we partition all activated causal links into three sets with respect to tnow

and our schedule: those occurring in the past (activated and deactivated in t ≤ tnow),

those active at present (activated during t ≤ tnow and deactivated t > tnow), and

those occurring in the future (activated and deactivated in t > tnow). We show that

all of these activated causal links will be valid under Wpred for their entire activation

windows.

1. Past. Each activated causal link in this set was activated and deactivated in

t ≤ tnow according to Tfull. We have observed inWobs that all of these activated

causal links have been valid for t ≤ tnow, which entails their entire activation

windows. Since Wpred(t) = Wobs(t) for all t ≤ tnow, we can say that all past

activated causal links have also been valid under Wpred throughout their entire

activation windows.

2. Present. These activated causal links have been valid for all t ≤ tnow under

Wobs. By an argument similar to the above past case, each causal link l = ap
p−→

ac has also been valid under Wpred(t) for t ≤ tnow, which accounts for a portion

of of its activation window. We need to show that l will also remain valid under

Wpred for the other portion of its activation window, which resides in t > tnow.

We begin by noting that all activated causal links are valid underWpred at time

t = tnow, and for all t > tnow recall that Wpred(t) = Wideal(t). Therefore under
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Wpred, all predicates true at time tnow will continue to hold true indefinitely

into the future until modified. Since l is an activated candidate causal link,

its producer ap has the latest possible finish time of all causal link candidates

in its causal link candidate set. Additionally noting that by the definition of

a causal link no other action may threaten to negate p during its activation

window, there can therefore be no other action a′ that has a finish time after

ap and before ac’s start time that affects p. Thus, p will continue to hold until

ac’s start time, which marks its deactivation time. Therefore, l is valid under

Wpred throughout its entire activation window.

3. Future. These activated causal links will be activated and deactivated in t >

tnow. We need to show each future activated causal link l = ap
p−→ ac will

be valid under Wpred throughout its entire activation window. By a similar

argument to above present case, we know that ap is the last possible action that

can affect p before ac’s start time. Since Wpred(t) = Wideal(t) for all t > tnow,

p will therefore remain true under Wpred throughout l’s activation window.

Therefore, l is valid under Wpred throughout its entire activation window.

We have thus shown that all activated causal links - past, present, and future -

will be valid under Wpred during their entire activation windows. By Lemma 2.4.9,

there is an activated causal link for every condition of every action in the plan. These

activated causal links will be valid throughout their entire activation window by what

we have proven above. Applying Lemma 2.4.10, we have sufficient conditions to show

that every condition of every action in the plan will be met under Wpred. Therefore,

our schedule Tfull is executable under Wpred, and so the execution trace Ttrace is

healthy.

Theorem 2.4.12. During execution if an activated causal link is violated, then the

execution trace is not healthy.

Proof. Let the execution trace be Ttrace, the current time be tnow, the causal link be

l = ap
p−→ ac, and the causal link candidates set corresponding to p and ac from which
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l originated be L. For l to be violated at tnow, ¬p ∈ Wpred(tnow). Intuitively, our

approach is to prove that no other action that produces p can finish after ap finishes

and before ac starts, and hence ¬p will continue to hold in all possible schedules when

ac (which requires p) should have been executed.

By Theorem 2.4.8, the set L is complete - it contains all causal link candidates

for ac and p. Therefore, there can be no other action a′ such that ap ≺ a′ ≺ ac that

produces p as an effect. Additionally, for l to have become an activated causal link, ap

must have been the last producer candidate of the causal links in L to finish. There

is therefore no action a′ that asserts p and is schedulable to finish after ap’s finish

event and ac’s start event that can re-assert p.

We wish to check whether Ttrace is healthy, or namely if there exists an extension

Tfull to Ttrace that is executable underWpred. Since for t > tnow we have definedWpred

to behave like Wideal, ¬p will continue to hold since no other action is schedulable to

assert p before ac. The condition p of ac can therefore not be met in any schedule, so

the execution trace is not healthy.

Based on the above theorems, we now have a satisfactory condition to describe

relevant disturbances. Since the validity of all activated causal links constitutes a

healthy execution trace yet a violation of any activated causal link yields an unhealthy

trace, we can say that any disturbance in the world that violates the predicate of an

activated causal link is a relevant disturbance. Any other disturbance which does not

violate a causal link is an irrelevant disturbance.

2.5 Algorithmic Performance Analysis

In the previous sections, we presented algorithms for the Pike plan executive and exe-

cution monitor, and proved various properties and guarantees about these algorithms.

In this section, we will analyze the computational complexity of these algorithms.

It is very important that we consider the context with which these algorithms

are used. In a robotic system, a generative planning algorithm will often be used

to generate the plan P that Pike is given as input. Once generated, Pike will then
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proceed to execute that plan while simultaneously monitoring its progress. Generating

these plans is however a computationally intensive task that should not be neglected.

Planning has been proven to be NP-hard, and as we will show shortly, all of the

algorithms we have presented thus far relating to the plan executive and execution

monitor have polynomial computational complexity. Therefore, in many practical

situations, planning will often be “computational bottleneck,” not the algorithms

presented in this thesis.

2.5.1 Offline Algorithm Complexity

In this section, we analyze the complexity of the offline algorithms - specifically,

PreprocessPlan, GetCausalLinkCandidates, and UpdateProducerCan-

didates.

Suppose we are given a plan P = 〈E , C,A〉 and. Let |A| denote the number of

actions in the plan. We begin with the most deeply nested function, UpdatePro-

ducerCandidates, and will work our way upwards. In this function, the set of

producer candidate actions ξ, may contain at most |A| elements (|ξ| = O(|A|)). The

worst-case complexity is therefore O(|A|). We argue however that for most reasonable

plans constructed deliberately by a generative planner, ξ will in fact be small. In this

case average case, the complexity of UpdateProducerCandidates will be closer

to O(1). Since we cannot guarantee the size of ξ however, we will simply leave this

value unevaluated and say that the complexity of UpdateProducerCandidates

is O(|ξ|).

Next, we consider GetCausalLinkCandidates. We assume that primitives

such as checking the existence of a predicate in the effects of a PDDL action take

constant O(1) time. This function iterates over each action in A. Then, the complex-

ity of GetCausalLinkCandidates is thus dominated by the first pair of loops and

the inner most call to UpdateProducerCandidates, and will operate in O(|A||ξ|).

It’s also important to note that the size of the candidate causal link set returned will

be |ξ|.

We now consider ConstructActionGraph. The first steps are the most com-

87



putationally intensive - the Floyd Warshall algorithm is cubic in graph size. This

dominates the cost of the algorithm, which has complexity O(|A|3).

Next, we consider the top-level method PreprocessPlan. The first step con-

structs an action graph, which has complexity O(|A|3). This function iterates over

all actions a ∈ A, and over all conditions p that are preconditions or maintenance

conditions of a. Suppose that in the PDDL domain being planned over, each action

has at most c conditions (c will vary in different domains, but will generally be a small

constant). The outer two layers thus iterate c|A| times, and the inner-most loop it-

erates once for every element in L, which has size |ξ|. Therefore, the complexity of

PreprocessPlan is O(|A|3 + c|A|(|A||ξ|+ |ξ|)). Since |ξ| = O(|A|), the complexity

of the algorithm as a whole can be safety approximated as O(|A|3) recalling that c is

a constant.

As noted above, it is likely in many realistic applications that this polynomial

complexity in problem size will be overshadowed by the NP-hard planning problem.

2.6 Experimental Validation

In addition to the theoretical analysis above, we have also performed experimental

analysis of the Pike plan executive. We present our results in this section.

2.6.1 Experimental Setup

We wish to measure various properties of the execution monitor, such as its latency

in detecting relevant disturbances during execution and the time required for the

preprocessing stage.

In order to make such measurements, we developed a testing and benchmarking

platform capable of automatically generating random PDDL problems and corre-

sponding temporal plans. This platform is also capable of simulating the plant for

arbitrary PDDL domains, thereby allowing Pike to control a simulated environment in

which disturbances can arbitrarily be injected. The plant responds to PDDL actions

dispatched by the executive and updates the world state accordingly, incorporating a
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random disturbance model that may randomly at any point remove some predicate

from the world state. The plant additionally broadcasts the world state at a constant,

high-frequency interval for processing by the execution monitor. By measuring the

times at which the disturbance is injected into the system and the time at which the

failure is signaled, we may benchmark the execution monitor’s latency.

Random plans are generated by generating sequences of random executable actions

which when pieced together form a plan with a well-defined goal state. In this way,

we are able to easily generate PDDL problems and plans with a controlled number

of actions for PDDL domains.

We characterized the latency of the execution monitor using our benchmarking

platform and a temporal variation of the BlocksWorld domain. Specifically, we

generated random plans with 5 actions each, and used Pike to dispatch these plans

online. At some randomized time during the middle of executing each trial, a dis-

turbance was injected in the form of removing a random PDDL predicate from the

world state. If the execution monitor signaled failure (the random disturbance was

relevant), the latency is measured. This experiment was performed thousands of

times.

Please see Figure 2-14 for a latency histogram of the execution monitor. Please

note that typical latencies are around 20-60ms, which is on the same order of magni-

tude as some implementation-related socket wait calls). Additionally, we must note

that the execution monitor checks received predicates at a rate of 100Hz. These re-

sults were generated using the BlocksWorld domain, with plans of 5 actions long

over thousands of trials. We note that the latency time is generally very small, and

empirically quite tolerable for reactive fault detection on real robotic systems.

In addition to latency, we also empirically characterized the time required to

preprocess a plan and extract sets of candidate causal links. Please see Figure 2-15.

This plot illustrates the preprocess time as a function of the number of actions in the

plan, which range from 1 action to roughly 150 actions. This plot is roughly cubic as

expected, and is dominated by the computation of the all-pairs shortest path used for

evaluating the ≺ relation for actions in the plan. We suspect that the small “dips”
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Figure 2-14: The latency, measured in seconds, of the execution monitor. Thousands
of PDDL blocks world domains were randomly generated, along with random plans
with 5 actions each. Pike was then tasked with executing these random plans. During
execution, at some random time point, a disturbance (in the form of removing some
predicate from the world state) would be injected, and the time differential from
when the disturbance was injected to when the execution monitor signaled failure (if
a causal link was violated) was measured.
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Figure 2-15: The preparation time in seconds as a function of plan size. This plot
is approximately cubic, and is dominated by the computation of the Floyd Warshall
APSP algorithm. The black dots illustrates the raw preparation times from each
trial, and the blue line averages each set of Nactions = k for some k over its 25 trials.

91



in the graph are the result of our LISP environment performing online hash table

optimization.

We additionally note that, though the system at present may take up to a minute

for large plans of approximately 150 actions, these plans are much larger than typical

plans for systems. In these situations, a generative planner would likely take much

longer to generate such a plan. For more realistic plans of 20 actions or less, the

preparation times were considerably more reactive.

2.7 Chapter Summary

In this section, we introduced the core technical work of this thesis. Namely, we

presented Pike, a plan executive capable of dispatching and monitoring temporally

flexible plans consisting of actions with preconditions, maintenance conditions, and

effects. These algorithms are capable of quickly and efficiently deducing whether

or not an execution trace in progress is healthy, or if replanning is needed because

the plan will not succeed. Our approach to solving this problem was to extract sets

of candidate causal link sets offline before dispatching is done. The extraction of

candidate causal links, and the non-existence of a unique set of these links, is a core

novel contribution of this thesis.

Once sets of candidate causal links have been extracted, they are monitored on-

line as the plan is dispatched. This allows Pike to immediately detect any relevant

disturbances that can jeopardize the plan.

In the subsequent chapters of this thesis, we build upon the Pike plan executive

and use it to construct further robust systems. In the next chapter, we combine Pike

with a temporal generative planner called TBurton in order to create the TBurton

Executive, a system capable of robustly meeting a users goals through replanning

when the execution monitor signals failure. In the following chapter, we make use of

this idea of a generative planner combined with the Pike plan executive to demonstrate

an innovative application implemented in hardware: a robust, voice-commanded robot

capable of stacking blocks.
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Chapter 3

The TBurton Executive

Broadly speaking, a planner is responsible for computing a sequence of actions to

be carried out by a robotic agent that will (in theory) take the world from some

initial state to a given desired end state, given an appropriate model for how the

world behaves. Once such a sequence of actions is generated, a separate module

is then responsible for actually executing the plan and ensuring that it is carried

out properly. The union of these two pieces, namely the planner and the execution

component, is collectively called the executive.

In this chapter, we introduce the TBurton executive, a system capable of gen-

erating plans and subsequently executing them robustly with Pike in order to meet

a user’s goals. Goals are specified at a high level that is intuitive to the user, and

execution is guaranteed to be robust to a number of possible disturbances.

We begin this chapter by providing an example to motivate the TBurton exec-

tutive. We then boil down the salient features of this example into a set of key

requirements that the TBurton executive must meet. Next, we introduce our system

architecture to meet this requirements, defining the input/output relations of each

submodule. This architecture makes use of the Pike plan executive with execution

monitoring developed in the previous chapter.
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Figure 3-1: At left, an illustration of a mass-production automotive facility. The
robots execute the same task repeatedely with no variation, thanks to a precisely-
designed environment where nearly all variability is engineered away. At right shows
a typical modern aircraft manufacturing facility. Due to the different nature of the
product being produced, mass-manufacturing techniques and a highly-engineered en-
vironment aren’t easily implementable.

3.1 Motivation

Today’s mass-production factories draw a clear separation between the tasks that

robots perform and those that are carried out by people. The robots are often used

for monotonous tasks that are constantly repeated with little or no variation, whereas

people are typically used for the more advanced tasks in which problems may more

easily arise. For example, in a typical car manufacturing plant, robots may perform

welding or painting operations by repeating pre-programmed instructions over and

over for each car that comes down the assembly line. Since each car comes down ar-

rives at precisely the same location with respect to the robot, no changes or alterations

to the plans are required; the robots may playback their preprogrammed command

sequence. People on the other hand are used for more complicated assembly tasks

that require fine dexterity and inspection abilities - namely those tasks where there

is variability and decisions may need to be made. However, in certain manufacturing

settings, a precisely engineered environment is not always feasible. As such, it would

be very useful to endow our robots with a greater sense of autonomy and ability so

that they will still be able to contribute to the manufacturing process. Figure 3-1

illustrates this.
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To motivate the usefulness of the TBurton executive, we will present here a ficti-

tious story illustrating our vision for the system set in the context of robotic manu-

facturing.

Consider an airplane manufacturing facility of the future in which teams of au-

tonomous robots work hand-in-hand with teams of humans as equals. These robots

are capable of reasoning about their environment, and have a rich model of the world

that enables them to make informed decisions.

During the process of assembling a wing for one of the company’s airplanes, a

human operator may ask a robot, “Robot, please finish assembling the winglet and

bring it to pallet 4 when you’re finished. We need this done in 20 minutes so that we

stay on our tight schedule.”

Once given a set of commands, the robot is able to autonomously go and complete

it’s task. Using it’s world model and the desired state goals (finished wing assembly

in pallet 4) and temporal constraints (complete in 10 minutes), the robot generates

a plan of action for how to proceed. Such a plan may include the following steps:

1. Locate the winglet in the factory and go there [0 - 1 minutes]

2. Finish tightening the bolts and make the final welds to complete the winglet [3

- 6 minutes]

3. Pick up the winglet [30 seconds]

4. Transport it to pallet 4 [3 - 6 minutes]

5. Place the winglet down [30 seconds]

These actions, under nominal circumstances, will allow the robot to complete its

task successfully. However, a key observation is that there are a number of opportu-

nities for things to go wrong with respect to this plan. For example, the robot may

notice that one of the bolts is damaged, or the robot may find that there is already

some other object sitting on pallet 4 and hence the winglet cannot be put down there.

In each of these situations, some assumption made by the robot when generating it’s
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initial plan has been violated. A solution is to replan given the current knowledge of

the world. Taking the example where there is already another subassembly on pallet

4, the robot may generate a new plan to put the winglet on pallet 5 if it is free. This,

however, may cause the robot to violate it’s temporal constraints, as it may need to

drive considerably farther to get to pallet 5. In this case, there may be no feasible

plan that will satisfy all of the user’s desired constraints - a negotiation process is

therefore required to find a desired way to relax certain constraints in a satisfactory

manner.

3.1.1 Key Requirements of the TBurton Executive

In this section, we will boil-down the salient features that we desire for the TBurton

executive from the above scenario. These are the most important aspects of the

TBurton executive, and our architecture is central to achieving these requirements.

1. Goal specification in a high-level language. The factory worker was able

to command the robot intuitively through language at a high level by specifying

goals to be accomplished, not details on how to accomplish them.

2. Execution monitoring to detect relevant problems during execution.

Executing plans open-loop without sensor feedback is very brittle due to dis-

turbances and uncertainty in the world. Closed-loop feedback in the form of

execution monitoring is a requisite to achieving robust task execution in the

face of these difficulties.

3. Recovery through replanning. Once a robot detects potential problem in

the world, it must chart out a new course of action that will achieve the desired

goals within the desired temporal constraints.

4. Generate least-commitment plans that maximize execution flexibility.

The plans generated by the robot should contain built-in flexibility in the form

of set-bounded temporal constraints.
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3.1.2 TBurton Executive Problem Statement

In this section, we intuitively and then formally define the problem statement for the

TBurton executive. Please note that we will make use of the formalisms developed

in the previous chapter of this thesis.

From a high level, the job of the TBurton executive is to robustly meet a users

goals in the face of unexpected disturbances. It must take in the user’s goal in a

high level format that specifies what the user wants, not how to accomplish it. For

example, we wish to command the robot with goals such as “Build a red tower of

blocks in no more than 2 minutes. Once you’ve finished, wait 3 minutes and build a

blue tower of blocks next to it.” Notice that this goal specification actually specifies

multiple different subgoals (red tower and blue tower) in addition to allowing temporal

constraints to be specified.

The TBurton executive must additionally be given a set of operators describing

possible actions in the world. These operators will form the basis for the actions in the

plan that TBurton generates to achieve the goals. These operators may additionally

have temporal constraints in the form of variable durations.

Finally, the TBurton executive must have access to world state estimates in order

to deduce the state of the world. This is necessary for detecting when a disturbance

jeopardizes the plan.

We now present an intuitive definition of the TBurton Executive. The TBurton

Executive takes in the following inputs:

• A high-level goal specification consisting of state requirements and temporal

constraints

• A set of operators describing the possible actions the TBurton executive may

execute

• Estimates of the world state over time

It generates the following outputs:
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• A dispatch of actions whose preconditions, maintenance conditions, and effects

are met such that the goal conditions are satisifed, or Failure if at any point

it is determined that no such sequence of actions can exist.

In the following sections, we will introduce formalisms for the above in greater

detail. We will then proceed to reformulate the TBurton executive problem rigorously

using these formalisms.

3.1.3 Qualitative State Plans (QSP’s)

In this section, we will describe the TBurton executive’s goal input form, namely the

Qualitative State Plan (QSP), in greater detail.

Unlike the goal form used in classical planners, which consists just of a conjunction

of PDDL predicates, the QSP additionally captures the notion of timed goals. If we

want to specify that some subgoal or conjunction of predicates hold true during one

time window, and another hold true during a different time window, then we would

need to use a goal representation similar in spirit to QSP’s. Intuitively, QSP’s are

very similar in formal structure to the temporal plan we described in the first chapter

of this thesis. However, instead of containing PDDL actions that label pairs of edges,

we instead use conjunctions of PDDL predicates representing goal conditions that

must satisified during that time window.

The QSP was used extensively in the goal represention for work in generating

reactive execution policies for a bipedal walking robots ([16]). The word “Qualitative”

refers to the hybrid-nature of this work, in which different controllers were used to

control the bipedal model in different regions of state space, where each different

region was called a qualitative state (for example, toe off, toe strike, etc). We now

use qualitative for a similar purpose, in that we specify some properties about the

world we desire to be true.

Formally, we define a QSP as follows:

Definition 3.1.1 (Qualitative State Plan). We define a Qualitative State Plan (QSP)

as a tuple 〈E , C,S〉, where:
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• E is a set of events. Each event e ∈ E is associated with a specific point in

time te ∈ R. Additionally, there is some distinguished event estart ∈ E that

represents the first event and for which testart = 0.

• C is a set of simple temporal constraints over the time points in E .

• S is a set of state requirements. Each s ∈ S is a tuple 〈σ, estart, eend〉. σ is a

conjunction of PDDL predicates specifying desired goals that must hold True

for all t in the interval testart ≤ t ≤ teend
.

As can be seen above, the QSP is defined very similarly to the temporal plan,

with the exception that conjunctions of PDDL predicates are used to label certain

edges instead of executable PDDL actions as in a temporal plan.

3.1.4 Satisfaction of a QSP

We now define one final concept in order to introduce how a QSP can be evaluated.

Intuitively, we wish to determine whether all of the goal conjunctions in a QSP hold

at their proper times. This necessitates some way to evaluate the state of the world

at particular times, and so we hence make use of the world state function formalisms

developed in the previous chapter. We define what it means for a schedule of a plan

to satisfy Q under W :

Definition 3.1.2 (Schedule Satisfying a QSP). Given a schedule Tfull for a plan P ,

and a QSP Q = 〈E , C,S〉, we say that the schedule Tfull satisfies Q under W if for

each s = 〈σ, estart, eend〉 ∈ S, σ ⊆ W(t) for all t in the range testart ≤ t ≤ teend
(Please

note that the actions of P may implicitly be required in the evaluation of W(t)).

This concept is analogous to that of a schedule being executable for a temporal

plan P . We now define a concept for QSP’s similar in spirit to the healthiness of

an execution trace. Namely, we wish to query whether it is possible for the current

execution trace to possibly result in a full-schedule extension where Q is satisfied.

We therefore define what it means for an execution trace to be on track to satisfy a

QSP:
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Definition 3.1.3 (Satisfiable Execution Trace). Given an execution trace Ttrace for

a plan P and a QSP Q = 〈E , C,S〉, we say that the execution trace Ttrace is on track

to satisfying Q if there exists a full-schedule extension to Ttrace that is satisfied under

Wpred(t).

3.1.5 Formal Problem Statement

By this point, we have defined all of the formalisms necessary to define the TBur-

ton Executive planning problem. We do so here in order to augment our intuitive

description provided earlier with a more rigorous definition now that the requisite

formalisms have been defined.

The TBurton Executive takes in the following inputs:

• A Qualitative State Plan Q describing time-evolved goals to be met

• A set of PDDL operator schema {O1,O2,O3, ...} describing the possible actions

the TBurton executive may execute

• Observed world state estimates Wobs(t) valid for all time t ≤ tnow

It generates the following outputs:

• The execution of a plan P (which may be modified several times throughout

the course of execution) such that the finalized schedule resulting at the end of

execution satisfies Q under Wpred.

• The TBurton Executive must return immediately should it be determined that

there is no P where the current execution trace could satisfy Q.

3.2 TBurton Executive Algorithms

In this section, we present the core algorithm for the TBurton executive. This al-

gorithm makes use of two subcomponents: The TBurton generative planner, and

Pike.
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Figure 3-2: The architecture of the TBurton executive. The key components are the
TBurton Planner, responsible for generating temporal plans given a QSP (qualitative
state plan) input with an action schema specified in PDDL, and Pike, responsible
for dispatching the plan and monitoring its progress online. The dispatcher sends
command out which are implemented by the plant. State estimates return to the
online phase of the execution monitor.
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Algorithm 9: TBurtonExecutive

Data: World state observations Wobs(t) to determine the initial state, a goal
specification in the form of a qualitative state plan Q,
ops = {O1,O2, ...}

Result: A mapping D of events to sets of candidate causal link sets, or
Failure if the plan is not executable under Wideal

1 begin
2 Conflict←− ∅
3 P ←− Null
4 repeat
5 (P , f)←− TBurtonPlan(Wobs(tnow),Q, ops, tnow,P , Ttrace, Conflict)
6 if f then
7 〈Success, Conflict〉 = Pike(P , ops)
8 else
9 return Failure

10 end

11 until Success = True

12 end

The TBurton planner is a temporal, generative planner goal-regression planner.

TBurton stands for ”Temporal Burton”, and is similar in spirit to the Burton planner

developed in [30]. The Burton planner takes as its input a concurrent transition

system, which specifies a set of variables (partitioned into state variables and control

variables), domains for those variables, and transitions described in propositional logic

that map states to next states. Burton operates by compiling this transition system

into a representation that allows very efficient online execution without an explicit

mechanism to detect threats.

For the purposes of this discussion, we model it as a PDDL planner in that it is

capable of taking in a QSP Q, initial world state, and set of PDDL operator schema

as input and return a temporal plan P , all of the consistent schedules of which satisfy

Q under Wideal. While the native input representation to TBurton is not actually

in fact PDDL (it is a timed concurrent constraint automata model), the TBurton

Planner is capable of converting between these two representations.

We assume that the function TBurtonPlan(W0,Q, ops, tnow,P0, Ttrace, Conflict)

returns a tuple 〈P , f〉 where f stands for “found” and is a binary variable indicating
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whether or not a plan P was found that satisfies Q under Wideal. The input plan

P0 and corresponding executiont race Ttrace is some initial plan, which is modified

by inserting new actions at proper times. The TBurtonPlan function also takes

in the current world state, a desired QSP, and a set of PDDL operator schema. The

Conflict argument allows a conflict to be provided that may speed up the search

process. This is the conflict that is returned by the Pike plan executive.

An architecture diagram for the TBurton executive is shown in Figure 3-2, and

psuedo code for the algorithm is shown in Algorithm 9. Intuitively, the algorithm

proceeds by continually building up a temporal plan P using the TBurton planner.

The plan is then executed using Pike. If Pike returns an unsuccessful result because

of a disturbance that occurs, the TBurton Planner is continually re-called (thereby

adding more actions to P and advancing in time) until either Pike finally succeeds

at executing the plan (and hence the users goals have been met), or there is no such

possible and Failure is returned.

The TBurton Executive is very “persistent” at attempting to reach its goal.

Should the execution trace for a current plan be deamed unhealthy by Pike, the

TBurton Executive responds by generating a new plan that should in theory be exe-

cutable. This allows the robot system to chart a new course of action and overcome

disturbances.

3.3 Chapter Summary

In this chapter, we introduced the TBurton Executive, a system that makes use of

the TBurton temporal generative planner and the Pike plan executive to robustly

meet a user’s goals that are specified in a high-level form. The TBurton executive is

a continuous planning and execution system, and reacts to disturbances in the world

that would otherwise preclude successful execution of the current plan by generated

a new, augmented plan that will meet the users goals.
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Chapter 4

Innovative Application:

Voice-Interactive Robotic

Manufacturing

While there have been countless discussions over the years as to what constitutes true

“intelligence” in artificially intelligent robotic systems, many (including the author)

argue that high-level interaction with the robotic agent is a key component. A robotic

system that is able to accept user-specified commands at a high level, reason over

them sufficiently to execute them even in the face of disturbances, and subsequently

explain any rationale behind choices made or problems encountered seems to be, at

least to the author, a very good indicator of an artificially-intelligent system. In

this chapter, we introduce a robot that aims to meet these goals in a limited context.

Specifically, we design a robot - tested in hardware and in simluation - that is capable

of robustly meeting user specified goals in the ever-present face of disturbances, while

simultaneously verbalizing any problems that arise at an intuitive, high level to the

user.

Our system is set within the context of robotic manufacturing. We implement

an executive similar in spirit to the TBurton executive (but using the FF planner

instead) as a key subcomponent of a system demonstrating robust recovery from

failure as well as voice-commanded robotics. We begin by re-iterating our vision for
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the future of robotic manufacturing. Then, we continue on to describe the capabilities

and implementation of our robotic system.

4.1 Robotic Manufacturing: Our Vision

As discussed in an earlier chapter of this thesis, current robots employed in factories

are often used to perform repetitive tasks with little to no variability. While capable

of high efficiency in well-controlled settings, such robots encompass a minimal ability

to respond to failures that may arise or to adapt autonomously to new situations.

Additionally, humans are not permitted near such robots due to their lack of sufficient

sensors for safe operation.

We envision a future in which humans and robots will work alongside one another

in a factory setting, working as a team to accomplish their fabrication-oriented goals.

Of the many requirements for such robots, we focus on the following:

• Fluent and natural communication with the robot using high-level language

• Ability of the robot to autonomously adapt to new situations and disturbances

We have implemented and tested a simplified version of such a robotic manufac-

turing task that meets these goals, and will describe it in the next section.

4.2 System Capabilities

We will now describe the capabilities of our robotic manufacturing agent designed to

work alongside humans. A picture of our hardware testbed is shown in Figure 4-1.

The robotic manufacturing scenario consists of a WAM (Whole Arm Manipula-

tor) produced by Barrett Technologies complete with a hand, a number of brightly

colored boxes marked with fiducial tags, a rolling cart, and a number of inexpensive

webcams (not shown). The goal of this scenario is for the robot to autonomously

create assemblies of blocks which are stacked on top of the cart despite any number

of disturbances that may occur.
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Figure 4-1: Our implementation of a robotic manufacturing agent. The Barrett
WAM (Whole Arm Manipulator) is capable of manipulating colored blocks, which are
each marked with a fiducial for sensing purposes. It is capable of robustly creating
assembling stacks of blocks on the cart.

We argue that this situation encompasses many of our key goals for intelligent

factory robots. Although robots working in a real aerospace manufacturing facility

would likely be tasked with more complex tasks in terms of manipulation and grasp-

ing (for example, a real manufacturing robot may be welding, screwing in bolts, or

handling assemblies with more complicated geometries), we feel that our simplified

block-stacking robot strikes a good balance between the practicality of implementing

an academic demo and demonstrating our key research algorithms, which are the fo-

cus. We aim to focus on the planning, monitoring, and verbal interaction aspects of

this robot rather than it’s motion planning and grasping details, which are currently

out of the scope of this project.

When the scenario begins, a human co-worker approaches the robot and identifies

him or herself, saying “This is Steve.”. The robot then politely asks the person,

“Hello, Steve. What can I do for you today?” To this, the person may give any

number of possible commands, such as “Make assembly A”, “Unload the cart”, etc.
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Upon making such a request, the robot will immediately proceed to accomplish it’s

goal. It autonomously generates a plan for how to achieve the goal using the generative

planner. Additionally, while the plan is executing, the array of webcams continuously

monitor the world state by tracking the fiducial locations on the blocks and cart.

Should a disturbance occur, such as a block falling or being moved by a person, the

execution monitor will detect it and, if necessary, signal for a re-plan. In this way,

the robotic agent is robust to failure. Blocks may be moved around by a malicious or

a benevolent person. Each time a disturbance relevant to the plan occurs, the robot

will automatically discern a new course of action to reach the goal state and execute

it.

4.3 System Architecture

In this section, we describe the overall system architecture and the theory of operation

of our demo from a high-level. The next section of this thesis will discuss each section

in greater detail and include implementation information.

From a high level, the software architecture consists of the executive, an Activity

Dispatcher that is responsible for actually executing the PDDL commands dispatched

by Pike, a simulation, a computer vision module, a hybrid state estimation module,

and a speech module. The executive is implemented in LISP, and the rest of the

system is programmed in Python or C++. The Robot Operating System, or ROS, is

used as the glue that binds the modules together. Additionally, the simulator used

in our scenario heavily builds upon the OpenRAVE simulator [7].

When the demo begins, the speech module has a short conversation with the

person in order to extract his or her goals for the robot. Upon receiving a verbal

command such as ”Make assembly A”, it is forwarded to the executive where various

commands correspond to PDDL goal conditions, namely conjunctions of instantiated

PDDL predicates. For example, the “Make assembly A” phrase maps to the PDDL

goal (and (on-cart RedBlock Cart) (on MediumPinkBlock RedBlock)). Other

commands, such as “Make assembly B” or “Unload cart” have similarly defined map-
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pings. Using these goal conditions and a set of initial conditions (also instantiated

PDDL predicates), the executive creates a plan and begins dispatching it on the robot.

Upon dispatching a PDDL action, Pike sends the action (via a ROS message) to the

Activity Dispatcher, which is responsible for coordinating execution in the simulator

and calling any necessary motion-planning libraries. The resulting trajectories are

then sent to a lower level, to the WAM hardware controller that communicates via

CAN bus to the WAM arm and physically actuates the robot and sends proprioceptive

sensory information such as current joint angles back up into the simulator.

The visual tracking system is running at all times, and consists of a number of ROS

packages designed to track the black and white coded fiducials placed on the blocks

and cart. This data is however in practice extremely noisy, so a series of filtering

algorithms are used to extract more meaningful pose data, which is re-routed back

to the simulation to update the estimated positions of the blocks. The simulation

then sends the block locations and robot kinematics to the state estimation module,

which attempts to estimate the PDDL predicates that are believed to be true in the

world (this is the level of abstraction at which the executive operates). These state

estimates are in turn used by the Execution Monitoring module within Pike.

A key architectural choice is that all of the hardware control and sensing informa-

tion goes through the simulation environment before being dispatched to the actual

hardware. This was a conscious decision, and allows us to purposely turn off the

hardware and just use the simulation alone if we so desire. In this case, the simula-

tion environment can simulate faults or random disturbances. Such a design allows

the software to be run on any computer, irregardless of whether a robot is attached

or not, and also allows for extensive automated testing in simulation.

4.4 System Components

In this section we’ll describe each component in greater detail, including implemen-

tation details. Figure 4-2 shows the complete implementation diagram.
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Figure 4-2: The system architecture, as implemented.
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Figure 4-3: Our simulation environment, which builds upon the OpenRAVE environ-
ment for it’s 3D display as well as motion-planning capabilities.

4.4.1 Simulation Environment

We begin by describing the simulation environment, which aside from the execu-

tive, is a central piece of architecture. Our simulation environment, a screenshot of

which is shown in Figure 4-3, builds upon the open source OpenRAVE platform [7].

OpenRAVE provides a number of useful tools, such as a 3D simulation and collision

detection environment, robot models, a number of motion planning functions such

as BiRRT, and convenient Python and C++ language bindings. We use OpenRAVE

with it’s Python bindings to implement functionality within our testbed. Aside from

the Execution Monitoring, implementing this simulator was a key piece of my work

in support of this thesis.

As alluded to briefly earlier, the simulation environment is capable of operating

in two modes: 1.) Pure simulation in mode, in which no hardware or external sensors

are attached, and 2.) Hardware-Mirroring mode, in which the simulator mirrors the
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Figure 4-4: Simulation Mirroring of the Hardware. Using the camera array and pro-
prioceptive sensors of the WAM arm, a 3D model can be constructed that accurately
reflects the real environment, mirroring changes in real time. Note the similar pose
in the testbed and simulation above.

hardware.

Pure simulation mode is useful for performing extensive automated testing where

a person does not need to be present. It is also useful in situations where a robot is

unavailable, hardware is being repaired, or it is desired to run the software away from

our lab. In this mode, the robot is assumed to have perfect joint position control,

and the location of all of the blocks are assumed to be perfectly observable with no

measurement noise. It is easily possible to extend the simulation to simulate measure-

ment noise, however. It is additionally possible to easily extend the simulator to insert

random disturbances, such as blocks moving on top of each other spontaneously, for

automated testing purposes.

In Hardware-mirroring mode, the simulation is connected to the hardware through

all of the modules presented below the Simulator in Figure 4-2. Intuitively, the simu-

lator attempts to reproduce the state of the real world, as shown by the similarity of

the two in Figure 4-4. Namely, proprioceptive sensory information in the form of joint

angles are sent from the WAM arm hardware controller to the simulator to update the

kinematics of the arm in simulation (and also the computed gripper pose). Sensory

information from the visual tracking module is also sent to the simulator, where it is

used to update the poses of all of the blocks and the WAM arm with respect to each
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other, thereby providing a realtime updated model of the world from within the Sim-

ulator environment. Finally, all motion plans that result from dispatching activities

are forwarded to the WAM hardware controller. Thus, in hardware-mirroring mode,

the simulator provides a transparent interface to the hardware. Switching between

hardware-mirroring and pure simulation modes is as simple as running the Simulator

with a different command line argument.

The Simulator provides a number of key pieces for our scenario, the most obvious

of which is a 3D display showing the current world state. This is invaluable for

providing debugging information and for understanding the internal model of the

world used by the robot.

Additionally, OpenRAVE provides a number of tools that we leveraged in con-

structing our demo. Kinematic models of the Barrett WAM arm existed, as did tools

for easily creating blocks, carts, and other objects to be visualized in the world. We

made extensive use of these. OpenRAVE also provides excellent motion planning

capabilities and the ability to compile an efficient inverse kinematics database for

a robot. Our WAM arm has seven degrees of freedom (not including the fingers

or hands), and OpenRAVE was able to provide inverse kinematics and joint angle

trajectories via a BiRRT for picking up and manipulating the blocks.

4.4.2 WAM Hardware Testbed

In this section, we will describe the physical hardware in the testbed. We use a

seven degree of freedom Barrett WAM (Whole Arm Manipulator) equipped with a

3-fingered Barrett Hand. The WAM arm is quite dextrous and fast, and it is also

extremely backdrivable and void of backlash due to its use of a cable-differential

drive system instead of the more traditional gearing system used on many other

robots. With seven degrees of freedom, the arm is kinematically redundant; there are

a number of possible joint angles that yield the same end effector pose. It is possible

to command arbitrary cartesian positions and orientations simultaneously around the

robot, making it ideal for picking up oddly-placed blocks in our testbed.

The Barrett Hand contains three independently actuatable fingers, two of which
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can also spin around symmetrically about the middle. Additionally, the secondary

joint on each finger has a slip differential such that when the first joint makes contact

with an object and stops, the second joint will then continue moving. This usually

results in a firm grip on the object being manipulated.

Both the WAM arm and the Barrett Hand are controlled via an external PC.

This computer is connected to the WAM arm via a CAN bus, and to the hand via

standard RS232 serial. Our external PC is running Ubuntu 11.04 (required for ROS

diamondback) with a patched kernel modified to support Xenomai. This gives the

Linux kernel real-time scheduling support, allowing us to use the CAN bus to control

the WAM arm. We originally used Barrett’s older btdiag library to control the arms,

but have since upgraded to their newer C++ libbarrett library. Our code uses this

library for the real-time control of the arms. The WAM hardware controller module

noted above serves as a waypoint dispatcher to the hardware, and it additionally

publishes the WAM’s joint angles periodically to the simulator.

4.4.3 Visual Sensing System

The visual sensing system, coupled with the World State Estimator, is what allows

the execution to be monitored. It was implemented primarily by Pedro Santana in the

MERS group here at CSAIL, and does an exceptional job tracking and filtering the

fiducials attached to the colored blocks and cart. We use several standard, inexpensive

webcams, whose precise locations need not be calibrated, to accurately track the poses

of all fiducials in 3D. We make extensive use of the open source ARToolkit libraries

for raw fidicual tracking. As this data is generally quite noisy and spurious (especially

when tracking many fiducials), we filter the data in several ways before sending it up

to the simulator.

Since the ar pose ROS node responsible for the tracking yields spurious results in

which fiducials disappear/reappear from successive measurements, we implement a

Bayes filter to estimate the visibility of the block. The filter uses an HMM (Hidden

Markov Model) approach to estimate whether the block is present, intermittent, or

not detected in the scene. This information is useful for manipulation tasks in the

114



simulator.

Additionally, a ROS node known as the Kalman fusion center is implemented that

fuses the estimates of each of the fiducials, taking into account a slow dynamics model

and movement. This allows multiple noisy cameras to be combined into a single, more

accurate measurement.

4.4.4 World State Estimator

The World State Estimator is a hybrid state estimation module responsible for con-

verting the continuous numerical pose estimates returned from the Kalman fusion

center into a set of instantiated PDDL predicates describing the state of the world.

This is essentially what implements theWobs(t) in our formalisms presented in earlier

chapters, and is they cornerstone of an execution monitoring system. It converts the

continuous sensor measurements to state estimates at the plan level, namely PDDL

predicates. The World State Estimator uses a variety of heuristics to do this, many

of which are geometrically-inspired.

4.4.5 Executive

The executive is the core autonomy in the system. We have described the execution

monitoring and generative planning aspects of the executive in detail in earlier chap-

ters of this thesis. We note that for our robotic testbed, the TBurton executive was

not yet functional. As such, we used an executive similar in spirit, but replacing the

TBurton planning algorithm with an off the shelf planner - namely the Fast Forward

planning system ([15]).

4.4.6 Activity Dispatcher

The Activity Dispatcher receives commands that have been dispatched by Pike, and

further processes them so that they can actually be executed. It elaborates the often

high-level commands from Pike to a lower level of abstraction. Oftentimes this in-

volves calling a motion-planning algorithm using libraries provided by the OpenRAVE
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simulator.

The Activity Dispatcher is capable of processing and executing the following

PDDL actions:

• (pick-up Robot BlockTop BlockBase )

• (pick-up-from-ground Robot Block )

• (stack-block Robot Block BlockBase )

• (put-block-on-ground Robot Block )

• (put-block-on-cart Robot Block Cart )

• (open-gripper Robot )

• (close-gripper Robot )

Many of these PDDL actions, such as the top 5, require a number of different

actions using the OpenRAVE simulator. For example, when (pick-up-from-ground

Robot Block ) is dispatched from Pike, the Activity Dispatcher is responsible for

determining an acceptable grasping position for Block (our implementations seeks

to find a valid solution to the inverse kinematics problem for several known reliable

grasps of the block). Once this is complete, a valid motion to the block must be

computed - we use the BiRRT algorithm implemented in OpenRAVE. It is thus the

Activity Dispatcher’s job to elaborate high-level actions from Pike into lower-level

subroutines implemented by the Simulator.

4.4.7 Speech System

The speech system is responsible for both listening and processing human speech, and

also for converting text from the executive into verbal speech. The speech module

has a dictionary of known commands that the user can utter. We use the open source

Sphinx libraries developed at Carnegie Mellon University for the text-to-speech and

speech-to-text conversions.

116



"Oh no! I was trying to stack
 the pink block on top of the 
blue block, but now the blue 
block is not free above."

Figure 4-5: This figure illustrates output from our simulation environment when
explaining the cause of a failure for an action. Suppose that while attempting to
stack the pink block on the blue block, a malicious user moved the green block on
top of the blue block. The spoken explanation is a direct verbalization of an violated
causal link, indicating the failed action and violated predicate.

4.4.8 Explanation System

We mentioned earlier that commanding robots from a high level, and subsequently

having them reason and respond at an equally high level, is a hallmark of artificially

intelligent systems. In this section, we attempt to make strides towards that goal.

Specifically, we attempt to verbalize the cause of failure when a causal link is violated

to give the user an intuitive explanation of what went wrong.

Suppose that during execution, the execution monitoring subsystem of Pike de-

tects that an activated causal link has been violated. This indicates that the pre-

condition or maintenance condition of some future action will not hold true. The

causal link provides information as to what action that is and what precondition will

be violated, and what action was supposed to have produced that precondition. We

argue that these three pieces can form the core of a high level explanation to the user,
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describing what went wrong.

We implemented an algorithm that verbalizes violated causal links by converting

them to textual representation. In essence, the actions ap and ac are mapped to

strings (ex., “stack pink block on top of blue block”), as are the predicates (“blue

block is free above”). Simple explanation can then be attained by concatening these

string together to form an English sentence. For example, a violated causal link could

be verbalized as “Oh no! I was trying to stack the pink block on top of the blue block,

but now the blue block is not free above.” Please see Figure 4-5 for an illustration.

This explanation is a simplistic extension to the system, but demonstrates the richness

of high-level information that can be gleaned from the causal link analysis of a plan.

4.5 Results

We were able to successfully construct a robot capable of accepting high-level input

from the user, generating and executing those plans in the face of disturbances, and

verbalizing sources of problems to the user at a high level - all within the limited

context of a block stacking robot. This system demonstrates the efficacy of these

algorithms on real robotic systems. In practice the robot was able to succeed at

accomplishing its goals even as we bullied the poor robot by incessantly moving

blocks around to jeopardize its current plan.

4.6 Chapter Summary

In this chapter, we have sketched a vision for artificially intelligent robotic systems,

and proceeded to demonstrate in hardware and software capable of meeting some

aspects of this vision within a limited context. We feel that expressive nature of

causal links makes them an excellent tool for inferring the subgoals in a plan, and

also provide useful information that can be communicated to the user at a high level.
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Chapter 5

Conclusions

This thesis has revolved around the development of robust plan executives that op-

erate in dynamic and highly uncertain worlds. We introduced a plan executive called

Pike, capable of executing plans and simultaneously efficiently monitoring the progress

with respect to possible problems for future actions. A core novel contribution of this

thesis is the set of algorithms for extracting sets of candidate causal links from tem-

porally flexible plans. These causal links are then monitored online. We prove guar-

antees of correctness for our algorithms, and additionally verify them experimentally

with simulation results.

We also presented the TBurton Executive, a system combining the merits of tem-

poral generative planning with the Pike plan executive. This system is capable of

meeting a user’s high-level goals, employing replanning to ameliorate problems that

arise during execution.

The concept of generative planning combined with execution monitoring was

demonstrated in hardware and in simulation within the context of a simplified manu-

facturing robot. This robot additionally employed the causal link information gleaned

from the execution monitor to verbalize the reason why any relevant disturbances

threatened the future of the plan.

Taken all together, this thesis strives to advance the state of robust robotic task

execution. We developed new algorithms, prove theoretical guarantees, and empiri-

cally validated them on an engaging robotic testbed and simulation environment.
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5.1 Interesting Observations

We noted many interesting observations throughout the research process of developing

this system. It is interesting that some of these observations came about due to

theoretical reasons as we proved guarantees about our algorithms, while others were

observed empirically on our hardware testbed. This is an interesting testament to

the necessity of doing both theoretical and applied work to advance state of the art.

A theoretically-motivated observation that was at first unexpected is the fact

that, given a temporal plan, there is in general not a unique set of causal links

that can be extracted from the plan. Due to the flexible durations within temporal

plans, it may be possible for some actions to come before or after other actions,

for different consistent schedules of the same plan. This greatly complicated the

causal link process. Hence our causal link extraction algorithms are significantly

more intricate than what we would have expected when we first began this research.

A second interesting observation, and possible topic for future work, is the notion

that at times, if the hybrid state estimation module that outputs world state estimates

is not completely correct, it can destabilize the executive. The TBurton executive is

susceptible to getting caught in infinite loops of the state estimation fails to return a

key fact, causing the robot to react by repeatedly trying to perform the same failing

action. We propose that it would be interesting further research to better characterize

the situations in which this interplay between the execution monitor and world state

estimator may destabilize the system.

5.2 Future Work

In this section, we describe a small subset of the very broad topics that can be

examined for future work.

Possible extension? They compliment our work. A system is envisioned in which

the causal link extraction algorithms in this thesis can be generalized to extract the

TAL monitorling coniditions.
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5.2.1 Extension with Probabilistic Flow Tubes

Probabilistic Flow Tubes (PFT’s) allow continuous actions to be learned by demon-

stration, and could provide an interesting extension to this research ([9]). Not only

would it be interesting to examine the problem of learning new PDDL actions or

motions via user demonstration and then subsequently applying them to new plans

autonomously, but PFT’s also present an interesting probabilistic method of evaluat-

ing flow tubes or performing intent recognition for execution monitoring. This idea

could be further generalized to the notion of combining the hybrid estimation system

with the execution monitor in order to provide more guarantees or a probabilistic

estimate of failure.

5.2.2 Intent Recognition

We believe that the problem of extracting causal links from temporally flexible plans is

closely related to the task of intent recognition, or namely, the idea of back-inferring

what the users goals were from a sequence of generated actions (or even just an

execution trace). This has significant implications for the future or robot human

interaction, and when combined with the probabilistic flow tubes above, may provide

a very interesting area of research for a Ph.D thesis.

5.2.3 Examine a Probabilistic Model of Disturbances

Closely related to the above is the challenge of utilizing a probabilistic model of dis-

turbances. In this thesis, we make no guarantees about when or what disturbances

will occur. However, in practice, robotic systems may be able to predict what dis-

turbances are most likely to occur. For example, we noticed in our hardware testbed

simulations that certain actions, such as picking up a block, were much more likely

to fail than other actions (putting an already-held block on the ground). Therefore,

it would be interesting to extend the notion of execution monitoring into the prob-

abilistic domain. A key challenge would likely be to simplify the set of assumptions

reasonably enough so that the problem is still tractable and monitoring can be per-
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formed in real time, while simultaneously keeping a rich representation of possible

disturbances. Such a system has deep ties with the intent recognition ideas above,

and when combined, is an area of research we are excited about and considering

pursuing.

5.2.4 Advancements in Dialog System

The dialog system employed in this testbed was relatively simplistic. Causal links were

directly verbalized by mating predicates and actions to their string representations.

It would be very interesting however to leverage more advanced natural language

and dialog systems in this research. Many argue that language is one of the most

fundamental facets of human understanding, and hence we may be able to build better

simulations of intelligent systems by employing a more advanced dialog system with

our causal link explanation approach.
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