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Abstract

Executing untrusted code while preserving security re-
quires that the code be prevented from modifying mem-
ory or executing instructions except as explicitly al-
lowed. Software-based fault isolation (SFI) or “sandbox-
ing” enforces such a policy by rewriting the untrusted
code at the instruction level. However, the original sand-
boxing technique of Wahbe et al. is applicable only to
RISC architectures, and most other previous work is ei-
ther insecure, or has been not described in enough detail
to give confidence in its security properties. We present a
new sandboxing technique that can be applied to a CISC
architecture like the IA-32, and whose application can
be checked at load-time to minimize the TCB. We de-
scribe an implementation which provides a robust secu-
rity guarantee and has low runtime overheads (an average
of 21% on the SPECint2000 benchmarks). We evaluate
the utility of the technique by applying it to untrusted de-
compression modules in an archive tool, and its safety by
constructing a machine-checked proof that any program
approved by the verification algorithm will respect the
desired safety property.

1 Introduction

Secure systems often need to execute a code module
while constraining its actions with a security policy. The
code might come directly from a malicious author, or it
might have bugs that allow it to be subverted by mali-
ciously chosen inputs. The system designer chooses a set
of legal interfaces for interaction with the code, and the
challenge is to ensure that the code’s interaction with the
rest of the system is limited to those interfaces. Software-
based fault isolation (SFI) implements such isolation via
instruction rewriting, but previous research left the prac-
ticality of the technique uncertain. The original SFI tech-
nique works only for RISC architectures, and much fol-
lowup research has neglected key security issues. By

contrast, we find that SFI can be implemented for the
x86 with runtime overheads that are acceptable for many
applications, and that the technique’s security can be
demonstrated with a rigorous machine-checked proof.

The most common technique for isolating untrusted
code is the use of hardware memory protection in the
form of an operating system process. Code in one pro-
cess is restricted to accessing memory only in its address
space, and its interaction with the rest of a system is lim-
ited to a predefined system call interface. The enforce-
ment of these restrictions is robust and has a low over-
head because of the use of dedicated hardware mecha-
nisms such as TLBs; few restrictions are placed on what
the untrusted code can do. A disadvantage of hardware
protection, however, is that interaction across a process
boundary (i.e., via system calls) is coarse-grained and
relatively expensive. Because of this inefficiency and in-
convenience, it is still most common for even large ap-
plications, servers, and operating system kernels to be
constructed to run in a single address space.

A very different technique is to require that the un-
trusted code be written in a type-safe language such as
Java. The language’s type discipline limits the mem-
ory usage and control flow of the code to well-behaved
patterns, making fine-grained sharing of data between
trusted and untrusted components relatively easy. How-
ever, type systems have some limitations as a security
mechanism. First, unlike operating systems, which are
generally language independent, type system approaches
are often designed for a single language, and can be hard
to apply to at all to unsafe languages such as C and C++.
Second, conventional type systems describe high-level
program actions like method calls and field accesses. It
is much more difficult to use a type system to constrain
code at the same level of abstraction as individual ma-
chine instructions; but since it is the actual instructions
that will be executed, only a safety property in terms of
them would be really convincing.

This paper investigates a code isolation technique that
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void f(int arg, int arg2,
int arg3, int arg4) {

return;
}
void poke(int *loc, int val) {

int local;
unsigned diff = &local - loc - 2;
for (diff /= 4; diff; diff--)

alloca(16);
f(val, val, val, val);

}

Figure 1: Example attack against SFI systems which depend
on the compiler’s management of the stack for safety. The
function poke modifies the stack pointer by repeatedly allo-
cating unused buffers withalloca until it points near an arbi-
trary target locationloc , which is then overwritten by one of
the arguments tof . MiSFIT [25] and Erlingsson’s x86 SASI
tool [10] allow this unsafe write because they incorrectly as-
sume that the stack pointer always points to the legal data re-
gion.

lies between the approaches mentioned above, one that
enforces a security policy similar to an operating system,
but with ahead-of-time code verification more like a type
system. This effect is achieved by rewriting the machine
instructions of code after compilation to directly enforce
limits on memory writes and control flow. This class
of techniques is known as “software-based fault isola-
tion” (SFI for short) or “sandboxing” [27]. Previous SFI
techniques were applicable only to RISC architectures,
or their treatment of key security issues was incomplete,
faulty, or never described publicly. For instance, several
previous systems [25, 10] depended for their safety on
an assumption that a C compiler would manage the stack
pointer to keep the untrusted code’s stack separate from
the rest of memory. As shown in the example of Fig-
ure 1, this trust is misplaced, not just because compilers
are large and may contain bugs, but because the safety
guarantees they make are loosely specified and contain
exceptions. (Concurrently with the research described
here, some other researchers have also developed SFI-
like systems that include more rigorous security analy-
ses; see Section 10 for discussion.)

Many systems programming applications can benefit
from a code isolation mechanism that is efficient, robust,
and easily applicable to existing code. A useful tech-
nique to improve the reliability of operating systems is to
isolate device drivers so that their failures (which may in-
clude arbitrary memory writes) do not corrupt the rest of
a kernel. The Nooks system [26] achieves such isolation
with hardware mechanisms that are robust, but impose
a high overhead when many short cross-boundary calls
are made; SFI could provide similar protection without
high per-call overheads. To reduce the damage caused

by attacks on network servers, they should be designed
to minimize the amount of code that requires high (e.g.,
root) privileges; but retrofitting such a design on an exist-
ing server is difficult. Dividing servers along these lines
by using separate OS-level processes [23, 14] is effective
at preventing vulnerabilities, but is far from trivial be-
cause of the need to serialize data for transport and pre-
vent an untrusted process from making damaging system
calls. SFI could make such separation easier by auto-
matically preventing system calls and making memory
sharing more transparent. Section 8 discusses VXA [11],
an architecture that ensures compressed archives will be
readable in the future by embedding an appropriate de-
compressor directly in an archive. Applying our SFI tool
to VXA we see that it very easily obtains a strong se-
curity guarantee, without imposing prohibitive runtime
overheads. Note that all of these examples include large
existing code bases written in C or C++, which would be
impractical to rewrite in a new language; the language
neutrality of SFI techniques is key to their applicability.

This paper:

• Describes a novel SFI technique directly applicable
to CISC architectures like the Intel IA-32 (x86), as
well as two optimizations not present in previous
systems (Sections 3 and 4).

• Explains how using separate verification, the secu-
rity of the technique depends on a minimal trusted
base (on the order of a thousand lines of code),
rather than on tools consisting of hundreds of thou-
sands of lines (Section 5).

• Analyzes in detail the performance of an implemen-
tation on the standard SPECint2000 benchmarks
(Section 7).

• Evaluates the implementation as part of a system to
safely execute embedded decompression modules
(Section 8).

• Gives a machine-checked proof of the soundness
of the technique (specifically, of the independent
safety verifier) to provide further evidence that it is
simple and trustworthy (Section 9).

We refer to our implementation as the Prototype IA-
32 Transformation Tool for Software-based Fault Iso-
lation Enabling Load-time Determinations (of safety),
or PittSFIeld1. Our implementation is publicly avail-
able (the version described here is 0.4), as are the for-
mal model and lemmas used in the machine-checked
proof. They can be downloaded from the project web site
at http://pag.csail.mit.edu/˜smcc/projects/

pittsfield/ .

1Pittsfield, Massachusetts, population 45,793, is the seat of Berk-
shire county and a leading center of plastics manufacturing. Our ap-
propriation of its name, however, was motivated only by spelling.
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2 Classic SFI

The basic task for any SFI implementation is to prevent
certain potentially unsafe instructions (such as memory
writes) from being executed with improper arguments
(such as an effective address outside an allowed data
area). The key challenges are to perform these checks ef-
ficiently, and in such a way that they cannot be bypassed
by maliciously designed jumps in the input code. The
first approach to solve these challenges was the original
SFI technique (called “sandboxing”) of Wahbe, Lucco,
Anderson, and Graham [27]. (The basic idea of rewrit-
ing instructions for safety had been suggested earlier, no-
tably by Deutsch and Grant [7], but their system applied
to code fragments more limited than general programs.)

In order to efficiently isolate pointers to dedicated
code and data regions, Wahbe et al. suggest choosing
memory regions whose size is a power of two, and whose
starting location is aligned to that same power. For in-
stance, we might choose a data region starting at the
address0xda000000 and extending 16 megabytes to
0xdaffffff . With such a choice, an address can be
efficiently checked to point inside the region by bitwise
operations. In this case, we could check whether the bit-
wise AND of an address and the constant0xff000000
was equal to0xda000000 . We’ll use the termtag to re-
fer to the portion of the address that’s the same for every
address in a region, such as0xda above.

The second challenge, assuring that checks cannot be
bypassed, is more subtle. Naively, one might insert
a checking instruction sequence directly before a po-
tentially unsafe operation; then a sequential execution
couldn’t reach the dangerous operation without passing
through the check. However, it isn’t practical to restrict
code to execute sequentially: realistic code requires jump
and branch instructions, and with them comes the dan-
ger that execution will jump directly to an dangerous in-
struction, bypassing a check. Direct branches, ones in
which the target of the branch is specified directly in the
instruction, are not problematic: a tool can easily check
their destinations before execution. The crux of the prob-
lem is indirect jump instructions, ones where the target
address comes from a register at runtime. They are re-
quired by procedure returns,switch statements, func-
tion pointers, and object dispatch tables, among other
language features (Deutsch and Grant’s system did not
allow them). Indirect jumps must also be checked to see
that their target address is in the allowed code region, but
how can we also exclude the addresses of unsafe instruc-
tions, while allowing safe instruction addresses?

The key contribution of Wahbe et al. was to show that
by directing all unsafe operations through a dedicated
register, a jump to any instruction in the code region
could be safe. For instance, suppose we dedicate the reg-

ister %rs for writes to the data area introduced above.
Then we maintain that throughout the code’s execution,
the value in%rs always contains a value whose high bits
are0xda . Code can only be allowed to store an arbi-
trary value into%rs if it immediately guarantees that
the stored value really is appropriate. If we know that
this invariant holds whenever the code jumps, we can see
that even if the code jumps directly to an instruction that
stores to the address in%rs, all that will occur is a write
to the data region, which is safe (allowed by the secu-
rity policy). Of course, there is no reason why a correct
programwould jump directly to an unsafe store instruc-
tion; the technique is needed for incorrect or maliciously
designed programs.

Wahbe et al. implemented their technique for two
RISC architectures, the MIPS and the Alpha. Because
memory reads are more common than writes and less
dangerous, their implementation only checked stores and
not loads, a tradeoff that has also been made in most
subsequent work, including ours. (In the experiments
in [25], adding protection for out-of-bounds reads often
more than doubled overhead compared to checking only
writes and jumps.) Because separate dedicated registers
are required for the code and data regions, and because
constants used in the sandboxing operation also need to
be stored in registers, a total of 5 registers are required;
out of a total of 32, the performance cost of their loss
was negligible. Wahbe et al. evaluated their implemen-
tation by using it to isolate faults in an extension to a
database server. While fault isolation decreases the per-
formance of the extension itself, the total effect is small,
significantly less than the overhead of running the exten-
sion run in a separate process, because communication
between the extension and the main server becomes in-
expensive.

3 CISC architectures

The approach of Wahbe et al. is not immediately appli-
cable to CISC architectures like the Intel IA-32 (i386 or
“x86”), which feature variable-length instructions. (The
IA-32’s smaller number of registers also makes dedicat-
ing several registers undesirable, though its 32-bit im-
mediates mean that only 2 would be needed.) Implicit
in the previous discussion of Wahbe et al.’s technique
was that jumps were restricted to a single stream of in-
structions (each 4-byte aligned, in a typical RISC archi-
tecture). By contrast, the x86 has variable-length in-
structions that might start at any byte. Typically code
has a single stream of intended instructions, each fol-
lowing directly after the last, but by starting at a byte
in the middle of an intended instruction, the processor
can read an alternate stream of instructions, generally
nonsensical. If code were allowed to jump to any byte
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Figure 2: Illustration of the instruction alignment enforced by our technique. Black filled rectangles represent instructions of various
lengths present in the original program. Gray outline rectangles represent added no-op instructions. Instructions are not packed as
tightly as possible into chunks because jump targets must be aligned, and because the rewriter cannot always predict the length of
an instruction. Call instructions (gray filled box) go at the end of chunks, so that the addresses following them are aligned.

offset, the SFI implementation would need to check the
safety of all of these alternate instruction streams; but
this would be infeasible. The identity of the hidden in-
structions is a seemingly random function of the precise
encodings of the intended ones (including for instance
the eventual absolute addresses of forward jump targets),
and most modifications to hidden instructions would gar-
ble the real ones.

To avoid this problem, our PittSFIeld tool artificially
enforces its own alignment constraints on the x86 archi-
tecture. Conceptually, we divide memory into segments
we callchunkswhose size and location is a power of two,
say 16, bytes. PittSFIeld inserts no-op instructions as
padding so that no instruction crosses a chunk boundary;
every 16-byte aligned address holds a valid instruction.
Instructions that are targets of jumps are put at the be-
ginning of chunks;call instructions go at the ends of
chunks, because the instructions after them are the tar-
gets of returns. This alignment is illustrated schemat-
ically in Figure 2. Furthermore, jump instructions are
checked so that their target addresses always have their
low 4 bits zero. This transformation means that each
chunk is an atomic unit of execution with respect to in-
coming jumps: it is impossible to execute the second
instruction of a chunk without executing the first. To
ensure that an otherwise unsafe operation and the check
of its operand cannot be separated, PittSFIeld addition-
ally enforces that such pairs of instructions do not cross
chunk boundaries, making them atomic. Thus, our tech-
nique does not need dedicated registers as in classic SFI.
A scratch register is still required to hold the effective
address of an operation while it is being checked, but it
isn’t required that the same register be used consistently,
or that other uses of the register be prohibited. (For rea-
sons of implementation simplicity, though, our current
system consistently uses%ebx.)

4 Optimizations

The basic technique described in Section 3 ensures the
memory and control-flow safety properties we desire, but
as described it imposes a large performance penalty. This
section describes five optimizations that reduce the over-

head of the rewriting process, at the expense of making
it somewhat more complex. The first three optimizations
were described by Wahbe et al., and are well known; the
last two have, as far as we know, not previously been
applied to SFI implementations.

Special registers. The register%ebp (the ‘frame
pointer’ or ‘base pointer’) is often used to access local
variables stored on the stack, part of the data region.
Since%ebpis generally set only at the start of a function
but then used repeatedly thereafter, checking its value at
each use is inefficient. A better strategy is to make sure
that %ebp’s value is a safe data pointer everywhere by
checking its value after each modification. This policy
treats%ebp like the reserved registers of Wahbe et al.,
but since%ebp is already reserved by the ABI for this
purpose, the number of available general-purpose regis-
ters is not decreased.

Guard regions. The technique described in the previ-
ous paragraph for optimizing the use of%ebpwould be
effective if%ebpwere only dereferenced directly, but in
fact %ebp is often used with a small constant offset to
access the variables in a function’s stack frame. Usually,
if %ebp is in the data region, then so is%ebp + 10,
but this would not be the case if%ebpwere already near
the end of the data region. To handle this case efficiently,
we follow Wahbe et al. in usingguard regions, areas in
the address space directly before and after the data re-
gion that are also safe for the sandboxed code to attempt
to write to.

If we further assume that accesses to the guard region
can be efficiently trapped (such as by leaving them un-
mapped in the page table), we can optimize the use of the
stack pointer%esp in a similar way. The stack pointer is
similar to%ebpin that it generally points to the stack and
is accessed at small offsets, but unlike the frame pointer,
it is frequently modified as items are pushed onto and
popped off the stack. Even if each individual change is
small, each must be checked to make sure that it isn’t the
change that pushes%esp past the end of the allowable
region. However, if attempts to access the guard regions
are trapped, every use of%esp can also serve as a check
of the new value. One important point is that we must be
careful of modifications of%esp that do not also use it.
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The danger of a sequence of small modifications is illus-
trated in the example of Figure 1: each call toalloca
decrements%esp by a small amount but does not use
it to read or write. Our system prevents this attack by
requiring a modified%esp to be checked before a jump.

Ensure, don’t check. A final optimization that was
included in the work of Wahbe et al. has to do with the
basic philosophy of the safety policy that the rewriting
enforces. Clearly, the untrusted code should not be able
to perform any action that is unsafe; but what should hap-
pen when the untrusted code attempts an unsafe action?
The most natural choice would be to terminate the un-
trusted code with an error report. Another possibility,
however, would be to simply require that when an unsafe
action is attempted, some action consistent with the se-
curity policy occurs instead. For example, instead of a
jump to a forbidden area causing an exception, it might
instead cause a jump to some arbitrary other location in
the code region. The latter policy can be more efficient
because no branch is required: the code simply sets the
bits of the address appropriately and uses it. If the ad-
dress was originally illegal, it will ‘wrap around’ to some
legal, though likely not meaningful, location.

There are certainly applications (such as debugging)
where such arbitrary behavior would be unhelpful. How-
ever, it is reasonable to optimize a security mechanism
for the convenience of legitimate code, rather than of il-
legal code. Attempted jumps to an illegal address should
not be expected to occur frequently in practice: it is the
responsibility of the code producer (and her compiler),
not the code user, to avoid them. Our rewriting tool sup-
ports both modes of operation, but we here follow Wahbe
et al.in concentrating on the more efficient ensure-only
mode, which we consider more realistic. Experiments
described in a previous report [18] show that the check-
ing mode introduces an average of 12% further overhead
over the ensure-only mode on some realistic examples.

One-instruction address operations.For an arbitrar-
ily chosen code or data region, the sandboxing instruc-
tion must check (or, according to the optimization above,
ensure) that certain bits of an address are set, and others
are clear. This requires two instructions: an AND in-
struction to turn some bits off and an OR instruction set
others. By further restricting the locations of the sand-
box regions, however, the number of instructions can be
reduced to one. We choose the code and data regions so
that their tags have only a single bit set, and then reserve
from use the region of the same size starting at address 0,
which we call thezero-tag region(because it corresponds
to a tag of 0). With this change, bits in the address only
need to be cleared, and not also set.

PittSFIeld by default uses code and data regions of
16MB each, starting at the addresses0x10000000 and
0x20000000 respectively. The code sequence to en-

sure that an address in%ebx is legal for the data region
is:2

and $0x20ffffff, %ebx

This instruction turns off all of the bits in the tag ex-
cept possibly the third from the top, so the address will
be either in the data region or the zero-tag region. On
examples such as the set of larger programs appearing
in a previous report [18], disabling this optimization in-
creases PittSFIeld’s overhead over normal execution by
about 10%.

Efficient returns. A final optimization helps PittS-
FIeld take advantage of the predictive features of mod-
ern processors. Indirect jumps are potentially expensive
for processors if their targets cannot be accurately pre-
dicted. For general indirect jumps, processors typically
keep a cache, called a ‘branch target buffer’, of the most
recent target for a jump instruction. A particularly com-
mon kind of indirect jump is a procedure return, which
on the x86 reads a return address from the stack. A naive
implementation would treat a return as a pop followed
by a standard indirect jump; for instance, an early ver-
sion of PittSFIeld translated aret instruction into (in
this example and the next, the final two instructions must
be in a single chunk):

popl %ebx
and $0x10fffff0, %ebx
jmp *%ebx

However, if a procedure is called from multiple loca-
tions, the single buffer slot will not be effective at pre-
dicting the return address, and performance will suffer.
In order to deal more efficiently with returns, modern
x86 processors keep a shadow stack of return addresses
in a separate cache, and use this to predict the destina-
tions of returns. To allow the processor to use this cache,
we would like PittSFIeld to return from procedures using
a realret instruction. Thus PittSFIeld modifies the re-
turn address and writes it back to the stack before using
a regularret . In fact, this can be done without a scratch
register:

and $0x10fffff0, (%esp)
ret

On a worst case example, like a recursive implementa-
tion of the Fibonacci function, this optimization makes
an enormous difference, reducing 95% overhead to 40%.
In more realistic examples, the difference is smaller but
still significant; for the SPECint2000 benchmarks dis-
cussed in Section 7, disabling this optimization increases

2Assembly language examples use the GAS, or ‘AT&T’, syntax
standard on Unix-like x86-based systems, which puts the destination
last.
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the average overhead from 21% to 27%, and almost dou-
bles the overhead for one program, 255.vortex.

With the exception of this optimization, the rest of
the PittSFIeld system can maintain its security policy
even if arbitrary changes to the data region occur be-
tween instructions, because instructions always move ad-
dresses to registers before checking them. However, the
ret instruction unavoidably uses the stack, so this op-
timization is applicable under the more limited attack
model in which untrusted data changes come from a sin-
gle untrusted thread. The optimization should not be
used if multiple threads run in the same data sandbox,
or if other untrusted memory changes (such as memory-
mapped I/O) might occur in parallel.

5 Verification

The intended use of PittSFIeld is that the compilation
and the rewriting of the code are performed by the un-
trusted code producer, and the safety policy is enforced
by a separate verification tool. This architecture is fa-
miliar to users of Java: the code producer writes source
code and compiles it to byte code using the compiler of
her choice, but before the code user executes an applet
he checks it using a separate byte code verifier. (One dif-
ference from Java is that once checked, our code is exe-
cuted more or less directly; there is no trusted interpreter
as complex as a Java just-in-time compiler.) The impor-
tance of having a small, trusted verifier is also stressed
in work on proof-carrying code [20]. Though the advan-
tages of this architecture are well known, they have been
neglected by some previous SFI implementations, lead-
ing to predictable problems with usability and security
(see Section 10.1).

Responsibility for ensuring the safety of execution in
the PittSFIeld system lies with a verifier which examines
the rewritten code just prior to execution, conservatively
checking properties which, if true, ensure that execution
of the code will not violate the system’s security policy.
In a more complex system, one could imagine the rewrit-
ing process supplying hints describing why the rewrit-
ten code satisfies the security policy (like the proof in a
proof-carrying code system), but PittSFIeld’s policies are
simple enough that this is not necessary. In particular,
the verifier does not require debugging or symbol-table
information; the verifier must disassemble the rewritten
code, but the rewriter ensures that the disassembly can
be performed in a single pass without respect to function
boundaries. The role of the verifier is to prove that the
rewritten code is safe, so its design is best thought of as
automating such a proof. Section 9 will describe in more
detail how that intuitive proof can be formalized.

To understand how the verification works, it is helpful
to borrow concepts from program analysis, and think of

it as a conservative static analysis. The verifier checks a
property of the program’s execution, roughly that it never
jumps outside its code region or writes outside its data
region. In general, this property is impossible to decide,
but it is tractable if we are willing to accept one-sided
error: we do not mind if the verifier fails to recognize
that some programs have the safety property, as long as
whenever it concludes that one does, it is correct. If the
original program was correct, it already had this safety
property; the rewriting simply makes the property mani-
fest, so that the verifier can easily check it.

The verification process essentially computes, for each
position in the rewritten instruction stream, a conserva-
tive property describing the contents of the processor’s
registers at any time when execution might reach that
point. For instance, directly after an appropriateand
instruction not at a chunk boundary, we might know that
the contents of the target register are appropriately sand-
boxed for use in accessing the data region. The major
part of the safety proof is to show that these properties
are sound for any possible execution; it is then easy to see
that if the properties always hold, no unsafe executions
will be possible. An important aspect of the soundness
is that it is inductive over the steps in the execution of
the rewritten code: for instance, it is important that none
of the instructions in the code region change during exe-
cution, as new instructions would not necessarily match
the static properties. We can be confident of this only be-
cause in previous execution up to a given point, we can
assume we were successful in preventing writes outside
the data section. In program verification terminology, the
soundness property is an invariant that the verifier checks
as being preserved by each instruction step.

6 Prototype implementation

To test the practicality of our approach, we have con-
structed a prototype implementation, named PittSFIeld.
PittSFIeld instantiates a simple version of the technique,
incorporating only the most important optimizations.
However, PittSFIeld was designed to address some im-
portant practical considerations for a real tool, such as the
separate verification model and scalability to large and
complex programs. In particular, PittSFIeld makes no
fundamental compromises with respect to the rigorous
security guarantees that the technique offers. The perfor-
mance of code rewritten by PittSFIeld (described in the
next section) should also give a reasonable upper bound
on the overhead of this general approach, one which
could be somewhat improved by further optimization.
(However, other aspects of the prototype are not repre-
sentative of a practical implementation: for instance, the
rewriter is unrealistically slow.)

The rewriting performed by PittSFIeld is a version of
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the techniques described in Sections 3 and 4, chosen to
be easy to perform. The register%ebx is reserved (us-
ing the--fixed-ebx flag to GCC), and used to hold
the sandboxed address for accesses to both the data and
code regions. The effective address of an unsafe opera-
tion is computed in%ebx using alea instruction. The
value in%ebx is required to be checked or sandboxed di-
rectly before each data write or indirect code jump (reads
are unrestricted). Both direct and indirect jumps are con-
strained to chunk-aligned targets. Guard regions are 64k
bytes in size:%ebp and %esp are treated as usually-
sandboxed. Accesses are allowed at an offset of up to 64k
from %ebp, and of up to 255 bytes from%esp; %esp is
also allowed to be modified up to 255 times, by as much
as 255 bytes each time, between checks. Both%ebpand
%esp must be restored to safe values before a jump. A
safe value in%espmay be copied to%ebpor vice-versa
without a check. Chunks are padded using standard no-
op instructions of lengths 1, 2, 3, 4, 6, and 7 bytes, to a
size of 16 or 32 bytes.

Because it operates on assembly code, our prototype
rewriting tool is intended to be used by a code pro-
ducer. A system that instead operates on off-the-shelf
binaries without the code producer’s cooperation is often
described as a goal of SFI research, but has rarely been
achieved in practice. The key difficulty is that binaries
do not contain enough information to adjust jumps when
instructions are added: for instance, it may not be pos-
sible to distinguish between an address referring to an
instruction and an integer with the same numeric value.
A more feasible approach is to operate on binaries sup-
plemented with additional relocation information, such
as the debugging information used by the Vulcan library
in [1], or the SELF extension to ELF proposed in [8].

Both the rewriting and the verification in PittSFIeld
are performed as single top-to-bottom passes, essentially
as finite-state machines. While this prohibits some op-
timizations (for instance, labels that are targets only of
direct jumps need not necessarily be aligned), it allows
PittSFIeld to rewrite very large programs, and guaran-
tees that the verification’s running time will be linear. (A
verification technique with bad worst-case performance
can allow a denial-of-service attack [12]).

The rewriting phase of PittSFIeld is implemented as a
text processing tool, of about 720 lines of code, operat-
ing on input to the GNU assemblergas . In most cases,
alignment is achieved using the.p2align directive to
the assembler, which computes the correct number of no-
ops to add; the rewriter uses a conservative estimate of
instruction length to decide when to emit a.p2align .
The rewriter adds no-ops itself for aligning call instruc-
tions, because they need to go at the end rather than the
beginning of a chunk. The rewriter notices instructions
that are likely to be used for their effect on the processor

status flags (e.g., comparisons), and saves and restores
the flags register around sandboxing operations when the
flags are deemed live. However, such save and restore
operations can be costly on modern architectures, so to
prevent GCC from moving comparisons away from their
corresponding branches, we disable instruction schedul-
ing with the-fno-schedule-insns2 option when
compiling for PittSFIeld. An example of the rewriter’s
operation on a small function is shown in Figure 3.

We have implemented two prototypes for the verifi-
cation phase of PittSFIeld, which implement the same
algorithm. Because they use a single disassembly pass,
the verifiers enforce alignment by checking that an in-
struction in the single stream must appear at each chunk
starting address. The verifiers currently verify only the
style of rewriting in which pointers are modified, and not
the style in which they are checked and execution halted
if they are incorrect. As mentioned in Section 5, the ver-
ifiers are essentially finite-state: at each code location,
they keep track of variations from the standard safety in-
variant, checking them and then updating their knowl-
edge for each instruction. Operations that ‘strengthen’
the invariant (for instance, sandboxing a pointer value in
%ebx) expire after one instruction or at a chunk bound-
ary, whichever comes first. Operations that ‘weaken’ the
invariant (for instance, loading a new value into%ebp)
persist until corrected, and must not reach a jump.

Our first verifier is implemented using the same text-
processing framework as the rewriter: it is a filter that
parses the output of the disassembler from the GNU
“binutils” package (the program namedobjdump ), and
represents about 500 lines of code. Our second verifier
is implemented directly in the program that loads and
executes sandboxed code objects, using a pre-existing
disassembly library; this allows for a better assessment
of the performance overheads of verification. Though it
does not yet check the complete safety policy, the sec-
ond verifier is complete enough to give rough perfor-
mance estimates: for instance, it can verify the 2.7MB
of rewritten code for GCC, the largest of the programs
from Section 7, in about half a second. Both of our ver-
ifiers are much smaller than the disassemblers they use,
so the total amount of trusted code could be reduced by
disassembling only to the extent needed for verification,
but using existing disassemblers takes advantage of other
users’ testing. Performing more targeted disassembly in
this way would also be a way to further improve perfor-
mance. PittSFIeld supports a large subset of the x86 32-
bit protected mode instruction set, but supervisor mode
instructions, string instructions, and multimedia SIMD
(e.g. MMX, SSE) instructions are not supported; the ver-
ifier will reject any program containing an instruction it
does not recognize.
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f: push %ebp
mov %esp, %ebp
mov 8(%ebp), %edx
mov 48(%edx), %eax
lea 1(%eax), %ecx

mov %ecx, 48(%edx)
pop %ebp

ret

f: push %ebp
mov %esp, %ebp
mov 8(%ebp), %edx
mov 48(%edx), %eax
lea 1(%eax), %ecx
lea 0(%esi), %esi

lea 48(%edx), %ebx
lea 0(%esi), %esi
lea 0(%edi), %edi

and $0x20ffffff, %ebx
mov %ecx, (%ebx)
pop %ebp
lea 0(%esi), %esi

and $0x20ffffff, %ebp
andl $0x10fffff0, (%esp)
ret

Figure 3: Before and after example of code transformation.f is a function that takes an array of integers, increments the 12th, and
returns (in%eax) the value before the increment. The assembly code on the left is produced by GCC; that on the right shows the
results of the PittSFIeld rewriter after assembly. Rules separate the chunks, and no-op instructions are shown in gray. (Though they
look the same here, the first three no-ops use different instruction encodings so as to take 4, 6, and 7 bytes respectively).

7 Performance results

To asses the time and space overheads imposed by our
technique, we used our PittSFIeld tool to run stand-
alone applications in fault-isolated environments. The
programs were not chosen as code one might partic-
ularly want to run from an untrusted source, merely
as computation-intensive benchmarks. The ‘untrusted’
code in each case consisted of the application itself, and
some simple standard library routines. More complex li-
brary routines and system calls were treated as ‘trusted,’
and accessed via special stubs allowing controlled access
out of the sandbox. In a realistic application, these stubs
would include checks of their arguments to enforce de-
sired security policies. In our prototype, the trusted load-
ing application and stub trusted calls consisted of ap-
proximately 800 lines of C code, including blank lines
and comments. A previous technical report [18] gives
results for an older version of PittSFIeld run on a set of
microbenchmarks, and some larger applications. For bet-
ter comparison with other work, we here concentrate on
a standard set of compute-intensive programs, the integer
benchmarks from the SPEC CPU2000 suite.

The SPECint2000 suite consists of 12 programs and
reference inputs intended to test the performance of
CPUs, compilers, and memory subsystems. One of the
programs is written in C++, and the rest in C. In our
tests, we compiled the programs with GCC or G++ ver-
sion 3.3.5 at the-O3 optimization level. The test system
was a 3.06GHz Pentium 4 “Northwood”, with 512KB
of cache and 2GB of main memory, running Debian
Linux 3.1 with kernel version 2.4.28 and C library ver-
sion 2.3.2. We changed the layout of the code and data
sandbox areas to allow a larger data area. Each test was
run five times with the reference inputs using the stan-

dard SPEC scripts; we discarded the slowest and fastest
runtimes and took the average of the remaining three.

In order to measure the effect on performance of dif-
ferent aspects of PittSFIeld’s rewriting, we ran the pro-
grams using a number of treatments, representing in-
creasing subsets of the transformation the real tool per-
forms. Figure 4 shows the increase in runtime over-
head as each transformation is enabled, from bottom
to top. The base treatment uses PittSFIeld’s program
loader, but compiles the programs with normal optimiza-
tion and uses none of the features of the rewriter. The
measurements of Figure 4 are all measured as percent-
age overhead relative to the base treatment. The first
(bottom) set of bars in Figure 4 represents disabling in-
struction scheduling with an option to GCC. Disabling
this optimization has a small performance penalty, but
avoids higher overheads later by reducing the need to
save and restore the EFLAGS register as discussed in
Section 6. The next set of bars represents the effect of
directing GCC to avoid using the%ebx register in its
generated code, reducing the number of general purpose
registers from 6 to 5; PittSFIeld requires%ebx to be
available to hold the effective address of indirect writes
and jumps. The next treatment, labelled “padding”, re-
flects the basic cost of requiring chunk alignment: the
rewriter adds enough no-op instructions so that no in-
struction crosses a 16-byte boundary, and every jump
target is 16-byte aligned. The next set of bars, labelled
“NOP sandboxing”, attempts to measure all of the ad-
ditional overheads related to PittSFIeld’s code size in-
crease, beyond those measured in “padding”. To achieve
this, this treatment adds just as many bytes of new in-
structions as PittSFIeld normally would, but makes all
of them no-ops: this includes both sandboxing instruc-
tions, and additional padding required for the new in-
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Figure 4: Runtime overheads of PittSFIeld for the SPECint2000 benchmarks, by source. The left half of each bar represents
overhead when both jumps and memory writes are protected; the right half shows the overhead of protecting jumps only. The
programs are listed in decreasing order of binary size. See the body of the text, Section 7, for details on the meaning of each type
of overhead.

structions and to keep some instruction pairs in the same
chunk. Finally, the last set of bars represents the com-
plete PittSFIeld transformation; exactly the same num-
ber of instructions as “NOP sandboxing”, but with AND
instructions instead of no-ops as appropriate. For the
last two treatments, we also considered another subset of
PittSFIeld’s rewriting: the left half of each bar shows the
overhead when PittSFIeld is used to protect both writes
to memory and indirect jumps; the right half shows the
overhead for protecting jumps only. For some combina-
tions of programs and treatments, we actually measured
a small performance improvement relative to the previ-
ous treatment, either because of the inaccuracy of our
runtime measurement or because of unpredictable per-
formance effects such as instruction cache conflicts. In
these cases the corresponding bars are omitted from the
figure.

The SPECint2000 results shown in Figure 4 make
clear which of the sources of PittSFIeld’s overhead are
most significant. Disabling instruction scheduling has
little to no effect at this scale, and the sandboxing in-
structions themselves, bitwise operations on registers,
are almost as cheap as no-ops. The effect of reducing
the number of available registers varies greatly between
programs, but is never the most important overhead. The
largest source of overhead is unfortunately the one most
fundamental to the technique, the increase in the num-

ber of instructions. Added no-op instructions cause two
kinds of overhead: first, they take time to execute them-
selves, and second, they use cache space that would oth-
erwise be used by useful instructions. The relative impor-
tance of these two effects can be estimated by compar-
ing the size of the “padding” overhead across programs.
Though the proportion of padding instructions can be ex-
pected to vary slightly among programs (for instance,
being smaller in programs with larger basic blocks), the
variation in padding overheads is larger that could be ex-
plained by this effect, so the remaining variation must be
explained differences in instruction cache pressure. For
instance, the padding overhead is larger for large pro-
grams than for small ones. The very low overheads for
mcf likely have two causes: first, it is the smallest of
the benchmarks, so instruction cache pressures affect it
the least; second, it makes many random accesses to a
large data structure, so its runtime depends more on main
memory latency than anything happening on the CPU.
The final column of Figure 4 shows the average over-
head of the technique over all the programs (a geometric
mean). This is approximately 21% for memory and jump
protection, and 13% for jump protection only.

Figure 5 show how PittSFIeld’s transformation affects
the size of the code. The row labelled “Size” shows the
size of a binary rewritten by PittSFIeld, in bytes (K =210,
M = 220). This size includes the program and the stub li-
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Program gcc perl vortex eon gap crafty twolf parser vpr gzip bzip2 mcf
Size 2.7M 1.2M 1010K 923K 853K 408K 390K 276K 267K 109K 108K 50K

Ratio 1.84 1.96 1.63 1.72 1.84 1.62 1.80 1.92 1.67 1.65 1.63 1.74
Compressed 1.05 1.07 0.98 1.05 1.05 1.06 1.08 1.06 1.07 1.10 1.09 1.13

Figure 5: PittSFIeld space overheads for the SPECint2000 benchmarks. “Size” is the size of the PittSFIeld-rewritten binary. “Ratio”
is the ratio of the size of the rewritten binary to the size of a binary generated without rewriting. “Compressed” is like “Ratio”,
except with both binaries compressed withbzip2 before comparing their sizes.

brary, both rewritten by PittSFIeld in its default mode
(16-byte chunks, both memory and jump protection).
The row “Ratio” shows the ratio of the size of an ob-
ject file processed by PittSFIeld to that of an unmodified
program. The row “Compressed” is analogous, except
that both the transformed and original object files were
first compressed withbzip2 . Which of these measure-
ments is relevant depends on the application. The most
important effect of PittSFIeld’s size increase in most ap-
plications is likely its effect on performance, discussed
in the previous paragraph. Uncompressed size is rele-
vant for memory usage, for instance on smaller devices.
Compressed size is more relevant, for instance, to the
cost of storing and distributing software; the compressed
ratios are smaller because the added instructions tend to
be repetitive.

8 Application case study

To assess the usability of PittSFIeld for a realistic appli-
cation, this section investigates using PittSFIeld as the
isolation mechanism for VXA, a system in which com-
pressed archives contain their own decompressors [11].
A major challenge to our ability to preserve digital in-
formation for the future is the proliferation of incompat-
ible file formats. Compression formats are a particular
problem: for instance while uncompressed audio formats
have been stable since the early 1990s, four major new
formats for compressed audio have become popular since
2000. By comparison, the basic IA-32 architecture re-
tains backwards compatibility with software written for
the first 386es in 1985. To exploit these relative rates of
change, the VXA system introduces an archive file for-
mat and tools called vxZIP and vxUnZIP that extend the
well-known ZIP format by including decompressors in
a standardized IA-32 binary format inside compressed
archives. IA-32 was chosen as the standard decompres-
sor format so that vxZIP and vxUnZIP can be used with
low overhead today.

Clearly a key challenge for vxUnZIP is to run the sup-
plied decompressor without allowing a malicious decom-
pressor to compromise security. At the same time, it is
desirable for the decompressors to run in the same pro-
cess as the rest of vxUnZIP. Compared to using a sepa-
rate OS-level process for isolation, running in a single

process avoids performance overheads associated with
process creation and copying data between processes,
but the most important advantage is the ease of supply-
ing a limited interaction interface to the compressor in-
stead of the operating system’s full set of system calls.
VxUnZIP achieves these goals with a virtualized exe-
cution environment, VX32, that combines two different
isolation mechanisms. To prevent untrusted code from
reading or writing memory locations outside the sand-
box, VX32 uses the IA-32 legacy segmented memory
addressing mode to restrict the locations available to it.
This requires operating system support to modify the lo-
cal descriptor table (LDT), and segmentation is not sup-
ported in the 64-bit mode of newer processors, though
VX32 can still work in 32-bit compatibility mode. To
control which instructions the untrusted code executes
(to protect for instance against unsafe indirect jumps or
instructions that modify the segment registers), VX32
uses dynamic translation, rewriting code one fragment
of a time into a cache and interpreting indirect jumps.

The author of VXA was not aware of PittSFIeld at
the time it was designed, but to examine whether PittS-
FIeld would be a suitable replacement for VX32, we
used it to protect the execution of the six VXA de-
compression modules demonstrated in [11]. We used
VX32’s virtual C library rather than the one used in Sec-
tion 7; this required implementing VXA’s four virtual
system calls (read , write , exit , andsbrk ). We
also used VX32’s library of math functions, but com-
piled to use the x87-style floating point instructions sup-
ported by PittSFIeld rather than the SSE2 ones VX32
uses. The runtime overheads of VX32 and PittSFIeld are
compared in Figure 6. Zlib and BZip2 are decompressors
for the same general-purpose compression formats as the
SPECint2000 gzip and bzip2 programs (which also in-
clude compression); JPEG and JPEG2000 are lossy im-
age compression formats, and FLAC and Vorbis are loss-
less and lossy audio formats respectively. In each case
the programs decompressed large single files of each for-
mat. To minimize I/O overhead, we made sure the in-
put files were cached in memory, and sent the decom-
pressed output to/dev/null ; measurements are based
on elapsed time. The system was the same Pentium 4
machine described in Section 7, except that VX32 uses
a specially compiled version of GCC 4.0, and the native
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Zlib BZip2 JPEG JPEG2000 FLAC Vorbis Geom. Mean
VX32 1.006 0.975 1.034 1.283 0.954 0.948 1.028
PittSFIeld jump-only 1.238 1.018 1.134 1.114 1.142 1.239 1.145
PittSFIeld full 1.398 1.072 1.328 1.211 1.241 1.458 1.278

Figure 6: Run time ratios for VX32 and PittSFIeld on the VXA decompressors, compared to natively compiled decompressors.

build uses Debian’s GCC 4.0 to match.
The occasional speedup of execution under VX32,

also seen in [11], appears to result from increased in-
struction locality introduced by translating dynamic exe-
cution traces sequentially. (For instance, VX32 is faster
than native execution in the FLAC example even though
it executes more instructions, 97.5 billion compared to
96.0 billion.) These examples have also been tuned to
minimize the number of indirect jumps: two frequently
called functions were inlined. The measured overhead
of PittSFIeld for the vxUnZIP examples is noticeably
higher than that of VX32, but still not excessive (28%
on average). PittSFIeld’s overhead is also smaller when
protecting only jumps (averaging 15%); this simulates
the performance of combining PittSFIeld with VX32-
like segment-based memory protection.

Some qualitative features also affect the choice be-
tween PittSFIeld and VX32. An advantage of VX32 is
that it prevents the decompressor from reading memory
outside its sandbox; though not as critical for security as
preventing writes, this is useful to ensure decompressors
are deterministic. Controlling reads is possible with SFI,
but would significantly increase the technique’s over-
head. On the other hand, VX32’s use of segment regis-
ters decreases its portability, including to future proces-
sors; conversely, VX32’s use of SSE2 floating point cur-
rently keeps it from working on older processors, though
the latter limitation is not fundamental. Arguably, PittS-
FIeld’s simple, static approach and separate verification
make it more trustworthy, but VX32 is not yet as mature
as PittSFIeld, and it is significantly simpler than previous
dynamic translation systems.

9 Formal Analysis

Having restricted ourselves to a separate, minimal veri-
fication tool as the guarantor of our technique’s safety,
we can devote more effort to analyzing and assuring
ourselves of that component’s soundness. Specifically,
we have constructed a completely formal and machine-
checked proof of the fact that our technique ensures the
security policy it claims to. Though the security of a
complete system of course depends on many factors,
such a proof provides a concise and trustworthy sum-
mary of the key underlying principles. Formal theorem

proving has a reputation for being arduous; we think the
relative ease with which this proof was completed is pri-
marily a testament to the simplicity of the technique to
which it pertains.

We have constructed the proof using ACL2 [13].
ACL2 is a theorem-proving system that combines a re-
stricted subset of Common Lisp, used to model a system,
with a sophisticated engine for semi-automatically prov-
ing theorems about those models. We use the program-
ming language (which is first-order and purely func-
tional) to construct a simplified model of our verifier, and
a simulator for the x86 instruction set. Then, we give a
series of lemmas about the behavior of the model, cul-
minating in the statement of the desired safety theorem.
The lemmas are chosen to be sufficiently elementary that
ACL2 can automatically prove each from the model and
the preceding lemmas. The proof required less than two
months of effort by a user with no previous experience
with proof assistants (the first author). An experienced
ACL2 user could likely have produced a more elegant
proof in less time; our inexperience in choosing abstrac-
tions also made the going more difficult as the proof size
increased. An example of a function from the executable
model and a lemma we have proved about it are shown
as the first two parts of Figure 7. A disadvantage of
ACL2 compared to some other theorem provers is that
its proofs cannot be automatically checked by a simpler
proof checker. However, ACL2 has been well tested by
other academic and industrial users, and its underlying
logic is simple, so we still consider it trustworthy.

The precise statement of our final safety result ap-
pears as the bottom part of Figure 7. It is a correct-
ness result about the verifier, modeled as a predicate
mem-sandbox-ok on the state of the code region be-
fore execution: if the verifier approves the rewritten
code, then for any inputs (modelled as the initial con-
tents of registers and the data region), execution of the
code will continue forever without performing an unsafe
operation. (Unlike the real system, the model has no
exit() function.) Note that the rewriter does not ap-
pear in the formal proof, so the proof makes no claims
about it: for instance, we have not proved that the code
produced by the rewriter has the same behavior as the
original code. Though a statement like that could be
formalized, it would require a number of additional hy-
potheses; in particular, because the rewriter changes the
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(defun seq-reachable-rec (mem eip k)
(if (zp k) (if (= eip (code-start)) 0 nil)

(let ((kth-insn
(kth-insn-from mem (code-start) k)))

(or (and kth-insn (= eip kth-insn) k)
(seq-reachable-rec mem eip (- k 1))))))

(defthm if-reach-in-k-then-bound-by-kth-insn
(implies

(and (mem-p mem) (natp k) (natp eip)
(kth-insn-from mem (code-start) k)
(seq-reachable-rec mem eip k))

(<= eip (kth-insn-from mem
(code-start) k))))

(defthm safety
(implies

(and (mem-p mem) (mem-sandbox-ok mem)
(addr-p eax) (addr-p ebx) (addr-p ecx)
(addr-p edx) (addr-p esi) (addr-p edi)
(addr-p ebp) (addr-p esp)
(addr-p eflags) (data-region-p ebp))

(consp
(step-for-k

(x86-state (code-start) eflags eax ebx
ecx edx esi edi ebp esp mem)

k))))

Figure 7: From top to bottom, a typical function definition,
a typical lemma, and the final safety result from our formal
ACL2 proof. seq-reachable-rec is a recursive proce-
dure that checks whether the instruction at locationeip is
among the firstk instructions reachable from the beginning
of the sandboxed code region in a memory imagemem. The
lemma states that ifeip is among the firstk instructions, then
its address is at most that of thekth instruction. The safety
theorem states that if a memory imagemempasses the verifier
mem-sandbox-ok , then whatever the initial state of the reg-
isters, execution can proceed for any number of steps (the free
variablek) without causing a safety violation (represented by a
nil return value fromstep-for-k , which would not satisfy
the predicateconsp ).

address of instructions, code that say examined the nu-
meric values of function pointers would not behave iden-
tically.

One aspect of the proof to note is that it deals with a
subset of the instructions handled by the real tool: this
applies both to which instructions are allowed by the
simulated verifier, and to which can be executed by the
x86 simulator. The subset used in the current version
of the proof appears in Figure 8. The instructions were
chosen to exercise all of the aspects of the security pol-
icy; for instance,jmp *%ebx is included to demon-
strate an indirect jump. Though small compared to the
number of instructions allowed by the real tool, this set
is similar to the instruction sets used in recent similar
proofs [2, 29]. We constructed the proof by beginning
with a minimal set of instructions and then adding addi-
tional ones: adding a new instruction similar to an exist-
ing one required few changes, but additions that required

nop mov addr, %eax xchg %eax, %ebx
inc %eax mov %eax, addr xchg %eax, %ebp
jmp addr and $ immed, %ebx mov %eax, (%ebx)
jmp *%ebx and $ immed, %ebp mov %eax, (%ebp)

Figure 8: List of instructions in the subset considered in the
proof of Section 9.

a more complex safety invariant often involved extensive
modifications. The simulator is structured so that an at-
tempt to execute any un-modelled instruction causes an
immediate failure, so safety for a program written in the
subset that is treated in the proof extends to the complete
system. A related concern is whether the simulated x86
semantics match those of a real processor: though the
description of the subset used in the current proof can
be easily checked by hand, this would be impractical for
a more complete model. To facilitate proofs like ours
in the future, as well as for applications such a founda-
tional proof-carrying code (see Section 10.6), it should
be possible to generate a description of the encoding and
semantics of instructions from a concise, declarative, and
proof-environment-neutral specification.

In total, the proof contains approximately 60 func-
tion definitions and 170 lemmas, over about 2400 lines
of ACL2 code. The description of the model and the
statement of the safety result require about 500 lines; as-
suming ACL2’s verification is correct, only this subset
must be trusted to be convinced of the truth of the re-
sult. The technical details of the proof are straightfor-
ward and rather boring; for space reasons, we do not dis-
cuss them further here. Interested readers are referred
to a companion technical report [17]; the proof in its
machine-checkable form is also available from the PittS-
FIeld project website.

10 Related work

This section compares our work with previous imple-
mentations of SFI, and with other techniques that ensure
memory safety or isolation including code rewriting, dy-
namic translation, and low-level type systems. It also
distinguishes theisolationprovided by SFI from thesub-
version protectionthat some superficially similar tech-
niques provide.

10.1 Other SFI implementations

Binary sandboxing was introduced as a technique for
fault-isolation by Wahbe, Lucco, Anderson, and Gra-
ham [27]. The basic features of their approach were de-
scribed in Sections 2 and 4. Wahbe et al. mention in a
footnote that their technique would not be applicable to
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architectures like the x86 without some other technique
to restrict control flow, but then drop the topic.

Subsequent researchers generally implemented a re-
striction on control flow for CISC architectures by col-
lecting an explicit list of legal jump targets. The best
example of such a system is Small and Seltzer’s MiS-
FIT [25], an assembly-language rewriter designed to iso-
late faults in C++ code for an extensible operating sys-
tem. MiSFIT generates a hash table from the set of legal
jump targets in a program, and redirects indirect jumps
through code that checks that the target appears in the
table. Function return addresses are also stored on a sep-
arate, protected stack. Because control flow is prevented
from jumping into the middle of them, the instruction
sequences to sandbox memory addresses don’t require a
dedicated register, though MiSFIT does need to spill to
the stack to obtain a scratch register in some cases. A
less satisfying aspect of MiSFIT is its trust model. The
rewriting engine and the code consumer must share a se-
cret, which the rewriter uses to sign the generated code,
and MiSFIT relies on the compiler to correctly man-
age the stack and to produce only safe references to call
frames. Besides the trustworthiness problems of C com-
pilers related to their complexity and weak specification
(as exemplified by the attack against MiSFIT shown in
Figure 1), this approach also requires something like a
public-key certificate infrastructure for code producers,
introducing problems of reputation to an otherwise ob-
jective question of code behavior.

Erlingsson and Schneider’s SASI tool for the x86 [10]
inserts code sequences very similar to MiSFIT’s, except
that its additions are pure checks that abort execution
if an illegal operation is attempted, and otherwise fall
through to the original code, like PittSFIeld’s ‘check’
mode. In particular, the SASI tool is similar to MiSFIT
in its use of a table of legal jump targets, and its decision
to trust the compiler’s manipulation of the stack. Lu’s
C+J system [16] also generates a table of legal jump des-
tinations, but the indices into the table are assigned se-
quentially at translation time, so there is no danger of
collision.

The Omniware virtual machine [3], on which Wahbe
and Lucco worked after the classic paper, uses SFI in
translating from a generic RISC-like virtual machine to
a variety of architectures, including the x86. The Om-
niware VM implemented extensive compiler-like opti-
mizations to reduce the overhead of sandboxing checks,
achieving average overheads of about 10% on selected
SPEC92 benchmarks. However, the focus of the work
appears to have been more on performance and portabil-
ity than on security; available information on the details
of the safety checks, especially for the x86, is sparse. In
a patent [28] Wahbe and Lucco disclose that later ver-
sions of the system enforced more complex, page-table

like memory permissions, but give no more details of the
x86 implementation.

As far as we know, our work described in Section 9
was the first machine-checked or completely formalized
soundness proof for an SFI technique or implementation.
Necula and Lee [20] proved the soundness of SFI as ap-
plied to particular programs, but not in general, and only
in the context of simple packet filters. In work concur-
rent with ours, Abadi et al. ([2], see Section 10.3 for
discussion) give a human-readable prose proof for the
safety of a model of their CFI system, which is sim-
ilar to SFI. In work subsequent to our proof (first de-
scribed in [18]), Winwood and Chakravarty developed
a machine-checked safety proof in Isabelle/HOL for a
model of an SFI-like rewriting technique applicable to
RISC architectures [29]. To avoid having to move in-
structions, their approach overwrites indirect jump in-
structions with direct jumps of the same size to a trusted
dispatcher. Unfortunately, this puts a 2MB limit on the
size of binaries to which their technique is applicable:
for instance, they were able to rewrite only a subset of
the SPECint2000 suite.

10.2 Isolation and preventing subversion

In general, a security failure of a system occurs when an
attacker chooses input that causes code to perform dif-
ferently than its author intended, and the subverted code
then uses privileges it has to perform an undesirable ac-
tion. Such an attack can be prevented either by prevent-
ing the code’s execution for being subverted, or by iso-
lating the vulnerable code so that even if subverted, it
can still cannot take an undesirable action. Many secu-
rity techniques are based on the prevention of subversion:
for instance, ensuring that procedure calls always return
to their call sites, even if the stack has been modified by a
buffer overrun. SFI, by contrast, is fundamentally a tech-
nique for isolating one part of a program from another.
To function as a security technique, this isolation must
be used to support a design that divides a system into
more and less trusted components, and restricts the inter-
actions between the two. Examples of such designs in-
clude the device driver and network server isolation tech-
niques discussed in Section 1, and the untrusted VXA
decompressors of Section 8.

Incidentally, SFI subsumes some mechanisms that
have been suggested as measures to make program sub-
version more difficult. For instance, PittSFIeld prohibits
execution of code on the stack and reduces the number of
possible targets of an overwritten function pointer. How-
ever, these side-effects should not be confused with the
intended isolation policy. SFI does not provide general
protection against attacks on the untrusted code; it sim-
ply contains those attacks within the component.
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Figure 9: Runtime overheads for PittSFIeld in the default mode (black bars), PittSFIeld in jump-only mode (gray bars), and CFI
(white bars) for the SPECint2000 benchmarks. PittSFIeld results are the same as those in Figure 4, but not broken down by cause.
CFI results are taken from Figure 4 of [1], which does not include results for Perl. Because these were separate experiments with
other variables not held constant, care should be used in comparing them directly.

10.3 CFI

In concurrent work [1], the Gleipnir project at Microsoft
Research has investigated a binary-rewriting security
technique called Control-Flow Integrity, or CFI. As sug-
gested by the name, CFI differs from SFI in focusing
solely on constraining a program’s jumps: in the CFI im-
plementation, each potential jump target is labelled by a
32-bit value encoded in a no-op instruction, and an in-
direct jump checks for the presence of an appropriate
tag before transferring control. This approach gives finer
control of jump destinations than the SFI techniques of
Wahbe et al., or PittSFIeld, though the ideal precision
could only be obtained with a careful static analysis of,
for instance, which function pointers might be used at
which indirect call sites. In the basic presentation, CFI
relies on an external mechanism (such as hardware) to
prevent changes to code or jumps to a data region, but
it can also be combined with inserted memory-operation
checks, as in SFI, to enforce these constraints simultane-
ously.

In the control-flow-only use, CFI has overheads rang-
ing from 0 to 45% on a Pentium 4; the wide variation pre-
sumably results from a large overhead on indirect jumps
combined with little overhead on any other operation. By
comparison, PittSFIeld imposes a smaller overhead on
jumps, but significant additional overheads on other op-
erations. Figure 9 compares the overheads reported in [1]
with those for PittSFIeld from Figure 4. Because a differ-
ent C compiler, library, and hardware were used, caution
should be used in directly comparing the PittSFIeld and
CFI results, but overall the average overheads of the tools
can be seen to be comparable. The benchmark labelled
“?”, 253.perlbmk, was omitted from [1] because of last-
minute implementation difficulties [9], and is excluded
from the CFI average.

Like PittSFIeld, CFI performs a separate verification

to enforce proper rewriting at load time, so the compiler
and binary rewriting infrastructure need not be trusted.
The CFI authors have written a human-checked proof [2]
that a CFI-protected program will never make unsafe
jumps, even in the presence of arbitrary writes to data
memory. However, the proof is formulated in terms of a
miniature RISC architecture whose encoding is not spec-
ified. This is somewhat unsatisfying, as the safety of the
real CFI technique is affected in subtle ways by the x86
instruction encoding (for instance, the possibility that the
immediate value used in the comparison at a jump site
might be itself interpreted as a safe jump target tag.)

10.4 Static C safety mechanisms

Another class of program rewriting tools (often imple-
mented as compiler modifications) are focused on en-
suring fairly narrow security policies, for instance that
the procedure return address on the stack is not mod-
ified [6]. Such tools can be very effective in their in-
tended role, and tend to have low overheads, but they do
not provide protection against more esoteric subversion
attacks. They also do not provide isolation between com-
ponents, and are not intended for untrusted code. They
could, however, be used in conjunction with SFI if both
isolation and protection from subversion are desired.

10.5 Dynamic translation mechanisms

Several recent projects has borrowed techniques from
dynamic optimization to rewrite programs on the fly;
such techniques allow for fine control of program exe-
cution, as well as avoiding the difficulties of static binary
rewriting. Valgrind [22] is a powerful framework for dy-
namic rewriting of Linux/x86 programs, which is best
known for Purify-like memory checking, but can also be
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adapted to a number of other purposes. Valgrind’s rewrit-
ing uses a simplified intermediate language, sacrificing
performance for ease of development of novel applica-
tions. A research tool with a more security-oriented fo-
cus is Scott and Davidson’s Strata [24]; it has achieved
lower overheads (averaging about 30%) while enforcing
targeted security policies such as system call intercep-
tion. A similar but even higher performance system is
Kiriansky et al.’s program shepherding [15], based on
the DynamoRIO dynamic translation system. Their work
concentrates on preventing attacks on a program’s con-
trol flow, as an efficient and transparent means to pre-
vent stack- and function-pointer-smashing vulnerabili-
ties from being exploited. The VX32 system described
in Section 8 also falls into this category. A disadvantage
of dynamic techniques is that they are inherently some-
what complex and difficult to reason about, relative to a
comparable static translation.

10.6 Low-level type safety

Recent research on verifiable low-level program repre-
sentations has concentrated most strongly on static in-
variants, such as type systems. For instance, typed as-
sembly language [19] can provide quickly checkable,
fine-grained safety properties for a sublanguage of x86
assembly, but requires that the original program be writ-
ten in a type-safe language. Type inference can also be
used to transform C code into a type-safe program with
a minimal set of dynamic checks, as in the CCured sys-
tem [5]. Because they can constrain writes to a occur on
specific objects, type-based safety properties are gener-
ally quite effective at preventing subversion attacks that
overwrite function pointers.

Proof-carrying code [21] represents a more general
framework for software to certify its own trustworthi-
ness. Most work on PCC has focused on type-like safety
properties, but under the banner of foundational PCC [4],
efforts have been made to place proofs on a more general
footing, using fully general proof languages that prove
safety with respect to concrete machine semantics. This
approach seems to carry the promise, not yet realized, of
allowing any safe rewriting to certify its safety proper-
ties to a code consumer. For instance, one could imagine
using the lemmas from the proof of Section 9 as part of
a foundational safety proof for a PittSFIeld-rewritten bi-
nary. It is unclear, however, if any existing foundational
PCC systems are flexible enough to allow such a proof
to be used.

11 Conclusion

We have argued that software-based fault isolation can
be a practical tool in constructing secure systems. Us-

ing a novel technique of artificially enforcing alignment
for jump targets, we show how a simple sandboxing im-
plementation can be constructed for an architecture with
variable-length instructions like the x86. We give two
new optimizations, which along with previously known
ones minimize the runtime overhead of the technique,
and argue for the importance of an architecture that
includes separate verification. We have constructed a
machine-checked soundness proof of our technique, to
further enhance our confidence in its security. Finally,
we have constructed an implementation of our technique
which demonstrates separate verification and is scalable
to large and complex applications. The performance
overhead of the technique, as measured on both standard
compute-intensive benchmarks and a realistic data com-
pression application, is relatively low. Though some re-
lated techniques have lower runtime overheads, and oth-
ers can offer additional security guarantees, SFI’s com-
bination of simplicity and performance is a good match
for many uses.
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