
BeeCluster: Drone Orchestration via
Predictive Optimization

Songtao He1, Favyen Bastani1, Arjun Balasingam1, Karthik Gopalakrishnan2, Ziwen Jiang1,
Mohammad Alizadeh1, Hari Balakrishnan1, Michael Cafarella1, Tim Kraska1, Sam Madden1

1MIT CSAIL, 2MIT
1{songtao, favyen, arjunvb, ziwenj, alizadeh, hari, michjc, kraska, madden}@csail.mit.edu

2karthikg@csail.mit.edu

ABSTRACT
The rapid development of small aerial drones has enabled
numerous drone-based applications, e.g., geographic map-
ping, air pollution sensing, and search and rescue. To assist
the development of these applications, we propose BeeClus-
ter, a drone orchestration system that manages a fleet of drones.
BeeCluster provides a virtual drone abstraction that enables
developers to express a sequence of geographical sensing
tasks, and determines how to map these tasks to the fleet
efficiently. BeeCluster’s core contribution is predictive op-
timization, in which an inferred model of the future tasks
of the application is used to generate an optimized flight and
sensing schedule for the drones that aims to minimize the
total expected execution time.

We built a prototype of BeeCluster and evaluated it on five
real-world case studies with drones in outdoor environments,
measuring speedups from 11.6% to 23.9%.

1. INTRODUCTION
Rapid progress in the development of small aerial

drones has enabled numerous aerial sensing applications,
including infrastructure and agricultural inspection [19,
27, 16, 7, 37], air pollution sensing [42, 43, 8, 35], car-
tography and geographic mapping [31, 24], traffic mon-
itoring [32], disaster relief [6, 33], and search and res-
cue [14]. However, developing auto-pilot applications
that control a fleet of drones to perform complex sens-
ing tasks is often challenging. As a result, most drones
today are manually flown by individual pilots or by sim-
ple auto-pilot applications [3, 4] that can only handle
static tasks, which is impractical for applications that
need to react with the environments [18], such as local-
izing the source of air pollution or searching a target in
an unknown environment.

To simplify multi-drone application development and
deployment, we propose BeeCluster, a drone orchestra-
tion system that manages a fleet of drones on behalf of
an application. In BeeCluster, application developers
write their program for virtual drones. The framework
then determines how to schedule the drones to mini-
mize the application execution time. At the heart of

BeeCluster is predictive optimization, in which the run-
time framework builds a model to forecast future ap-
plication tasks, and uses these forecasts to optimize its
route planning.
Prior Work: Prior drone orchestration platforms [40,
30, 25, 26, 48] typically adopt a location-oriented pro-
gramming model, where developers provide a set of loca-
tions and associated actions, e.g., take photos at specific
locations. The system then determines an efficient route
to visit all these locations with the available drones, and
dispatches the drones to execute the application. A key
limitation in all these systems is that they only take
into account the current set of requests from the appli-
cation for route planning. Even frameworks that allow
applications to issue new requests dynamically [30] are
myopic, and plan routes based only on the current re-
quests at any point in time. By contrast, predictive op-
timization considers both the current requests and the
application’s likely future requests in the route plan-
ning process. In particular, many applications generate
new requests once a given sensing task is complete, or
cancel a request based on the results of a current task.
BeeCluster accounts for these likely future actions in the
planning process.
The Opportunity: As an illustrative example, con-
sider an application with the active sensing loop shown
in Figure 1. The algorithm starts with three initial lo-
cations A,B,C. In line 3, the algorithm collects sensor
readings from these three locations. Then it updates
the three locations based on the sensor readings and
proceeds to a new iteration. This basic algorithm repre-
sents a category of iterative, active sensing applications,
e.g., using gradient descent to localize the source of air
pollution [49]. Let An, Bn, Cn denote the locations of
A,B,C at line 3 in the n-th iteration.

Consider the scenario in Figure 2 where we wish to
run this application using one drone. When the program
first reaches line 3, the orchestration system dispatches
the drone to visit locations A1, B1, C1. At this time, any
orchestration system that only considers the current set
of requests, i.e., A1, B1, C1, yields two equivalent routes:
A1 → B1 → C1 or A1 → C1 → B1. However, these

1



1 A,B,C = initial locations

2 while True:

3 values = SenseAtLocations({A,B,C})

4 A,B,C = Update(A,B,C,values)

Figure 1: The pseudo code of an active sensing loop.

B1

A1 C1

B2

A2 C2Drone
B1

A1 C1

B2

A2 C2Drone

Best Case Worst Case
Figure 2: Possible routes in the best case and the worst
case using existing drone orchestration systems

two routes are not equivalent if we consider multiple
iterations of the program. If we choose the route A1 →
B1 → C1, then in the second iteration, the drone needs
to fly from C1 to A2 to start the new iteration (the
worst case in Figure 2). However, if we choose the route
A1 → C1 → B1, then in the second iteration, the drone
only needs to fly from B1 to A2 to start the new iteration
(the best case in Figure 2). In this example, the worst
case can take 50% more flying time compared to the
best case. However, this optimization is possible only if
we consider future requests.

We find there are many drone applications that could
benefit from predictive optimization. We provide more
examples in Section 2.
Challenges: Making drone orchestration systems pre-
dictive is not trivial. On the surface, predicting future
application requests appears to require an accurate un-
derstanding of application semantics and goals. A naive
solution to circumvent this challenge is to provide primi-
tives for application developers to explicitly declare pos-
sible future requests, or take over the route planning
entirely. However, this shifts the burden to application
developers, and largely eliminates the advantages of the
drone orchestration systems. Thus, we seek a predictive
optimization method that does not require developer as-
sistance.
Our Approach and Contributions: Our approach is
inspired by the branch prediction in CPUs [38], where
the CPU predicts the branches and prefetches poten-
tial next instructions to speed-up execution. These pre-
dictive optimizations happen without the application
changes. The predictive optimization technique we de-
velop for drone optimization works similarly.

BeeCluster has two main components, the API and
the runtime. The API provides a virtual-drone pro-
gramming interface to express a wide range of complex
drone applications in a compact and flexible way. The
runtime interprets the application’s logic as a dynamic

task graph (DTG) and stores the DTG of each exe-
cution. While running, BeeCluster uses the historical
DTGs as well as the current DTG to forecast the fu-
ture behaviour of the application (task creations and
cancellations). Then, BeeCluster uses this predicted in-
formation to minimize the expected execution time.

We have implemented BeeCluster and describe five
case studies built atop it, including road mapping, Wi-
Fi mapping and hotspot localization, and continuous
object tracking. We found that the BeeCluster API
is conveniennt to use and that predictive optimization
speeds-up execution time by between 11.6% and 23.9%
in these case studies.

2. MOTIVATING EXAMPLES
In this section, we show five examples to motivate

the benefit of predictive optimizations and the API pro-
posed in BeeCluster. Each example represents a com-
mon application pattern.

2.1 Benefits of Predictive Optimization
Example 1: Speculative Execution. Consider

the simple active sensing loop shown in Figure 3. In
each iteration, the algorithm senses data at location A.
Then, the algorithm uses the data to compute the next
location to sense data.

Now suppose we have two drones for this application.
Current systems will use only one drone on this appli-
cation at any given time because only one request is
outstanding.

1 A = initial location

2 while True:

3 value = SenseAtLocation(A)

4 A = Update(A, value)

Drone 1

A1 A2 A3 A4 A5 A6Drone 2

Figure 3: Example of an active sensing loop that can be
optimized by speculative execution

By contrast, BeeCluster forecasts the future requests
of an application. When there are spare drones in the
system, BeeCluster dispatches drones to the locations of
the predicted requests, a form of speculative execution.
Figure 3 shows the traces of the speculative execution on
this application with two drones. This strategy overlaps
the flying time of one drone with sensing time of another
and thus reduces the total execution time.

We find that the code structure in Figure 3 is com-
mon in many drone applications, such as localizing the
source of air pollution via gradients [49] and mapping
trails or roads using iterative tracing [10]. BeeCluster

2



is able to apply this optimization without requiring any
changes to application code. We performed an eval-
uation with a road mapping application that maps a
newly constructed road by iteratively tracing the road,
and found that this strategy reduces the execution time
by 21.3% (case study 1 in Section 5.1.1).

Example 2: Dynamic Request Cancellation.
Besides the dynamic request generation in the active
sensing examples, the opposite behaviour, dynamic re-
quest cancellation, is also common in many applications.
We show an example in Figure 4. The algorithm needs
to measure air pollution at two locations. However, once
one location is visited, the application may cancel the
sensing request at the other location depending on the
first value.

Drone(s) Step-1: Measure air 
pollution at location A.
Step-2: If pollution is 
lower than a threshold, 
cancel Request-2

Request-1
Step-1: Measure air 
pollution at location B.
Step-2: If pollution is 
lower than a threshold, 
cancel Request-1

Request-2

Figure 4: Example of dynamic request cancellation.

The optimal strategy in this example depends on the
prediction of the if branch at Step-2. BeeCluster fore-
casts the potential cancellation for each active request
in the system. Then the scheduler can use this fore-
cast information to optimize the route. Examples of
applications that can benefit from this optimization in-
clude Gaussian-process-based active information gath-
ering [36, 44, 45] for magnetic field, air pollution sensing,
wireless signal strength measurement, and exploration
in unknown environments [12].

We evaluated an application that maps the Wi-Fi sig-
nal strength through Gaussian process (using request
cancellations), showing a 23.8% execution time reduc-
tion with BeeCluster (case study 2 in Section 5.1.2).

Example 3: Efficient Routing. As noted in the
introduction and shown in Figures 1 and 2, knowledge
of the future task graph allows BeeCluster to compute
the optimal path that minimizes execution time. We
evaluated an application that localizes a Wi-Fi hot-spot
through gradient descent, finding that BeeCluster’s pre-
dictive optimization approach improves performance by
11.6% (case study 3 in Section 5.1.3).

2.2 Benefits of the BeeCluster API
Example 4: Fine-Grained Multiplexing. We

find that programming APIs in existing drone orches-
tration systems often bind a virtual drone to a physical
drone at task level. The BeeCluster API provides a way
to define the binding relationship between virtual drones
and physical drones in a precise and fine-grained way,
enabling action-level scheduling. For example, consider
a delivery task that requires a drone to fly from A to
B. In action-level scheduling, the drone assigned to this

task can also perform other tasks, e.g., taking a photo,
along the way from A to B. BeeCluster’s API allows de-
velopers to describe the logic in this example through a
fine-grained binding relationship definition (see Section
3.2.2), enabling fine-granularity action-level multiplex-
ing.

We performed an evaluation with a proof-of-concept
scenario which involves three simple applications, show-
ing the fine-grained multiplexing can improve the per-
formance by 19.1% (case study 4 in Section 5.2.1).

Example 5: Continuous Operation. Consider
the problem of continuously tracking one or more mov-
ing vehicles in a city. Because BeeCluster can predict
the locations where an algorithm needs to visit in the
future, it can dispatch another drone in advance to the
location where the original drone may run out of its bat-
tery. Then, the original drone hands off the operation
to the new drone right before it runs out of battery. Al-
though the hand-off may incur a short delay, it is likely
that an operation such as object tracking can still pro-
ceed normally. We demonstrate the effectiveness of this
feature in Section 5.2.2 (case study 5). Although ex-
isting drone orchestration systems promise to provide
functional virtualization over many physical drones, the
time scale of a single continuous operation is still limited
by the battery-time of a single drone.

3. DESIGN
Figure 5 provides an overview of the BeeCluster archi-

tecture. The design of BeeCluster is driven by two goals:
first, the system should be flexible enough to accurately
express a wide variety of drone application logic, and
second, the system should be able to effectively opti-
mize applications transparently, i.e., without requiring
code changes.

To achieve the first goal, we propose the BeeCluster
API (Section 3.1). The second goal is challenging for
two reasons. First, many optimization solutions require
application-specific knowledge that cannot be obtained
easily. Second, the optimization is often application-
specific, making it challenging to develop a unified ap-
proach to optimize different applications.

To overcome these challenges, BeeCluster uses two
ideas. First, it models the application’s future behavior
as a dynamic task graph (DTG) constructed from the
running application. The BeeCluster API makes it pos-
sible to do this without application developers needing
to codify future behavior. The DTG captures all the
necessary information about the application. BeeClus-
ter stores both the DTGs from past runs and the par-
tially constructed DTG of the current run as profiling
data for the application. Then, BeeCluster forecasts the
application’s future behaviour by matching the current
DTG with previous DTGs. We describe the details of
the DTG and the forecast method in Section 3.2.

3



BeeCluster Framework
Drone 

Application 
Program

BeeCluster 
API

Construct Dynamic 
Task Graph (DTG)

Drone Application 
Developers

Application
Profiling Data

Optimization
Heuristic 

Contributors

Optimization
Heuristic

Optimization
Heuristic

Optimization
Heuristic Plugin

Input: 
- Assignment, State
Output:
- Utility Score

Drone 
Backend
InterfaceSimulator

Utility Score

Scheduling 
Optimizer

(Find the assignment 
that maximizes the 

utility function)

Store

Replay
Hyper-Parameter

Tuning

Scheduling 
Problem

Requests

Predictions

Utility 
Function+Utility ScoreUtility ScoreSub-Utility Functions

Drone Dynamic Profiling

Physical 
Drones

Predictor

Offline

Merge

State

Figure 5: Overview of BeeCluster Drone Orchestration Framework

Second, rather than providing a single optimization
model for all applications, BeeCluster adopts the instantaneous-
assignment [23] scheduling model and provides an ex-
tensible platform to support different optimization heuris-
tics as plugins. Here, the optimization heuristics are
used to determine the best instantaneous-assignment of
tasks to drones at any point in time. For example, one
optimization heuristic could prefer to always dispatch
drones to their nearest tasks, and in multi-drone sce-
narios, one optimization heuristic could prefer to scatter
the drones over the region of interest. Thus, BeeClus-
ter is not a fixed collection of optimization heuristics.
Instead, it provides a common interface that makes it
easy to add new optimization heuristics as plugins. At
runtime, BeeCluster considers all possible optimization
heuristics and selects the best weighted combination of
different heuristics via off-line application replay in a
simulator (Section 3.3).

3.1 Programming Model (BeeCluster API)
The API allows developers to describe their appli-

cation logic through a DTG-based imperative program-
ming model. It also allows developers to explicitly define
the precise binding relationship between virtual drones
and physical drones, e.g., some actions must be done
on one physical drone sequentially, while some other
actions can be done with multiple physical drones in
parallel.

3.1.1 Basic Primitives
We show the basic primitives of the BeeCluster API in

Table 1. The API has two basic building blocks, actions
and tasks.

Action. An action is a basic drone operation such
as taking a photo or flying to a location. The non-
blocking property of the action primitive described in
Table 1 enables action batching, allowing the scheduler
to consider a whole batch of the actions together, rather

than processing them one-by-one.
Task. A task contains an ordered sequence of ac-

tions and maintains the context of a virtual drone; when
there are two consecutive actions such that action-1 is
flying to location A, and action-2 is taking a photo, the
BeeCluster runtime will update the location of the vir-
tual drone after action 1 and interpret the second action
as taking a photo at location A.

Developers use newTask() create new tasks. Task
creation is non-blocking; the blocking (synchronization)
only happens when the execution result of a task is re-
quired by another statement, i.e., a statement that de-
pends on the execution result of the task. In BeeClus-
ter, each task corresponds to an independent thread,
and the thread can be executed in parallel with other
threads when there are available drones. The task prim-
itive allows developers to describe independent action
sequences, e.g., that the application needs to take pho-
tos at a set of locations, but the order of execution does
not matter. In this case, traveling to a location and
taking a photo would be a single task, and there would
be one task for each location in the set.

Developers can use cancelTask() to cancel tasks spec-
ified by the task handlers.

3.1.2 Binding Relationships
The developers can define the binding relationship of

the actions within a task. The binding relationship pro-
vide a way to control the mapping of virtual drones to
the physical drones. BeeCluster supports four binding
relationships defined by the combinations of two flags.

SameDrone Flag (SmDrn). When the SameDrone
flag is set to be True, all the actions within the task need
to be done on one physical drone. Otherwise, the ac-
tions within the task can be mapped to different physical
drones.

Interruptible Flag (Intrp). When the Interrupt-

4



Name Description

h=act(args) Execute the action defined by args on a drone. Return an action handler h.
This function call is non-blocking but in-order - an action is executed when
all its predeceased actions in the current thread have been completed.

h=newTask(flags, func, args) Create a new task (a new thread) with the entry point as function func
with arguments args. The flags parameter defines the binding relationship (See
Section 3.1.2) of the task. This function is non-blocking; it returns a task
handler h immediately after the function call.

result=h.value Retrieve the result from a handler h. This operation is blocking.

cancelTasks(task handlers) Cancel the tasks specified by the task handlers.

Table 1: BeeCluster API (Minimal Set)

ible flag is set to be False, all the actions within the task
need to be done one after another, without a large gap
in time (best-effort). Otherwise, there could be large
gap in time, e.g., 5 minutes, between two consecutive
actions.

1 def task1(): # Take two photos

2 act("flyto", loc_A)

3 p1 = act("take_photo")
4 act("flyto", loc_C)

5 p2 = act("take_photo")
6 return p1.value, p2.value # blocking

7 def task2(): # Package Delivery

8 act("flyto", loc_A)

9 act("pick_up_package")
10 act("flyto", loc_B)

11 done = act("drop_package")
12 return done.value # blocking

13 def task3(): # Continues object tracking

14 loc = initial_loc

15 while True:

16 act("flyto", loc)

17 photo = act("take_photo").value
18 loc = track_and_update(photo, loc)

19 t1=newTask(task1,SmDrn=False,Intrp=True)
20 t2=newTask(task2,SmDrn=True,Intrp=True)
21 t3=newTask(task3,SmDrn=False,Intrp=False)

Figure 6: Example of different binding relationships.
We show a code example in Figure 6 where there

are three tasks with different binding relationships. We
show a possible drone schedule in Figure 7.

Task 1. Task 1 has two actions - taking photos at
location A and C. The actions can be executed on dif-
ferent drones (SmDrn=False) and the time gap between
two actions is not restricted (Intrp=True).

Task 2. Task 2 is a simple package delivery example.
It requires the drone to pick up a package at location A
and then drop it at location B. These two actions (pick
up and drop) need to be executed on the same drone
(SmDrn=True). However, the task can be interrupted
(Intrp=True). After the package is picked up at location
A, the drone can be scheduled to perform other actions

Task 1

Task 2

Task 3

Pick Up
Package At
Location A

Drop
Package At
Location B

Take 
Photo At 

Location A

Track Track Track Track Track

Take 
Photo At 

Location C

Track

Replace 
BatteryDrone 2

Drone 1

SmDrn=False
Intrp=True

SmDrn=True
Intrp=True

SmDrn=False
Intrp=False

Interruptible 

Timeline

Figure 7: Fine-granularity multiplexing in BeeCluster

before flying to location B.
Task 3. Task 3 is a continuous object tracking exam-

ple where the drone is programmed to track a moving
object. Each tracking step can be executed on different
drones (SmDrn=False) but the time gap between two
tracking steps should be minimized by the system to
maintain high tracking success rate; thereby, the Intrp
flag is set to False.

Through defining the binding relationship of tasks,
developers can describe the resource requirements of
their application precisely. This ability to specify bind-
ing relationships makes inter-task multiplexing possible
at a fine granularity – for example, one drone can carry
out subtasks of several tasks when Intrp=True. This im-
proves utilization of the drones, as shown in case study
4 in Section 5.2.1.

3.2 Application Forecasting
BeeCluster forecasts the application’s behavior through

using the dynamic task graph (DTG) of the running ap-
plication and by matching the current DTG with previ-
ous historical DTGs (i.e., application profiling data).

We show the source code of an example drone ap-
plication in Figure 8 as well as its DTG. The applica-
tion iteratively tracks the source of air pollution using
a gradient descent algorithm. At each iteration, if the
air pollution is greater than a threshold, the application
takes one photo at any one of the four locations involved
in gradient computing step.

5



In this section, we use this example to describe the
details of (1) the structure of DTG, (2) and how do
we use the DTG to forecast the future behaviors of an
application.

3.2.1 Dynamic Task Graph (DTG)
A dynamic task graph contains nodes and edges. Edges

(directional) in a dynamic task graph represent the de-
pendency relationship among nodes. Nodes have two
types, task-nodes and synchronization-nodes.

A task-node corresponds to an instance of the task
building block in BeeCluster API. For example, in Fig-
ure 8, on line 14 (iteration 1), the application creates
four tasks based on the function defined at line 3 with
different input arguments. These four tasks correspond
to the first four task-nodes in the dynamic task graph
on the right side of Figure 8. Each task node contains
the meta information for the task, including the first
location to visit (if it exists), as well as the the prim-
itives (act, newTask, cancelTasks) within the task and
its duration.

A synchronization-node is used to represent the syn-
chronization behavior of an application. Synchroniza-
tion nodes are introduced by the use of the h.value API
call. For example, on line 15, the execution is blocked
until all the four tasks created in line 14 are completed.
In the dynamic task graph, this synchronization behav-
ior is represented as a synchronization node, i.e., the
blue rectangle node in Figure 8.

The DTG doesn’t directly represent branches, e.g.,
the branch at line 16. When there is a branch, the
dynamic task graph only contains the path that the ap-
plication takes. For example, in the first two iterations,
the sensing results don’t meet the branch condition at
line 16. In this case, the DTG doesn’t contain the ex-
ecution path of line 17-20 for the first two iterations
because they don’t get executed.

BeeCluster’s runtime constructs the DTG of an run-
ning application on the fly. The construction algorithm
supports concurrent BeeCluster API calls from different
application threads, allowing the developers to describe
complicated application dependency logic.

3.2.2 Forecasting using DTGs
BeeCluster forecasts the future behaviour of a run-

ning application through matching the most recent por-
tion (sub-graph) of the current active DTG with histor-
ical DTGs, including (1) the current active DTG with-
out its frontier nodes (leaf-nodes) , (2) and the DTGs
from past runs. Once a match is found, we can simply
use what happened next in the historical DTGs as a
forecast for what may happen next in the current appli-
cation run.

Graph-Match and Forecast Algorithm. We call
our forecasting algorithm GMF, for Graph Match and
Forecast. The GMF algorithm contains two phases.

In the first phase, GMF searches for accurate sub-
graph matches through an incremental matching pro-
cedure. GMF starts with a sub-graph containing only
one node (a frontier node) in the current DTG. This
sub-graph is used as the target sub-graph for match-
ing. Then, GMP finds all the one-node sub-graphs in
the historical DTGs that match with this target sub-
graph. All the matched one-node sub-graphs are con-
sidered as candidate sub-graphs. Here, we say two task-
nodes matched when they are from the same logic task
but could have different input arguments.

After this, GMF starts to iteratively increase the depth
of both the target sub-graph and the candidate sub-
graphs. At each iteration, GMF removes unmatched
sub-graphs in the candidate sub-graphs from previous
iteration. As the depth increases, the number of the can-
didate sub-graphs decreases. This incremental matching
procedure stops when the number of the candidate sub-
graphs is below a threshold (10 in our implementation),
or when the depth of the sub-graph exceeds a threshold
(10 in our implementation).

In the second phase, GMF looks into the meta in-
formation of each task-node and ranks all the matched
candidate sub-graphs through a similarity metric. One
meta information we used here is the first location a task
visited, e.g, for a task that took a photo at location A,
the first location it visited is location A.

Inspired by [46, 47], we use a rotation-and-translation-
invariant distance, between the first locations of all the
task-nodes in two matched sub-graphs as the similar-
ity metric; given two sub-graphs, we apply a spatial
transformation that only contains rotation and transi-
tion to one of the sub-graph so that the total distance
between the first locations of each node pairs is min-
imized. This minimized distance is the rotation-and-
translation-invariant distance between two sub-graphs.
It is easy to extend this similarity metric to also con-
sider the sensor readings, e.g., using cosine-similarity
for image embeddings for image data captured at each
task-node.

Finally, GMF outputs what happened next from the
top-K, i.e., top-10, matched sub-graphs as a forecast.
Here, we apply the spatial transformation to the pre-
dicted task-nodes so that they have the correct loca-
tions.

3.3 Extensible Optimization Heuristics
In this subsection, we first describe the BeeCluster’s

scheduling model (Section 3.3.1), then we show how
does BeeCluster support different optimizations as plu-
gins in Section 3.3.2.

3.3.1 Scheduling Model
BeeCluster’s scheduling model uses instantaneous as-

signment [23] of tasks to drones; in this model, the
scheduler only needs to decide the next request each

6



1 handles = [None,None,None,None]

2 def task1(loc): # Line 2-4 "Task1" in the DTG −→
3 act("flyto", loc)

4 return act("measure_pollution").value

5 def task2(loc, n): # Line 5-10 "Task2" in the DTG −→
6 wait_until_non_none(handles)

7 act("flyto", loc)

8 val = act("action2").value
9 cancelTasks([handles without handles[n]])

10 return val

11 loc = initial_loc, rng = [0,1,2,3]

12 for i in range(10):

13 locs = four_corners(loc, "10 meters")

14 tasks = [newTask(task1,locs[j]) for j in rng]

15 measurements = [tasks[j].value for j in rng]]

16 if avg(measurements) > threshold:

17 handles = [newTask(task2,locs[j],j) for j in rng]

18 photos = [handles[j].value for j in rng]]

19 handles = [None,None,None,None]

20 StorePhoto(photos)

21 loc = GradientDescent(locs, measurements)

Task1 @ 
locs[0]

Root

Task1 @ 
locs[1]

Task1 @ 
locs[2]

Task1 @ 
locs[3]

Task2 @ 
locs[0]

Task2 @ 
locs[1]

Task2 @ 
locs[2]

Task2 @ 
locs[3]

Synchronization
(At line 18)

Cancellation 
Links

Synchronization
(At line 15)

Task1 @ 
locs[0]

Task1 @ 
locs[1]

Task1 @ 
locs[2]

Task1 @ 
locs[3]

Synchronization
(At line 15)

Task1 @ 
locs[0]

Task1 @ 
locs[1]

Task1 @ 
locs[2]

Task1 @ 
locs[3]

Synchronization
(At line 15)

Iteration 1

Iteration 2

Iteration 3

Iteration 3
(Line 19-23)

Task 1
Line 2-4

Task 2
Line 5-10

Figure 8: Dynamic Task Graph (DTG) Example.

drone needs to handle. The scheduler takes the current
states of the drones, the current visible requests, and
the forecast requests as input, and outputs an instan-
taneous assignment (a set of drone-to-request pairs).
At high-level, the scheduler is triggered to reschedule
drones when its input is changed. In our implementa-
tion, we carefully choose when to reschedule to avoid
system overhead; in particular, we try to batch changes
to the input to eliminate frequent rescheduling.

Inside the scheduler, the scheduler employs simulated
annealing [39] to search for the best instantaneous as-
signment that maximizes the utility function. Here, the
utility function is used to evaluate the goodness of the
instantaneous assignment. In BeeCluster, this utility
function is a linear combination of different sub-utility
functions. Although the global goal of BeeCluster is
to minimize the execution time of the application, we
achieve that through optimizing the instantaneous as-
signment at any point in time. Each sub-utility func-
tion implements one optimization heuristic (we list a
few below) that evaluate the goodness from one aspect.
These sub-utility functions take the current configura-
tion (both drones and requests) and an instantaneous
assignment as input and outputs the utility (goodness)
of the input instantaneous assignment. Here, we list
a few sub-utility functions (optimization heuristics) as
examples.

Closest Next Request Heuristic. This is the sim-
plest greedy heuristic. The sub-utility function outputs
the negative total estimated flying time of all drone-to-

request pairs in the instantaneous assignment.
Avoid Mutual Utility Heuristic. When there are

two requests A and B in an application, and if A is done,
B will be cancelled, if B is done, A will be cancelled. In
this case, the system should not dispatch two drones to
A and B at the same time. We implemented an opti-
mization heuristic similar to the utility function in [12]
to avoid having this happen. This heuristic relies on the
forecast information provided by BeeCluster.

Avoid Zigzag Heuristic. We use this heuristic to
avoid the worst case in Figures 1,2. This optimiza-
tion heuristic also relies on the forecast information pro-
vided by BeeCluster. The sub-utility function com-
putes the geometric center of all forecast and visible re-
quests. Then, the sub-utility function causes the drones
to visit the farthest request from this center by assign-
ing a higher utility score to each drone-to-request pair
when the request is far away from the geometry center.

Speculative Execution Heuristic. When there
are spare, idle drones in the system, this heuristic en-
courages the spare drones to fly to their closest forecast
requests. This heuristic is similar to the Closest Next
Request Heuristic, but it operates only on forecast re-
quests.

Fairness Heuristic. This sub-utility function out-
puts the negative total waiting time of the involved re-
quests in the drone-to-request pairs of the instantaneous
assignment. This heuristic intends to give high priority
to the requests that have long waiting time.

7



3.3.2 Optimization Heuristic Plugins and Automatic
Plugin Balancing

There exists many other optimization heuristics. As
an extensible platform, BeeCluster provides an interface
for optimization heuristic contributors so that they can
easily add new optimization heuristics as plugins into
the BeeCluster platform.

When there are multiple optimization heuristics avail-
able in a system, it is hard to figure out what combina-
tion (weights) of these heuristics can make a specific ap-
plication run faster. In BeeCluster, we make the hyper-
parameter tuning automatic. After several initial runs
of an application, BeeCluster replays the executions of
the application using the historical DTGs in a simulator
and finds the linear weights for the different sub-utility
functions (optimization heuristics) that minimizes exe-
cution time using hyper-parameter search [17].

4. IMPLEMENTATION
In this section, we show the implementation details of

BeeCluster. We discuss the software in Section 4.1 and
the hardware in Section 4.2.

4.1 BeeCluster Framework

BeeCluster Core
API Layer

Hardware Abstraction Layer

Python API 

Wireless Layer

Drone Hub Simulator (Level 1)

Drone Endpoint

Drone-Specific 
Driver Simulator (Level 2)

Software/Hardware Boundary

DJI Drone Simulator (Level 3)

Applications 

Centralized 

Onboard

Python

Golang

C++

Figure 9: BeeCluster Framework

BeeCluster will be released as open-source. The im-
plementation of the BeeCluster framework comprises
≈ 15K lines of code (LoC); 80.8% in Golang for the
BeeCluster core system, 5.3% in python for the python
wrapper of BeeCluster API, and 13.9% in C++ for the
drone driver. We show a diagram of the BeeCluster
component architecture in Figure 9.

Simulators. The implementation of BeeCluster in-
volves three simulators. The level-1 simulator is used
to conduct fast application replay for hyper-parameter
search. The level-2 simulator is used to verify the cor-
rectness of the system and the application before take-
off. The level-3 simulator is DJI’s hardware simulator,
which is used to verify the correctness of the drone driver

code. These simulators boost the development speed of
BeeCluster and avoid potential failures in real-world ex-
periments.

Drone-to-centralized controller communication
protocol. In the implementation, the drone sends a
heart-beat message to the centralized controller every
100 ms. The centralized controller encloses the action
descriptions (if any) into the return message. Once the
drone receives the return message, it performs the ac-
tions enclosed in the return message and sends the result
back to the centralized controller together with the next
heart-beat message.

Collision avoidance and conflicts resolution
(CACR). We implement a simple centralized first-come-
first-serve CACR protocol in BeeCluster to avoid drone
collisions and resolve conflicts. This CACR protocol is
critical for real-world drone deployments.

4.2 Hardware Setup

Raspberry Pi 3
(Onboard Computer)

DJI N3 Flight 
Controller

DJI F450 
Drone Frame

5000 mAh 4S Battery (15+ 
mins flying time)

WiFi Antenna

Wide-Angle
Camera

(a) (b)

Figure 10: Drone Hardware Used in Evaluation

Similar to other drone orchestration system, BeeClus-
ter is drone-agnostic. In our prototype, we use a cus-
tom assembled drone platform as our drone back-end
for evaluation. We show our drone platform in Fig-
ure 10(a). Our drone platform is based on the DJI F450
drone frame [1]. We use DJI N3 flight controller [2]
with a GPS antenna. The flight controller is connected
to an on-board Raspberry Pi single-board computer [5].
Each drone is equipped with a 2dBm WiFi antenna,
which enables communication (>150 meters) between
the drone and the centralized controller. Each drone
is also equipped with a wide angle camera for camera-
based applications.

Drone profile. To make the simulator accurate, we
profile the dynamic (acceleration rate, de-acceleration
rate and drag coefficient) of our drones (Figure 10(b)).
In our setup, the drone flies at 2 m/s when the target is
within 20 meters, otherwise, the drone flies at 10 m/s.

5. EVALUATION
In our evaluation, we seek to answer the following

questions:
• What is the benefit of BeeCluster’s application-

agnostic predictive optimization?
• What is the benefit of BeeCluster’s API?
• What is the overhead of BeeCluster?

8



To address these questions, we evaluate BeeCluster with
five case studies, consisting of four representative appli-
cations and one proof-of-concept scenario consisting of
three simple applications. We conduct most of our ex-
periments with real drones and real environments. In
addition, we use our level-2 simulator to conduct sim-
ulated experiments that complement our real-world ex-
periments.

5.1 Benefit from predictive Optimizations

5.1.1 Case Study 1: Road Mapping

Neural 
Network
(CNN)

Aerial
Image

Figure out the next location to visit
Drone 

in 
Mission

(a) Tracing Road Application Overview

(b) Real-World Experiments with One and Two Drones

One Drone

Two Drones Speculative Execution

First Iteration

First Iteration

Road SegmentationAerial Image

Figure 11: Case Study 1: Mapping a Newly Constructed
Road through Iterative Tracing

Automatically mapping new constructed roads is an
important real-world task [10, 29, 20, 9, 28], e.g., for
companies that maintain digital maps. For case study
1, we built a drone-based mapping application with the
BeeCluster API where the drones can smartly map a
newly constructed road through iterative road tracing.
We show this application in Figure 11(a). The applica-
tion begins at the start of the road. In each iteration,
the application acquires a photo at the current location
and computes the road position and direction through a
neural network. Then, the application moves 6 meters
along the road and starts the next iteration.

We evaluate this application on a newly constructed
trail in a nearby park. We run the application for 25
iterations, which covers 144 meters of the trail. We show
the drone trajectories in Figure 11(b). We highlight the
positions of the trail at each iteration using a yellow
circle.

Benefit: The application logic in this case study is
an active sensing loop (see Section 2.1.1) with strong
sequential dependencies; the i-th iteration depends on
the execution result of the (i− 1)-st iteration.

(a) (b)
Figure 12: Benefits from Speculative Execution.

While the application is running, BeeCluster forecasts
the locations where the application may need to visit in
the future. When there are spare drones in the system,
BeeCluster dispatches the spare drones to the forecast
locations. This speculative execution strategy overlaps
the sensing time and flying time of the active sensing
loop, reducing the total execution time of the applica-
tion. To show this, we added a second drone. We show
drone trajectories in Figure 11(b). In the two-drone
scenario, we can clearly see that the two drones alterna-
tively fly over each other. Here, the curvy traces are the
result of our collision avoidance and conflict resolution
protocol.

We repeat the experiments three times for both the
one-drone scenario and two-drone scenario. As shown in
Figure 12(a), BeeCluster’s speculative execution strat-
egy improves the sensing task runtime by 21.3%. Here,
the baseline approach does not support speculative ex-
ecution, instead, it only executes the program line by
line. In fact, the benefit of the speculative execution
heavily depends on the ratio of sensing time to flying
time. We simulated different sensing time to flying time
ratios for the tracing road application in a simulator.
As shown in Figure 12(b), we find speculative execu-
tion performs the best when the ratio of sensing time
to flying time is close to 1.5, which achieves up to 50%
performance improvement.

In this case study, we don’t use historical DTGs; the
forecast is only based on the early portion of the active
DTG, e.g., the first few iterations. We find this setup
is sufficient because the application is predictable and
the speculative execution does not require very accurate
predictions to overlap the flying time and sensing time.

5.1.2 Case Study 2: Wifi Coverage Map
In case study 2, we built an application with the

BeeCluster API to create a WiFi coverage map of an
open area. Our application adapts an efficient and pop-
ular information gathering algorithm based on Gaussian
Processes [34].The algorithm first divides the region of
interest into an equal sized grid (i.e., 5 meters by 5
meters). Then, the algorithm issues tasks (using the
newTask primitive) to request a WiFi signal strength
measurement from all grid cells. When the WiFi signal
strength is measured at a grid, the algorithm updates

9



(a) Reactive (Baseline)
 Flight TIme: 270 seconds

(b) Predictive (BeeCluster)
Flight TIme: 228 seconds 

(c) Wifi Signal Coverage Map 
(Gaussian Process)

Start

End End

Start

Wifi Hotspot

dBm

Figure 13: Case Study 2: Mapping Wifi Signal Coverage
through a Gaussian Process

the Gaussian Process model (which models the WiFi
signal strength field) and updates the uncertainty esti-
mate on all other grids. If the uncertainty estimation of
a grid falls below a threshold, the measurement request
in that grid is cancelled (using the cancelTask primi-
tive). The algorithm stops when all the grid cells are
measured or have satisfied the uncertainty threshold.

We evaluate this application in a 50 meter by 70 meter
open area. In Figure 13(a,b), we show the center of each
5 meter by 5 meter grid cell in green and highlight the
visited grid cells in yellow. We show the estimated WiFi
coverage map in Figure 13(c).

Benefit: In this case study, BeeCluster forecasts the
task cancellation behavior of the application. Here, we
use one additional historical DTG from a previous run
in the simulator. We find the best weights of different
optimization heuristics through replaying this DTG in
a simulator. We find this simulated DTG can be trans-
ferred to our real-world environment. Then, inside the
scheduler, the Avoid Mutual Utility Heuristic (Section
3.4.1) uses the forecast information to encourage drones
to visit the grids that maximize the expected informa-
tion gain. We can clearly see the effect of this predictive
optimization heuristic in Figure 13(a,b). In the baseline
(only with reactive optimization), the drone visits grids
on the boundary of the region. In contrast, BeeCluster’s
predictive optimization strategy causes drones to visit
grids that are at least one grid away from the bound-
ary. This is because once a grid is visited, its neigh-
boring grids will be cancelled with a high probability.
Note that BeeCluster captures this insight without re-
quiring explicit input from the application, simply using
the Avoid Mutual Utility heuristic.

We repeat the experiments 5 times with real drones
and real environments. As shown in Figure 14, BeeClus-
ter’s predictive optimization yields an 23.9% average
runtime improvement in this scenario.

5.1.3 Case Study 3: Wifi Hotspot Localization
For case study 3, we built an application to locate the

WiFi hotspot using gradient descent. The algorithm is
similar to the code shown in Figure 8 - without the if

1 2 3 4 5 avg
Five Repeated Runs and Average (Real-World)

0

100

200

300

Ex
ec

ut
io

n 
Ti

m
e 

(S
ec

on
d) Baseline (Reactive) BeeCluster API (Predictive)

Figure 14: BeeCluster enables Application Agnostic pre-
dictive Optimization, reducing the execution time by
23.9% on average over five runs in case study 2

statement from lines 16 to 20.
We evaluate this application with real drones and real

environments. In the evaluation, we set the initial lo-
cation of the algorithm to be 60 meters away from the
hotspot and then ran the algorithm for ten iterations.
In each iteration, the current location moves 5 meters
toward the direction of the gradient. We show an ex-
ample trajectory in Figure 15(a).

(a) Experiment Environment (b) Result

WiFi 
Hotspot

Start

Local-Optimal 
But Not Global-Optimal

Global Optimal
(After Collecting Enough 
Application Information)

Figure 15: Case Study 3: WiFi Hotspot Localization

Benefit: In this case study, BeeCluster can forecast
the new tasks generated by the applications. As the
four measurements in each iteration don’t have an order,
the baseline solution (reactive) may not always pick up
the best order (clockwise or counter-clockwise) in which
to perform the measurements. In contrast, BeeClus-
ter leverages forecasting information to always pick the
best order. We repeat the experiments 5 times. We
show the average execution time of the last 5 iterations
in Figure 15(b). BeeCluster’s predictive optimization
improves the performance by 11.6% against reactive op-
timization.

In this case study, we don’t use historical DTGs; the
forecast is only based on the early portion of the ac-
tive DTG, e.g., the first few iterations. As shown in
Figure 15(a), the drone didn’t always follow the global
optimal route in the first few iterations. Later on, once
the system collected enough application profiling data
(DTG), the drone started to always follow the global
optimal route.

5.2 Benefit from BeeCluster API

5.2.1 Case Study 4: Fine Granularity Multiplexing

10



Start

A

B

C

D

E

F

Start

A

B

C

D

E

F

Execution Order 
A (Pick up package)
F (Drop package)
E (Take photo)
C (Video record start)
D (Video record stop)
B (Take photo)

Execution Order 
A (Pick up package)
B (Take photo)
C (Video record start)
D (Video record stop)
E (Take photo)
F (Drop package)

(b) Baseline Coarse-Granularity 
Multiplexing

(c) BeeCluster Fine-Granularity 
Multiplexing

(a) Scenarios

Application Task 1:
- Pick up Package at A
- Drop Package at F 

Application Task 2:
- Take two photos at 

locations B and E 
(any order)

Application Task 3:
- Record a video from 

location C to D

Figure 16: Case Study 4 Fine Granularity Multiplexing

In this case study, we built a proof-of-concept scenario
to demonstrate the benefit of BeeCluster’s precise bind-
ing relationships. We create three fake application tasks
(Figure 16(a)) with different binding relationships. The
first application task mimics the package delivery task.
It needs to pick up a package at A and drop it at F.
The task requires the same drone to do the pickup and
dropoff but the task is interruptible. The second ap-
plication task takes two photos at two locations B and
E. The two photos can be taken in any order (imple-
mented with newTask primitive). The third application
task record a video from location C to D. The task re-
quires the same drone to record and the task is not
interruptible.

In the evaluation, we submit these three application
tasks to the drone orchestration system (with one drone).
We fix the locations A and F and randomly generate the
other four locations to create 10 different random sce-
narios. In the baseline orchestration system, we disable
the precise binding definition in application task 1 but
keep the application tasks 2 and 3 the same. In this
case, once the application task 1 starts, the drone is
occupied until the application task 1 is completed.

Benefit: We repeat the experiment 10 times with
real drones. We show the quantitative result in Fig-
ure 17. BeeCluster surpasses the baseline by 19.1% in
terms of execution time. This improvement comes from
fine-granularity multiplexing; as shown in Figure 16(c),
BeeCluster can multiplex application task 1 with other
tasks; once the drone picks up the package at location
A, it doesn’t need to send the package to location F
immediately, instead, the drone can still conduct other
tasks along the way to location F.

5.2.2 Case Study 5: Continuous Object Tracking

1 2 3 4 5 6 7 8 9 10 avg
Scenarios

0

20

40

60

80

100

Ex
ec

ut
io

n 
Ti

m
e 

(S
ec

on
d) Baseline (Coarse-Granularity Multiplexing)

BeeCluster API (Fine-Granularity Multiplexing)

Figure 17: BeeCluster API enables fine granularity mul-
tiplexing, reducing the execution time by 19.1% on av-
erage over ten runs in case study 4

Target to Track

(b) View from Drone

(a) Trajectories

Hand-Off 1

Hand-Off 2

Hand-Off 3

Hand-Off 4

Hand-Off 5

Start

End

Battery 
Replace 
Zone

Drone 2
Drone 1

Target Trace

(c) Hand-Off Overhead
Figure 18: Case Study 5: Continuous object tracking
beyond a single drone’s battery life.

For case study 5, we built an application to continu-
ously track a person. The duration of the tacking task
is longer than the battery-time of a single drone. We
use this case study to demonstrate the effect of the
non-same drone but uninterruptible binding relation-
ship (see Section 3.2.2). The application logic is similar
to line 13-18 in Figure 7.

We use two real drones in this experiment. We arti-
ficially limit the flying time of each drone to be only 60
seconds. After the battery is used up, the drone needs
to fly back home to simulate recharging its battery (in
reality the drones have about 30 minutes of battery life,
so actual battery replacement wasn’t necessary). In the
experiment, we track a moving person for 5 minutes
(with 5 drone hand-offs). We show the trajectories of
the two drones in Figure 18(b).

Benefit: We demonstrate that BeeCluster can sup-
port continuous operation beyond a single drone’s bat-
tery time without any additional code - but with a
small overhead; we show the average execution times
of each regular iteration and each hand-off iteration in
Figure 18(c). Here, the hand-off iterations are the iter-
ations where the hand-off happened.

5.3 BeeCluster Overhead
Next, to study the overhead of the BeeCluster frame-

work, we measured the execution time of each compo-

11



0% 20% 40% 60% 80% 100%Ca
se

St
ud

y 5

Ca
se

St
ud

y 3

Ca
se

St
ud

y 2

Ca
se

St
ud

y 1
Application
Flying

Driver
Transmission (payload)

Transmission (sync)
System Overhead

Figure 19: Execution Time Breakdown

nent for case studies 1,2,3, and 5. Case study 4 is a
proof-of-concept scenario, so we don’t consider it in this
measurement. In this measurement, we use only one
drone and repeat each application three times. We show
the execution time breakdown of all our the four appli-
cations in Figure 19.

There are six parts in the execution time breakdown.
Application time is the time spent within the applica-
tion (python), including the sleep function call. Flying
time is the amount of time when the drone is flying to-
ward target. Driver time is the amount of time spent
inside the driver, e.g., taking a photo may take 100-200
ms. Transmission time consists of two parts: transmis-
sion (payload) time is the time spent sending the data
between the drone and the centralized controller; trans-
mission (sync) time is the delay introduced by the fixed
rate (synchronized) drone-to-centralized controller com-
munication protocol (See Section 4.1). On average, this
protocol introduces a 150 ms (100 ms + 50 ms) delay
for each action.

The overhead of BeeCluster, which includes dynamic
task graph construction, application forecasting, and
scheduling, is the difference between the five compo-
nents described above and the total wall-clock execu-
tion time1. The average system overhead of the four
applications is 2.34%, which we believe is acceptable.

Scalability For completeness, we show the schedul-
ing time and the forecast time with different numbers
of drones and historical DTGs in Figure 20. Here, the
results are from case study 2 for scheduling time, and
from case study 3 for forecast time because these two ap-
plications have the highest overhead in scheduling and
forecast, respectively. We use level-2 simulator to mea-
sure these overhead.

1This is because we only use one drone.

Figure 20: Scheduling Time and Forecasting Time

6. RELATED WORK
Work related to drone orchestration has been done

in different fields, including computer systems, robotics,
and operations research. Figure 21 illustrates how BeeClus-
ter is different from existing work.

Reliability

Iso
lat

ion

Optimization
Complexity

Platform Flexibility 

Single-purpose Applications

Existing Drone 
Orchestration 

Systems

BeeCluster

Low-level Control 

Other Orthogonal 
Dimensions 

General-Purpose
Platform

Single-Purpose
Platform

Static
Optimization

Reactive
Optimization

Predictive
Optimization

Domain-Specific
Platform

Figure 21: Positioning of BeeCluster vs Related Work

In contrast to prior drone orchestration systems such
as AnDrone [40], Voltron [30], and UAV-as-a-service [25,
26, 48], our main contribution is developing a predictive
optimization strategy, in contrast the non-predictive na-
ture of prior work. In addition, we designed a novel
general-purpose programming API that allows develop-
ers to describe the logic of a wide range of drone ap-
plications in a precise way. This new API enables our
predictive optimizations.

In contrast to single-purpose drone applications [35,
36, 8, 15, 22, 41], BeeCluster provides predictive op-
timization in a transparent way. Unlike many single-
purpose applications or algorithms, which, if they are
predictive, require application developers to provide the
information needed to make predictions, BeeCluster in-
fers the necessary information from the program execu-
tion and profiling data.

There are other important aspects in a drone orches-
tration system that have been studied, including low-
level drone control [11], reliable communication proto-
cols [21, 13], and isolation [40]. This work is comple-
mentry and orthogonal to BeeCluster.

7. CONCLUSION
In this work, we described a new drone orchestration

system, BeeCluster. BeeCluster is able to take into ac-
count the future sensing tasks that applications will exe-
cute when making scheduling decisions. This is achieved

12



through a novel programming API that allows develop-
ers to describe the logic of a wide range of drone ap-
plications in a precise and compact way, as well as an
extensible rule-based forecasting approach. We demon-
strate the effectiveness BeeCluster through a evalua-
tion over five real-world case studies with real drones in
outdoor environments, demonstrating speedups ranging
from 11.6% to 23.9%.

8. REFERENCES
[1] Dji f450 drone frame.

https://www.dji.com/flame-wheel-arf.
[2] Dji n3 flight controller. https://www.dji.com/n3.
[3] Dronedeploy. https://www.dronedeploy.com.
[4] Pix4dcapture. https:

//www.pix4d.com/product/pix4dcapture.
[5] Raspberry pi. https://www.raspberrypi.org/.
[6] Adams, S. M., and Friedland, C. J. A survey

of unmanned aerial vehicle (uav) usage for
imagery collection in disaster research and
management. In 9th International Workshop on
Remote Sensing for Disaster Response (2011),
vol. 8.

[7] Adão, T., Hruška, J., Pádua, L., Bessa, J.,
Peres, E., Morais, R., and Sousa, J.
Hyperspectral imaging: A review on uav-based
sensors, data processing and applications for
agriculture and forestry. Remote Sensing 9, 11
(2017), 1110.

[8] Alvear, O., Zema, N. R., Natalizio, E., and
Calafate, C. T. Using uav-based systems to
monitor air pollution in areas with poor
accessibility. Journal of Advanced Transportation
2017 (2017).

[9] Bastani, F., He, S., Abbar, S., Alizadeh,
M., Balakrishnan, H., Chawla, S., and
Madden, S. Machine-assisted map editing. In
Proceedings of the 26th ACM SIGSPATIAL
International Conference on Advances in
Geographic Information Systems (2018), ACM,
pp. 23–32.

[10] Bastani, F., He, S., Abbar, S., Alizadeh,
M., Balakrishnan, H., Chawla, S., Madden,
S., and DeWitt, D. Roadtracer: Automatic
extraction of road networks from aerial images. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2018),
pp. 4720–4728.

[11] Bregu, E., Casamassima, N., Cantoni, D.,
Mottola, L., and Whitehouse, K. Reactive
control of autonomous drones. In Proceedings of
the 14th Annual International Conference on
Mobile Systems, Applications, and Services
(2016), MobiSys ’16.

[12] Burgard, W., Moors, M., Stachniss, C.,
and Schneider, F. E. Coordinated multi-robot

exploration. IEEE Transactions on robotics 21, 3
(2005), 376–386.

[13] Chlestil, C., Leitgeb, E., Schmitt, N. P.,
Muhammad, S. S., Zettl, K., and Rehm, W.
Reliable optical wireless links within uav swarms.
In 2006 international conference on transparent
optical networks (2006), vol. 4, IEEE, pp. 39–42.

[14] Doherty, P., and Rudol, P. A uav search and
rescue scenario with human body detection and
geolocalization. In Australasian Joint Conference
on Artificial Intelligence (2007), Springer,
pp. 1–13.

[15] Dorling, K., Heinrichs, J., Messier, G. G.,
and Magierowski, S. Vehicle routing problems
for drone delivery. IEEE Transactions on Systems,
Man, and Cybernetics: Systems 47, 1 (2016),
70–85.

[16] Eschmann, C., Kuo, C.-M., Kuo, C.-H., and
Boller, C. Unmanned aircraft systems for
remote building inspection and monitoring. In
Proceedings of the 6th European Workshop on
Structural Health Monitoring, Dresden, Germany
(2012), vol. 36.

[17] Feurer, M., and Hutter, F. Hyperparameter
Optimization. Springer International Publishing,
Cham, 2019, pp. 3–33.

[18] Floreano, D., and Wood, R. J. Science,
technology and the future of small autonomous
drones. Nature 521, 7553 (2015), 460–466.

[19] Ham, Y., Han, K. K., Lin, J. J., and
Golparvar-Fard, M. Visual monitoring of civil
infrastructure systems via camera-equipped
unmanned aerial vehicles (uavs): a review of
related works. Visualization in Engineering 4, 1
(2016), 1.

[20] He, S., Bastani, F., Abbar, S., Alizadeh,
M., Balakrishnan, H., Chawla, S., and
Madden, S. RoadRunner: Improving the
precision of road network inference from gps
trajectories. In ACM SIGSPATIAL (2018).

[21] Ho, D.-T., and Shimamoto, S. Highly reliable
communication protocol for wsn-uav system
employing tdma and pfs scheme. In 2011 IEEE
Globecom Workshops (Gc Wkshps) (2011), IEEE,
pp. 1320–1324.

[22] Julian, K. D., and Kochenderfer, M. J.
Distributed wildfire surveillance with autonomous
aircraft using deep reinforcement learning. Journal
of Guidance, Control, and Dynamics (2019), 1–11.

[23] Korsah, G. A., Stentz, A., and Dias, M. B.
A comprehensive taxonomy for multi-robot task
allocation. The International Journal of Robotics
Research 32, 12 (2013), 1495–1512.

[24] Lin, Y., Hyyppa, J., and Jaakkola, A.
Mini-uav-borne lidar for fine-scale mapping. IEEE

13

https://www.dji.com/flame-wheel-arf
https://www.dji.com/n3
https://www.dronedeploy.com
https://www.pix4d.com/product/pix4dcapture
https://www.pix4d.com/product/pix4dcapture
https://www.raspberrypi.org/


Geoscience and Remote Sensing Letters 8, 3
(2010), 426–430.

[25] Mahmoud, S., Mohamed, N., and
Al-Jaroodi, J. Integrating uavs into the cloud
using the concept of the web of things. Journal of
Robotics 2015 (2015), 10.

[26] Mahmoud, S. Y. M., and Mohamed, N.
Toward a cloud platform for uav resources and
services. In 2015 IEEE Fourth Symposium on
Network Cloud Computing and Applications
(NCCA) (2015), IEEE, pp. 23–30.

[27] Máthé, K., and Buşoniu, L. Vision and
control for uavs: A survey of general methods and
of inexpensive platforms for infrastructure
inspection. Sensors 15, 7 (2015), 14887–14916.

[28] Máttyus, G., Luo, W., and Urtasun, R.
Deeproadmapper: Extracting road topology from
aerial images. In Proceedings of the IEEE
International Conference on Computer Vision
(2017), pp. 3438–3446.

[29] Máttyus, G., Wang, S., Fidler, S., and
Urtasun, R. Hd maps: Fine-grained road
segmentation by parsing ground and aerial
images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2016),
pp. 3611–3619.

[30] Mottola, L., Moretta, M., Whitehouse,
K., and Ghezzi, C. Team-level programming of
drone sensor networks. In Proceedings of the 12th
ACM Conference on Embedded Network Sensor
Systems (2014), ACM, pp. 177–190.

[31] Nex, F., and Remondino, F. Uav for 3d
mapping applications: a review. Applied geomatics
6, 1 (2014), 1–15.

[32] Puri, A. A survey of unmanned aerial vehicles
(uav) for traffic surveillance. Department of
computer science and engineering, University of
South Florida (2005), 1–29.

[33] Quaritsch, M., Kruggl, K.,
Wischounig-Strucl, D., Bhattacharya, S.,
Shah, M., and Rinner, B. Networked uavs as
aerial sensor network for disaster management
applications. e & i Elektrotechnik und
Informationstechnik 127, 3 (2010), 56–63.

[34] Rasmussen, C. E. Gaussian processes in
machine learning. In Summer School on Machine
Learning (2003), Springer.

[35] Rossi, M., Brunelli, D., Adami, A.,
Lorenzelli, L., Menna, F., and Remondino,
F. Gas-drone: Portable gas sensing system on
uavs for gas leakage localization. In SENSORS,
2014 IEEE (2014), IEEE, pp. 1431–1434.

[36] Ruiz, A. V., Angermann, M., Wieser, I.,
Frassl, M., and Mueller, J. Efficient
multi-agent exploration with gaussian processes.

In Australasian Conference on Robotics and
Automation (ACRA) (2014).

[37] Saari, H., Pellikka, I., Pesonen, L.,
Tuominen, S., Heikkilä, J., Holmlund, C.,
Mäkynen, J., Ojala, K., and Antila, T.
Unmanned aerial vehicle (uav) operated spectral
camera system for forest and agriculture
applications. In Remote Sensing for Agriculture,
Ecosystems, and Hydrology XIII (2011), vol. 8174,
International Society for Optics and Photonics,
p. 81740H.

[38] Smith, J. E. A study of branch prediction
strategies. In Proceedings of the 8th annual
symposium on Computer Architecture (1981),
IEEE Computer Society Press, pp. 135–148.

[39] Van Laarhoven, P. J., and Aarts, E. H.
Simulated annealing. In Simulated annealing:
Theory and applications. Springer, 1987, pp. 7–15.

[40] Van’t Hof, A., and Nieh, J. Androne: Virtual
drone computing in the cloud. In Proceedings of
the Fourteenth EuroSys Conference 2019 (2019),
ACM, p. 6.

[41] Vasisht, D., Kapetanovic, Z., Won, J.-h.,
Jin, X., Chandra, R., Kapoor, A., Sinha,
S. N., Sudarshan, M., and Stratman, S.
Farmbeats: An iot platform for data-driven
agriculture. In Proceedings of the 14th USENIX
Conference on Networked Systems Design and
Implementation (2017).

[42] Villa, T., Gonzalez, F., Miljievic, B.,
Ristovski, Z., and Morawska, L. An overview
of small unmanned aerial vehicles for air quality
measurements: Present applications and future
prospectives. Sensors 16, 7 (2016), 1072.

[43] Villa, T., Salimi, F., Morton, K.,
Morawska, L., and Gonzalez, F.
Development and validation of a uav based system
for air pollution measurements. Sensors 16, 12
(2016), 2202.

[44] Viseras, A., Shutin, D., and Merino, L.
Online information gathering using
sampling-based planners and gps: an information
theoretic approach. In 2017 IEEE/RSJ
International Conference on Intelligent Robots
and Systems (IROS) (2017), IEEE, pp. 123–130.

[45] Viseras, A., Wiedemann, T., Manss, C.,
Magel, L., Mueller, J., Shutin, D., and
Merino, L. Decentralized multi-agent exploration
with online-learning of gaussian processes. In 2016
IEEE International Conference on Robotics and
Automation (ICRA) (2016), IEEE, pp. 4222–4229.

[46] Vlachos, M., Gunopulos, D., and Das, G.
Rotation invariant distance measures for
trajectories. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge

14



discovery and data mining (2004), ACM,
pp. 707–712.

[47] Werman, M., and Weinshall, D. Similarity
and affine invariant distances between 2d point
sets. IEEE Transactions on Pattern Analysis and
Machine Intelligence 17, 8 (1995), 810–814.

[48] Yapp, J., Seker, R., and Babiceanu, R. Uav
as a service: Enabling on-demand access and
on-the-fly re-tasking of multi-tenant uavs using
cloud services. In 2016 IEEE/AIAA 35th Digital
Avionics Systems Conference (DASC) (2016),
IEEE, pp. 1–8.

[49] Yungaicela-Naula, N. M., Zhang, Y.,
Garza-Castañon, L. E., and Minchala, L. I.
Uav-based air pollutant source localization using
gradient and probabilistic methods. In 2018
International Conference on Unmanned Aircraft
Systems (ICUAS) (2018), IEEE, pp. 702–707.

15


	Introduction
	Motivating Examples
	Benefits of Predictive Optimization
	Benefits of the BeeCluster API

	Design
	Programming Model (BeeCluster API)
	Basic Primitives
	Binding Relationships

	Application Forecasting
	Dynamic Task Graph (DTG)
	Forecasting using DTGs

	Extensible Optimization Heuristics
	Scheduling Model
	Optimization Heuristic Plugins and Automatic Plugin Balancing


	Implementation
	BeeCluster Framework
	Hardware Setup

	Evaluation
	Benefit from predictive Optimizations
	Case Study 1: Road Mapping
	Case Study 2: Wifi Coverage Map
	Case Study 3: Wifi Hotspot Localization

	Benefit from BeeCluster API
	Case Study 4: Fine Granularity Multiplexing
	Case Study 5: Continuous Object Tracking

	BeeCluster Overhead

	Related Work
	Conclusion
	References

