
Sampling-based Planning Algorithms Applied to Bicycles

Steve Levine

Abstract— In this paper, I explore the application of various
random sampling based algorithms to dynamic models of
bicycles. Starting with relatively simple 3-dimensional state
space models of bicycle and working up to a more realistic 7-
dimensional model that incorporates skidding, I examine RRT,
RG-RRT, RRT*, and LQR-RRT*.

I. INTRODUCTION

Having a modest obsession for anything bicycle-related, I
thought it would be quite exciting to try and apply various
planning techniques to my favorite two-wheeled vehicles.
Specifically, my aim was to use algorithms to generate adven-
turous and aggressive trajectories for interesting dynamical
models for bicycles. Having some previous knowledge of
RRT and RRT* for holonomic systems, I thought it would
be interesting to apply them and some of their variants to
problems with rich dynamical constraints.

II. BICYCLE MODELS

This project examines planning for various bicycle models
restricted to the 2D plane. We begin with the Dubin’s vehicle,
a 3-dimensional state space vehicle that moves at a constant
velocity and can be steered. We then progress to a more
realistic, non-slipping bicycle that takes into account the
bicycle’s wheel base and differential constraints associated
with steering. Next, we move to a seven-dimensional bicycle
model which is the most realistic and incorporates skidding.

A. Dubin’s Vehicle

The Dubin’s vehicle is a popular dynamical model and can
be thought of as a simple bicycle. The dubins vehicle moves
around in a two dimensional plane at constant velocity v and
is parameterized by its position and angle. The dynamics are

ẋ = vcos(θ)

ẏ = vsin(θ) (1)

θ̇ = u

where u is the control input to the system. It is possible
to restrict the turning radius of the vehicle to ρ by imposing
the actuation limit |u| ≤ v

ρ .
The control-limited Dubin’s vehicle is perhaps the most

simplistic nonholonomic system (no motion is instaneously
possible in the direction of θ+π/2), also making it perhaps
the simplest model of a bicycle.

B. Non-slipping Bicycle

A more realistic model of a bicycle is presented in this
section. This model follows a similar spirit to the Dubin’s
vehicle in that differential constraints prevent motion in cer-
tain directions. Specifically, the non-slipping bicycle models

Fig. 1. Parameters of the bicycle model.

wheel in which lateral motion (parallel to the axis) is not
permitted.

The Non-slipping bicycle model can be thought of two
wheels separated by a fixed wheel base w, in which a
force uf is applied from the rear wheel and the steering
angle of the front wheel with respect to the bicycle frame
φ is directly controllable. Taking into account the wheelbase
and differential constraints of both wheels simultaneously, a
turning radius can be computed for any φ. The dynamics
of the non-slipping bicycle can be written as (derivation
omitted):

ẋ = vcos(θ)

ẏ = vsin(θ) (2)

θ̇ =
v

w
tanφ

v̇ =
ur
m

This bicycle model is very useful, and is quite applicable
in regimes where the wheels have excellent traction and do
not skid.

C. Slipping Bicycle

In this section, I will present a model for a slipping bicycle,
which is a slighly modified version of system known as the
Bicycle Model. This model has a seven-dimensional state
space and is the most complicated model examined in this
project. Unlike the previously-described non-slipping bicycle
that imposed a differential constraint that the tires could not
move laterally, the slipping bicycle is capable of moving in
all directions. There is however a (usually large) lateral force
on the bicycle wheel that is modeled as proportional to the
sine of slip angle of the wheel. This is what keeps the wheels
in line and encourages (but does not require) the bicycle to to
travel in the direction the wheel is facing instead of laterally.

The slip angle α of any wheel is defined as the angle
between its forward and lateral velocities (see Figure 2).
A free-body diagram for the Bicycle Model is presented in
Figure 1 showing parameters for the model. Please also note

Fig. 2. The slip angle α of a wheel is the angle between it’s slip and
forward velocities. Note that when vslip = 0, or namely the bicycle is not
slipping at all, α = 0.

that the bicycle has slipping angles αfront and αrear for the
front and rear wheels. We model the lateral forces as being
proportional to the sine of the slip angles, or namely

ff = C sinαfront (3)
fr = C sinαrear

where C is a large and negative constant. Note that in the
standard Bicycle model, these lateral forces are set to be
proportional to the slip angles themselves, not to the sine of
these angles. While this approximation works well for small
slip angles since the taylor expansion of sinα ≈ α, I found
empirically that this model tends to break down and cause
unrealistic simulation results when adventurous trajectories
that feature sharp steering are computed. By making the
lateral forces proportional the sines of the slip angles, there
will be no lateral forces should the bike wheel be rotated
180 degrees.

Using the parameters noted above and this slipping model,
we can compute the dynamics of the system:

mẍ = ur cos θ + uf cos(θ + φ)− fr sin θ − ff sin(θ + φ)

mÿ = ur cos θ + uf cos(θ + φ) + fr cos θ + ff cos(θ + φ)

Iθ̈ = −bfr + aff cosφ+ auf sinφ (4)

φ̇ = uφ

We can compute the slip angles in order to compute ff
and fr as follows:

α = tan−1

(
vslip
vfwd

)
(5)

We will now derive the slip angle αfront for the front
wheel. We can derive the kinematic position xf and yf with
respect to the ground frame for the front wheel as

xf = x+ a cos θ

yf = y + a sin θ

and the velocities as

ẋf = ẋ− aθ̇ sin θ
ẏf = ẏ + aθ̇ cos θ

Let b̂slip be a unit vector in the direction of vslip and b̂fwd
be a unit vector in the direction of vfwd. Since the forward
direction for the wheel is in the direction of θ + φ, we can
write

b̂fwd =

[
cos(θ + φ)
sin(θ + φ)

]
, b̂slip =

[
− sin(θ + φ)
cos(θ + φ)

]
(6)

This will allow us to compute vfwd using some trigono-
metric identities as

vfwd =

[
ẋf
ẏf

]
· b̂fwd

= (cos θ cosφ− sin θ sinφ)(ẋ− aθ̇ sin θ)
+ (sin θ cosφ+ sinφ cos θ)(ẏ + aθ̇cosθ)

= aθ̇ sinφ+ ẋ cos(θ + φ) + ẏ sin(θ + φ)

and vslip similarly as

vslip =

[
ẋf
ẏf

]
· b̂slip

= aθ̇ − ẋ sin(θ + φ) + ẏ cos(θ + φ)

Now with vfwd and vslip derived, we are poised to solve
for αfront using Equation 5:

αfront = tan−1

(
−ẋ sin(θ + φ) + ẏ cos(θ + φ) + aθ̇

ẋ cos(θ + φ) + ẏ sin(θ + φ) + aθ̇ sinφ

)
(7)

Using similar techniques we can solve for the slightly
simpler αrear as

αrear = tan−1

(
−ẋ sin θ + ẏ cos θ − bθ̇

ẋ cos θ + ẏ sin θ

)
(8)

This model as presented has a seven-dimensional state
space (state variables are x, y, θ, ẋ, ẏ, θ̇, and φ). Note that in
the common Bicycle Model, the state space is 6-dimensional
because φ is modeled as directly controllable. Here, for
continuity, we model that we φ̇ is controllable via uφ.

III. PLANNING ALGORITHMS

In this section, I will present the various planning algo-
rithms that I use to plan bicycle trajectories. My focus is
specifically on randomized sampling-based planning algo-
rithms - namely RRT, RG-RRT, RRT* and LQR-RRT*.

A. RRT

The RRT, or Rapidly-exploring Random Tree, is a well-
known randomized sampling-based planning algorithm. Its
fundamental approach is to grow a tree through a (potentially
high-dimensional) state space that connects a start initial
configuration xinit to a goal region G while avoiding obstacle
regions. Pseudocode for the RRT algorithm is shown in
Algorithm 1. A random sample xrand is generated in state
space from some probability distribution (usually uniform).
The closest vertex xnearest in the tree to this sample is
computed using some distance metric (often Euclidean). A
new sample point xnew is then generated that extends the
tree in the direction of the random sample. If the resulting
trajectory connecting xnearest and xnew is collision-free,
xnew is added to the tree. This relatively-simple algorithm
has performed quite well in practice, in part due to it’s

so-called Voronoi bias that encourages sampling of yet-
unexplored regions of state space.

Algorithm 1: RRT

begin
V = {xinit}, E = {}
while iterations ≤ N do

xrand ←− SAMPLE()
xnearest ←− NEAREST(V, xrand)
xnew ←− STEER(xnearest, xrand)
if OBSTACLEFREE(xnearest, xnew) then

V = V ∪ xnew
E = E ∪ (xnearest, xnew)

end
end

end

B. RRT*

The RRT algorithm has no notion of cost or optimality.
In fact, RRT often generates strange and unexpected paths,
sometimes with loops or other suboptimal characteristics.
RRT’s are thus in practice often run repeatedly online with
branch and bound techniques to minimize cost in an attempt
to improve paths. While this does indeed work and has been
proven on many real systems, such as MIT’s entry into the
DGC, it can be proven that repeated iterations of RRT will
converge to a suboptimal path with probability 1 as the
number of vertices approaches ∞ [4].

The RRT* algorithm, which was only developed within the
past few years, seeks to ameliorate this drawback with RRT’s
by providing probabilistically optimal random sampling-
based motion planning with the same asymptotic perfor-
mance as RRT [4]. RRT* is in spirit very similar to RRT,
but includes several important modifications. Namely, RRT*
selects minimal parents for new vertices and additionally
actively rewires progressively smaller regions of the tree
using a Dijkstra-like heuristic. It can be proven that with
these extensions, RRT* will converge to the optimal solution
as defined by some cost function with probability 1 as the
number of nodes in the tree approaches∞. Put another way,
RRT* is probabilistically optimal. It additionally works quite
well in practice for a number of systems, especially those that
are holonomic. In Figure 3, my RRT* implementation is run
on a holonomic system with an obstacle.

C. RRT and RRT* for Dynamical Systems

RRT and RRT* have worked well in practice for a
number of low and high-dimensional systems. RRT’s can
also be extended to work with systems that have differen-
tial constraints, such as non-holonomic vehicles or systems
with dynamic constraints. In these situations, the STEER()
function is modified to obey the differential constraints.
The performance of RRT and RRT* for these types of
systems is heavily-dependent on both the distance metric
used in the NEAREST() function and the extension technique

−6 −5 −4 −3 −2 −1 0 1 2 3
−8

−6

−4

−2

0

2

4

6

8

Fig. 3. RRT* running on a holonomic planning problem. Note that the
vertices visually appear to bend in the optimal direction towards the goal.
The oval shape is due to branch and bound.

−6 −5 −4 −3 −2 −1 0 1 2 3
−8

−6

−4

−2

0

2

4

6

8

Fig. 4. A standard RRT running on the inverted pendulum problem, before
reaching the goal. Note the large number of redundant vertices that are very
close to each other.

used in STEER(). While Euclidean distance works well for
holonomic systems, it typically performs poorly for systems
with dynamics and results in repeated expansions of the same
node (see Figure 4). This is because two points in state space
that are close together as measured by a Euclidean metric
may actually be quite far apart in time, or as measured by
some other cost function. This results in RRT trees that are
excessively dense in some areas, needlessly slowing down
computation.

A number of approaches for improving RRT’s perfor-
mance in planning for dynamical systems have been pro-
posed. Among them are techniques for forcing the RRT to
explore regions of state space with extension restrictions, as
well as techniques for improving the distance and extension

−6 −5 −4 −3 −2 −1 0 1 2 3
−8

−6

−4

−2

0

2

4

6

8

Fig. 5. An RG-RRT for the inverted pendulum problem. Note that the
graph explores state space much better than standard RRT for this problem
with no reachability constraints. In this instance, no goal bias sampling
was used, resulting in a large tree. Had aggressive goal bias sampling been
used, RG-RRT would likely have found a solution much quicker without
constructing such a large tree.

heuristics used. I examine both of these approaches in this
project. Specifically, I implement the Reachabilty-Guided-
RRT (RG-RRT) [7], as well as the recent LQR-RRT* [6]
algorithm that uses locally linearizations at points in the tree
for improved distance and extension heuristics.

D. RG-RRT

The reachability-guided RRT, or RG-RRT, is a technique
used to restrict the expansion of an RRT [7]. The technique
works by augmenting RRT’s with an additional type of
vertex, called reachable nodes. These vertices represent states
reachable by applying control extrema; intuitively, the entire
”reachable” set of states from some other state. In RG-RRT,
new nodes are only added to the tree if they are closest to
one of the reachable nodes as distinct from one of the regular
nodes of the tree - thus favoring expansion into unexplored
regions of state space via rejection sampling. The goal here
is to minimize the number of redundant vertices in an RRT
while using a less-than-perfect distance metric that would
otherwise encourage such redundancy in a standard RRT.
By keeping the tree small, the size of all other operations in
RRT remain fast - thereby hopefully minimizing the time to
find a solution.

Figure 5 demonstrates a tree built with RG-RRT for the
inverted pendulum problem. Compare this with Figure 4 -
the difference is extremely noticeable. RG-RRT does a much
better job of expanding into yet unexplored regions of state
space.

E. LQR-RRT*

Unlike RG-RRT, which seeks to restrict the expansion
of the tree in already-explored areas, LQR-RRT* takes a

−6 −5 −4 −3 −2 −1 0 1 2 3
−8

−6

−4

−2

0

2

4

6

8

Fig. 6. A visualization of the LQR-RRT* algorithm running on the
pendulum problem. The tree in the middle has edges color-coded by cost.
The background color gradient represents the optimal cost-to-go for the
linearized dynamics. The xnearest nodes, denoted by black asterisks, all
fall in the lower well of the cost function. A Euclidean distance metric
would have caused different xnearest nodes to be selected.

different approach in that it attempts to improve the distance
and extension heuristics of RRT and RRT* [6]. While it
is sometimes possible to devise domain-specific functions
for these requisites, such an approach does not generalize
and is not easily applied to complicated dynamical systems.
LQR-RRT* proposes to automatically derive reasonable dis-
tance and extension heuristics using locally optimal LQR
controllers. LQR-RRT* is a very new algorithm, presented
at ICRA ’12.

LQR-RRT* builds on ideas proposed in [2]. Nodes in the
tree, which represent points in state space, are locally lin-
earized. An optimal LQR controller is than computed about
these linearized dynamics, which can be done efficiently by
solving an algebraic Ricatti Equation. This optimal controller
provides a cost-to-go matrix S such that J(x) = xTSx
as well as an optimal control policy u = −Kx, where
x = x− x0 is the difference to the linearized node x0, and
similar for u. It is important to note that these control policies
only work well in regimes close to x0. However, as the tree
grows larger and more densely covers the state space, the
average distance to random nodes will decrease, causing the
linearizations to grow more and more accurate with respect
to these random nodes.

This approach is illustrated in Figure 6, which shows a
snapshot of the algorithm when selecting a group of nodes
near the currently linearized state. The optimal cost function
for the linearized dynamics is used to select the vertices
that minimize J(x), which for highly constrained dynamic
systems does a much better job than the Euclidean distance
metric.

One other point to note that is that, since LQR-RRT* uses

Fig. 7. Standard RRT solving the Dubins vehicle planning problem with
obstacles. Note that due to the lack of any notion of optimality, the vehicle
takes a rather adventurous and loopy trajectory near the top.

Fig. 8. A 3D visualization of the Dubin’s vehicle reaching the goal.

an LQR policy about a non-fixed point, the affine terms of the
dynamics may come into play and threaten the control policy.
As such, there is active research towards using an AQR-
based heuristic for distances and extensions as an alternative
to LQR.

IV. RESULTS

In this section, we present the results of running the above-
mentioned planning algorithms on the different bicycle mod-
els.

A. RRT

The standard RRT faired well for a number of dynamical
systems, despite its oftentimes inaccurate distance metric. In
all of the trials, a Euclidean distance metric was used. Figure
7 shows RRT planning for the Dubin’s vehicle with many

Fig. 9. RRT planning for the no-slip bicycle, with no obstacles.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)
C

on
tro

li
np

ut

u
r
vs time

Fig. 10. Control inputs for the rear tire ur for the no-slip bicycle. RRT’s
lack of any sense of optimality can result in unintuitive control inputs.

obstacles and a heavily restricted turning radius. RRT was
successfully able to find a path. The tree however contains
many redundant nodes, and oftentimes RRT leaves some
areas of state space unexplored. Figure 8 shows a similar
RRT solution to the Dubin’s planning problem visualized in
3D, where the z-axis represents θ.

Next, RRT was used to plan for the more complicated non-
slipping bicycle. The results without obstacles can be seen
in Figure 9. The RRT was indeed able to generate a plan
for this bicycle, though it took considerably longer - likely
due to the increased dimensionality of the state space. This
example also illustrates the suboptimal nature of RRT’s. If
we examine the control tape for a solution to the non-slip
bicycle as in Figure 10, we see very spurious and seemingly
random control application.

Finally, the RRT was also successfully able to plan paths
for the slipping bicycle system. Results were similar in
quality to the paths found by RG-RRT, which are described
in the next section.

B. RG-RRT

RG-RRT shared many of the performance characteristics
of RRT. Namely, it returned paths that often had suboptimal
features. However, RG-RRT was able to successfully return
paths much more consistently in these examples than RRT,
and with greater coverage of state space. For example, when
planning for the slipping bicycle, the standard RRT algorithm

Fig. 11. A solution to the 7-DOF bicycle planning program solved using
RG-RRT. The bicycle at different positions are superimposed over time. The
blue blur represents the bicycle’s frame, the gray bars are the handebars,
and the black tire outlines can be seen clearly. In this example, the bicycle
started near the corner of the red obstacles, and was tasked with driving
around them with a goal region. This solution is for C = 20.

would fail to return a solution by 40,000 tree nodes roughly
one third of the time, whereas RG-RRT would nearly always
return a solution.

RG-RRT was able to successfully plan for the slipping
bicycle model. An example solution trajectory is shown in
Figure 11. The quality of solutions was quite comparable to
that of a normal RRT, which makes sense given their shared
heritage.

While RG-RRT would return a solution more consistently
than RRT, I found in my experimentation that it often took
more time to return a solution. This appeared to be due to
the sometimes high rate of rejection sampling used in RG-
RRT. In fact, I also found that without substantial goal bias
(10%), RG-RRT would take significantly longer to find a
solution if the path towards the goal happened to be closer to
existing nodes in the tree as opposed to reachable vertices.

C. RRT*

As noted earlier, RRT* performance in kinodynamic plan-
ning is heavily dependent on the choice for the STEER()
and DIST() metrics. I did limited testing of RRT* with
dynamic constraints, but abandoned this approach in favor
of pursuing LQR-RRT* early on in this project. I imagined
that this would yield all of the benefits of RRT* but with
the additional tool of automagically generating extension and
distance metrics based on LQR policies.

D. LQR-RRT*

Although I was able to complete a working implementa-
tion of LQR-RRT*, I was surprised to discover that it was not
applicable to some of the bicycle models presented earlier.

−6 −5 −4 −3 −2 −1 0 1 2 3
−8

−6

−4

−2

0

2

4

6

8

Fig. 12. Final output of the LQR-RRT* algorithm working on the inverted
pendulum problem. The path found is shown in black. This case represents
R = 50 with Q equal to the identity, thereby heavily penalizing control
effort. Note the swing stages used. Branch and bound was also used to
prune the search tree to minimize the number of vertices.

Specifically, I tried running LQR-RRT* on the Dubin’s
vehicle model as well as the Slipping Bicycle Model, and
MATLAB’s LQR command failed to find optimal feedback
agains in many circumstances, citing that certain poles of
the system may not be controllable. I believe this is because
the Dubin’s vehicle is nonholonomic, making it difficult
for a linearization to stabilize the system (the vehicle will
never be able to move in certain directions, according to the
linearization). This result was surprising to me, as I had not
previously considered the ways in which LQR could fail.

In addition to not working properly on the Dubin’s vehicle,
LQR could not at times find controllers for the more com-
plicated slipping bicycle, despite the fact that it can move
in more directions than the Dubin’s vehicle. Interestingly
however, only certain configurations of the slipping bicycle
resulted in LQR failure, whereas all configurations of the
Dubin’s vehicle were unsolvable. Specifically, configurations
where the velocities of the bicycle’s wheels with respect to
the ground were 0 caused issues for LQR. This makes sense,
as the bicycle cannot move laterally in such configurations.

Since the LQR requisite of LQR-RRT* failed for these
bicycle-like systems, I was not able to successfully evaluate
LQR-RRT* on them. Despite this however, I was able to
successfully demonstrate LQR-RRT* on systems in which
LQR worked reliably, such as the inverted pendulum. A
sample solution for the swing-up task is shown in Figure
12. Note the smooth swingup is void of disturbances and
visible suboptimal characteristics.

V. CONCLUSIONS, LESSONS, AND IDEAS

Implementing and comparing all of these sampling based
algorithms was an interesting experience. Some of my more

interesting findings are listed below:
• In practice, RG-RRT is more reliable than RRT at

finding a solution. However, in my experience, it also
generally takes longer, in part due to high rates of
rejections while sampling at some points.

• LQR policies can not always be computed, namely for
nonholonomic systems! This means that LQR-RRT*
may not always be possible.

• Planning high-precision, smooth paths with a small dt
is quite difficult. As dt → 0, the average number of
vertices for any trajectory to the goal increases by
approximately 1/dt. An RRT has many such partial
paths, and hence the size of the tree is exponential in
1/dt.

In may be useful for future research to try and find
other useful distance and extension heuristics in addition to
LQR. In particular, I can envision several ideas based on
AQR, trajectory optimization, or even a form of a relaxed
Lypapunov function (perhaps computed via SOS techniques).
Any of these may yield suitable, automatically-generated
heuristics for RRT* in support of probabilistically optimal
kinodynamic planning.

VI. IMPLEMENTATION

I have implemented all of the algorithms noted in the
results in this paper from scratch for this project in MAT-
LAB. Namely, please find working implementations of RRT,
RG-RRT, RRT*, and LQR-RRT*, with branch and bound
functionality (this amounts to over 2200 lines of MATLAB
code). The code is designed to be generic and work with
any dimensionality. Dynamics have been implemented for
the inverted pendulum, Dubin’s vehicle, non-slipping bicycle,
and slipping bicycle. In cases where LQR-RRT* was used,
code was also made to automatically generate the linearized
jacobian matrices using the symbolic toolbox in MATLAB.

In order to optimize computational speed, I also used
the MATLAB MEX compiler, which converts MATLAB to
object code. For some problems, this resulted in a speed
boost of up to 40X, and allowed me to construct larger more
detailed RRT’s with smaller dt increments.

In addition to the main algorithmic code, I also made
several graphing and animation tools to visualize solutions in
MATLAB. Please see the videos of selected bicycle solutions
attached with this paper.

VII. ACKNOWLEDGEMENTS

I would like to thank Alejandro Perez for his remarkably
useful, fast, and detailed advice in implementing the new
LQR-RRT* algorithm - despite being quite busy and attend-
ing conferences! I’d also like to thank Joe Moore for his
advice on RG-RRT speed and LQR failure.

REFERENCES

[1] RW Allen, JP Chrstos, and TJ Rosenthal. A tire model for use
with vehicle dynamics simulations on pavement and off-road surfaces.
Vehicle System Dynamics, 27(S1):318–321, 1997.

[2] E. Glassman and R. Tedrake. A quadratic regulator-based heuristic for
rapidly exploring state space. In Robotics and Automation (ICRA), 2010
IEEE International Conference on, pages 5021–5028. IEEE, 2010.

[3] S. Karaman and E. Frazzoli. Incremental sampling-based algorithms
for optimal motion planning. In Proc. Robotics: Science and Systems,
2010.

[4] S. Karaman and E. Frazzoli. Optimal kinodynamic motion planning
using incremental sampling-based methods. In Decision and Control
(CDC), 2010 49th IEEE Conference on, pages 7681–7687. IEEE, 2010.

[5] S.M. LaValle and J.J. Kuffner Jr. Rapidly-exploring random trees:
Progress and prospects. 2000.

[6] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez.
LQR-RRT*: Optimal sampling-based motion planning with automati-
cally derived extension heuristics. In Robotics and Automation (ICRA),
2012 IEEE International Conference on. IEEE, 2012.

[7] A. Shkolnik, M. Walter, and R. Tedrake. Reachability-guided sampling
for planning under differential constraints. In Robotics and Automation,
2009. ICRA’09. IEEE International Conference on, pages 2859–2865.
IEEE, 2009.

