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As clock speed scaling has slowed down, processor manufacturers have shifted to increasing hardware parallelism
to maintain Moore’s Law, and we can no longer rely on yearly processor speed improvements to increase performance.
Nor can we rely purely on improvements in compilers. Compiler optimizations on their own have a poor track record:
as Proebsting [TAB14] observes, compilers for general purpose languages have only increased performance by 4%
per year. At the same time, we know highly-skilled programmers have been able to increase performance by carefully
writing hand-optimized low-level parallel code, taking advantage of optimizations that do not apply to all programs. To
continue increasing performance, the path forward is to encode this knowledge in automatic domain-specific systems
that parallelize and optimize programs.

My research focuses on optimization techniques and programming systems (programming languages, compilers,
and runtimes) that take advantage of domain-specific high level information to deliver improved performance and
programmability. The goal is to improve the building blocks programmers use, in order to make programming more
efficient, both in terms of time writing code and in terms of delivered performance. Trends in bleeding-edge platforms,
including the proliferation of accelerators and new programming models such as probabalistic and unreliable computing,
make this goal even more urgent.

My approach is to first look at how performance experts optimize code for a particular kind of computation;
generalize, codify, and understand the impact on performance; and then develop tools that automate these optimizations
for the domain where they apply. These tools are most often domain-specific languages (DSLs) and compilers. The aim
is to sidestep Proebsting’s Law by foregoing general purpose optimizations and instead concentrating on specific kinds
of computation. To ensure code written in general purpose languages can benefit from domain-specific optimizations,
my newest area of research is sound automated methods to transform from general purpose languages to DSLs. This
transformed code can take advantage of the power of DSL compilers to obtain performance.

In the course of applying this approach, I have developed three core technologies that make this research approach
possible.

Core Technology
SEJITS: High Performance DSLs for Dynamic Languages Many programmers prefer to work in high-level

dynamically-typed languages such as Python and Ruby, due to their high expressiveness and the availability of powerful
libraries. However, their performance can be far worse than low-level languages like C++ or Fortran. I helped create
Selective Embedded Just-In-Time Specialization (SEJITS), a methodology for constructing high performance DSLs in
high-level interpreted languages [PMEA09], and Asp, a library for building such DSLs in Python [UCB13, PPOPP12,
SCIPY11]. DSLs using this approach internally transform code into fast, parallel implementations that outperform
Python by over 1000×. The key idea is to sidestep the interpreter, and instead use the computation defined by the
programmer as a declarative specification for a program that performs the same computation using low-level parallel
constructs in C++, Scala, or CUDA. Asp also generates code that passes needed data from Python to the parallel
implementation and back. This program and glue code is automatically compiled & run behind the scenes by Asp in
place of the original Python code. As a result, when a programmer runs their program, it appears to simply run much
faster than it would normally; the entire process is invisible to users. Asp makes it much easier to build embedded DSLs
using the SEJITS approach, which continues to be a major thrust of ongoing research at UC Berkeley.

OpenTuner A key enabling technology for much of my research is auto-tuning, which uses empirical search over a
space of correct implementations of a program to find the best-performing version. I conceived and helped supervise
OpenTuner, a framework for building domain-specific multi-objective auto-tuners [PACT14]. Prior to OpenTuner, most
users of auto-tuning were applying either exhaustive search or simplistic algorithms such as hill climbing. This made
auto-tuning over large spaces intractable. In contrast, OpenTuner packages sophisticated machine learning techniques
along with a customizable representation of the search space, making it much easier to build powerful auto-tuners. A key
idea in OpenTuner is to combine multiple search techniques using a multi-armed bandit which asssigns more resources
to those techniques that find better solutions; this enables combining the best of multiple general and domain-specific
search techniques. OpenTuner is being used in a number of projects, including domain-specific compilers and languages
for stream programming.
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Raising the Level of Abstraction With Synthesis My most recent research thrust aims to bridge the gap between
general purpose and domain-specific languages by building systems that automatically infer high-level programmer
intent from low-level code. The key enabling technology for this is program synthesis [SKETCH], which efficiently
searches a space of candidate implementations to find one that satisfies a given specification. To automatically transform
snippets of domain-specific code from general languages, we construct verification conditions for the snippet, leaving
the postcondition as an unknown function. We then use synthesis to search over a space of candidate postconditions,
each of which fits into the domain in question, to find one that makes verification succeed— this allows us to infer that
the programmer’s semantic intent. We can then replace the snippet of code with any other code that results in the same
postcondition, including code in domain specific languages.

Selected Current Research
These core technologies have enabled me to pursue a set of research projects that span all aspects of domain-specific

program optimization. Here, I highlight some of my current research projects.
Optimizations & Domain-Specific Compilers for Stencils Stencil computations constitute an important compu-

tational pattern that is used in scientific simulations, linear solvers, image processing algorithms, and machine learning.
In such computations, each point in a multidimensional space is updated with a function of its neighbors.

We explored existing and new optimizations for stencils on modern architectures [MSP05, MSPC06, CF06,
SIREV09] and found that many traditional optimizations were ineffective due to more complicated memory hierarchies
in modern computers. Based on the optimizations we discovered, we built the first modern parallelizing stencil compiler
[CUG09, IPDPS10] that targeted multicore CPUs and GPUs. With this compiler, programmers could express their
computation in a simple, straightforward language, and obtain over 90% of peak performance across architectures. The
compiler utilized domain-specific transformations as well as empirical auto-tuning— it generated many correct variants
of the code and ran them to find the most optimal. This approach is the basis for modern high performance stencil
DSLs, including PATUS [PATUS], which is the successor to our original work, and Halide [HALIDE], which is used in
production at Google and other corporations.

Embedded Domain-Specific Languages in Python Using Asp and the SEJITS methodology, I have helped
build domain-specific compilers for machine learning [HOTPAR11, SCIPY12], stencil computations [UCB13],
communication-avoiding matrix algorithms [IPDPS13A, IWAPT12], and queries over extremely large-scale graphs
[IPSPDS13B, JPDC14]. These compilers target GPUs, multicore CPUs, and clusters, and obtain much higher perfor-
mance than is possible with pure Python. In a number of cases, the performance is equivalent to or better than programs
hand-written by performance experts in low-level languages, due to the use of auto-tuning. Additional SEJITS DSLs
are in active development at UC Berkeley.

Automatically Transforming Stencils in Fortran to DSLs Using our new synthesis-based technology for bridging
between general languages and domain-specific languages, we are building STNG, a system [SUB1] that transforms
code automatically from Fortran to Halide. Preliminary results show that this approach results in speedups of over 10×,
outperforming existing fully-automatic approaches such as polyhedral analysis. In order to build STNG, we overcame a
number of obstacles, including transforming a large triply-quantified boolean formula into one that could be solved
efficiently using program synthesis. The system is able to transform stencil computations from real applications used in
scientific computing and image processing.

Our technique has also been applied to transform database queries in Java, with similarly excellent results [QBS]. In
both cases, the programmer does not need to write or change any of their code by hand; the system automatically and
soundly replaces the code written in a general language with new code in a DSL that does the same computation.

Creating Distributed Implementations from Serial Specifications When data is partitioned across several ma-
chines, it becomes much more complicated to reason about computations and data transformations, due to the need to
communicate and synchronize data. I have been involved in building MSL [SC14], a new language for synthesizing
parallel implementations from serial specifications. In MSL, users provide a serial implementation plus two things: a
description of how the data is distributed, and a space of possible parallel implementations. The synthesizer in MSL
finds a parallel implementation that performs the same computation as the serial code and outputs C++ code using MPI
for communication. Kernels built using MSL perform as well as those written by hand in Fortran. This ongoing project
has the potential to make it much easier to write complicated distributed computations.
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Future Directions
For future explorations, I plan to continue building new domain-specific compilers and languages, as well as new

enabling infrastructure. In addition, I will explore new problems arising as parallelism and the need for optimization
become more ubiquitous.

Bridging General Purpose and Domain-Specific Compilers I believe there is huge potential in using program
synthesis to bridge between domain-specific and general purpose languages. Though this has been demonstrated for
two kinds of computations (stencils and database queries), many other computations can potentially benefit from this
approach. For stencils, much of the work was making it tractable to solve a complex synthesis problem with additional
quantifiers; it is likely new difficulties will arise as we build this technology for other domains. Given the potential
payoff (orders of magnitude performance improvements, automatically), this is an exciting area of research. The first
additional area I will look into is computations on irregular grids, which are difficult for polyhedral tools to optimize.
Based on my experience with STNG, I believe these computations will be possible to transform using this approach.

Supporting Parallelism in Compilation Current low-level intermediate representations such as LLVM do not
directly represent parallelism. Instead, the current approach is that parallelism is handled by front-end compilers; by the
time the code is transformed into the low-level representation, all decisions about parallelism have already been made.
This can result in sub-optimal performance when composing parallelism, and makes it difficult to generate multiple
parallelism strategies which could be auto-tuned.

I want to explore an alternative approach, where parallelism decisions are left to the low-level representation. To
be clear, this is not automatic parallelization; at this level, the code includes all available parallelism up to the finest
granularity, while decisions about how to exploit parallelism occur in the backend. This would enable the generation of
multiple variants at the backend level, and could, if combined with parallel optimizations at this level, make it easier to
generate optimized parallel code. With the increasing importance of parallel execution, pushing parallel decisions into
the low-level could make it simpler and easier to obtain high performance. Early exploratory results show that this
approach works better than the current approach for Cilk-style fork-join parallelism. The next step is to see how other
shared-memory models can be optimized in this approach, and then to extend it to distributed computations. The goal is
to support many different parallel and distributed programming models with a unified low-level representation.

New Domain Specific Optimizers Large-scale datacenters and mobile devices are two of the driving forces for
new areas of computing. I am exploring web applications as one of the areas where the domain-specific approach
optimization can be effective. Many web applications are written in high-level interpreted languages such as Ruby,
Python, and JavaScript; making such applications more efficient could greatly impact current and future computing. I
have already begun exploring some optimization techniques that seem promising for these important applications. If
these optimizations can be generalized, then we can begin exploring how to either leverage existing frameworks (such
as Rails) or to build new ones that enable optimization.

In addition, I’m looking forward to collaborating with new colleagues to find what they think are the most important
kinds of computations in their applications. Across many subjects, computation is becoming a central piece of research,
and for many of these areas, we do not yet understand the most important bottlenecks that can be eased through the use
of domain-specific optimization techniques.

Mining Software for Parallelism & Synthesis With the proliferation of open source repositories on sites like
Github and Bitbucket, we now have a large corpus of existing programs that could be analyzed. In addition, programmer-
oriented sites like StackOverflow help explain difficult programming questions in a combination of prose and program
snippets. I am interested in leveraging the knowledge contained in these repositories using new machine learning
and program analysis techniques. Potentially, we can use these repositories as a basis for learning new automated or
semi-automated program transformation techniques. For example, some early work I’ve supervised has shown it is
possible use ML techniques to learn how to transform code to use new versions of a library.

Using historical information from source control check-ins, I plan on beginning by seeing if transformations from
serial to parallel code can be discovered, and perhaps generalized. Other kinds of transformations may be useful as
high-level templates, using program synthesis to ensure correctness. If these new sources of code and programmer
knowledge can be leveraged to improve programming tools, the impact will be huge.
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Summary
In a decade, the landscape of compilers and languages will have fundamentally changed in response to the need

for parallelism to obtain performance and the proliferation of new execution models and architectures. Programmers
will write code in combinations of domain-specific languages and general purpose languages. These programs will
express high-level code without low-level optimizations; domain-specific compilers and general purpose languages with
domain-specific optimizers will be responsible for turning this code into high performance, energy-efficient executables
that will run on a wider variety of architectures, taking advantage of new programming models such as approximate and
probabilistic execution.

My research brings us closer to this future, by building programming systems that improve both productivity and
performance. I believe the path forward is to exploit domain-specific information to guide optimization strategies,
and to build programming systems that allow programmers to express their programs without conflating the desired
computation with low-level optimizations. As parallelism becomes even more ubiquitous, my research will continue to
enable programmers to program with higher productivity and higher performance.
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