
Optimizing Smartphone Power Consumption through
Dynamic Resolution Scaling

Songtao He1,2, Yunxin Liu1, Hucheng Zhou1

1Microsoft Research, Beijing, China
2University of Science and Technology of China, Hefei, China

hst@mail.ustc.edu.cn, {yunliu, huzho}@microsoft.com

ABSTRACT
The extremely-high display density of modern smartphones
imposes a significant burden on power consumption, yet does
not always provide an improved user experience and may
even lead to a compromised user experience. As human
visually-perceivable ability highly depends on the user-screen
distance, a reduced display resolution may still achieve the
same user experience when the user-screen distance is large.
This provides new power-saving opportunities. In this pa-
per, we present a flexible dynamic resolution scaling system
for smartphones. The system adopts an ultrasonic-based
approach to accurately detect the user-screen distance at
low-power cost and makes scaling decisions automatically
for maximum user experience and power saving. App de-
velopers or users can also adjust the resolution manually as
their needs. Our system is able to work on existing commer-
cial smartphones and support legacy apps, without requiring
re-building the ROM or any changes of apps. An end-to-
end dynamic resolution scaling system is implemented on
the Galaxy S5 LTE-A and Nexus 6 smartphones, and the
correctness and effectiveness are evaluated against 30 games
and benchmarks. Experimental results show that all the 30
apps can run successfully with per-frame, real-time dynamic
resolution scaling. The energy per frame can be reduced by
30.1% on average and up to 60.5% at most when the res-
olution is halved, for 15 apps. A user study with 10 users
indicates that our system remains good user experience, as
none of the 10 users could perceive the resolution changes in
the user study.

Categories and Subject Descriptors
I.3.4 [Computer Graphics]: Graphics Utilities—Software
support

General Terms
Experiments; Measurement; Performance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MobiCom’15, September 07–11, 2015, Paris, France.
c© 2015 ACM. ISBN 978-1-4503-3619-2/15/09 ...$15.00.

DOI: http://dx.doi.org/10.1145/2789168.2790117.

Keywords
Smartphone; GPU; Power Consumption; Display Resolu-
tion; Dynamic Resolution Scaling

1. INTRODUCTION
The display resolution of smartphones has become increas-

ingly high. Since the “Retina display” of the iPhone 4 re-
leased in 2010 [18], display resolution of smartphones has
continued to rise, from 960x640 pixels of the iPhone 4 to
1920x1080 pixels (Full HD) and recently to 2560x1440 pixels
(2K). As a result, latest smartphones have an extremely-high
display density. For example, the LG G3 [16] has a display
of 538 pixels per inch (ppi), while the Samsung Galaxy S5
LTE-A [17] has a display of 577 ppi.

However, this extremely-high display density does not al-
ways help bring an improved user experience. The Retina
display of the iPhone 4 has a display density of only 326
ppi. The high display density of the LG G3 and the Sam-
sung Galaxy S5 LTE-A is far beyond the human ability of
visual acuity, and thus does not lead to visibly-sharper con-
tent and interfaces displayed on the screen. Nevertheless, a
high-resolution display consumes a large amount of system
resources, especially the GPU computation, and thus re-
sults in high system power consumption (see Section 2). As
energy is a paramount concern on smartphones, it is desir-
able to study the tradeoff between display density and power
consumption.

In this paper, we propose to optimize the high power con-
sumption caused by high-density displays through Dynamic
Resolution Scaling (DRS). Based on the viewing distance
(i.e., the screen-user distance), DRS dynamically adjusts the
user-interface resolution displayed on the screen but ensures
that the pixels are always small enough to be individually
unobservable by human eyes. The philosophy of DRS is that
the system should render the interface with exactly as many
details as it is perceptible to a user, in order to maximize
both user experience and battery life. When a resolution is
too high for a viewing distance, DRS reduces the resolution
to save power.

Enabling DRS imposes several requirements. First, DRS
must seamlessly adjust the resolution in real-time as the
viewing distance changes, without compromising the user
experience. Second, DRS must be done systematically and
is transparent from applications. Third, DRS must be able
to accurately determine the viewing distance of a user in
real-time and with minimal energy cost.

27

To meet the requirements, we develop per-frame DRS tech-
nique for seamless and real-time resolution adjusting. We in-
tercept the system graphics pipeline to enable system-wide
DRS, without requiring any changes or recompiling from ap-
plications, or re-building a new smartphone ROM. We fur-
ther propose to use ultrasonic sensors to detect the view-
ing distance of a user, which is accurate and low-power.
Based on the detected viewing distance, we utilize existing
knowledge of the human visual system to define the required
display-pixel density for optimal user experience, and adjust
the extravagant resolution accordingly.

We have implemented a DRS system that works on exist-
ing commercial smartphones including the Galaxy S5 LTE-
A and the Nexus 6. We conduct comprehensive experi-
ments and a user study to evaluate the DRS implementation
against 30 real gaming and benchmark applications. Experi-
mental results show that all the 30 applications can run suc-
cessfully with per-frame, real-time dynamic resolution scal-
ing. The energy per frame can be reduced by 30.1% in aver-
age and up to 60.5% at most when the resolution is halved,
for 15 applications. Even for other less GPU-intensive ap-
plications such as Adobe Reader and web browser, we still
reduce the energy per frame for about 10%. A user study
with 10 users indicates that our system remains good user
experience: none of the 10 users could perceive the resolution
changes in the user study although the resolution changed
for more than 100 times for each user.

To the best of our knowledge, we are the first to design
and implement a DRS system for smartphones. The main
contributions of this paper are as the following:

1. We present a per-frame and application-transparent
system-level DRS design and implementation.

2. We adopt an ultrasonic-based approach that detects
the user-screen distance in real-time and with low power.

3. We conduct experiments and a user study to confirm
the effectiveness of our system for maximum user ex-
perience and power saving.

The rest of this paper is organized as follows. Section 2
motivates the need of DRS and set our goals. Section 3 in-
troduces how the graphics pipeline works on Android plat-
form as background. Section 4 overviews the architecture
design and the key components of DRS. Section 5 and Sec-
tion 6 presents how to enable DRS and how to determine the
viewing distance of users, respectively. Section 7 describes
more implementation details and Section 8 reports the evalu-
ation results. Section 9 discusses the limitations and future
work, Section 10 surveys the related work and Section 11
concludes.

2. MOTIVATION AND GOALS
In this section, we describe three problems caused by high-

resolution displays on smartphones, to motivate our work
and set our goals of this paper.

2.1 Motivation
High-resolution displays can be only justified if they can

improve the user experience, e.g., allowing sharper images
or more content to be legibly displayed. However, they
fail to provide an improved user experience on smartphones
because the physical size of display is small and thus the

Figure 1: System power and GPU utilization of Galaxy S5
LTE-A in different display resolutions.

extremely-high display density surpasses the human ability
of visual acuity. Instead, high-resolution displays consume
a large amount of system resources and cause the following
three issues on smartphones.

High power consumption. High-resolution displays
significantly increase the system power mainly because ren-
dering extra pixels imposes very high GPU workload and
memory usage. To verify this, we wrote a test program to
render a 3D scene with a fixed number of vertexes/triangles
at 60 frames per second (fps). The program was specially
designed to generate independent arithmetic, special func-
tion and memory access workload on GPU. So, the GPU
can reach its peak power consumption while processing those
workload concurrently. We ran the program on Galaxy S5
LTE-A with different display resolutions and measured the
system power (with the screen turned off) and the GPU
utilization. The result is shown in Figure 1. The system
power increases almost linearly when the display density
increases and a higher display resolution consumes signifi-
cantly more power than a lower display resolution. For ex-
ample, when the display resolution is 2560x1440 pixels (577
ppi), the system power is 10247 mW, 87.3% higher than the
system power when the display resolution is 1280x720 pixels
(289 ppi). This power increase is mainly caused by the in-
creased GPU workload. Indeed, to support a high-resolution
display, smartphones have to utilize a high-performance and
thus power-hungry GPU. For example, the Galaxy S5 LTE-
A utilizes an Adreno 420 GPU that dominates the system
power of more than 10 W in Figure 1.

Compromised user experience. The high GPU work-
load imposed by a high-resolution setting may saturate the
GPU and thus lead to a reduced frame rate. For example, we
ran the GFX Benchmark [1] on the Galaxy S5 LTE-A with
the native resolution (2560x1440 pixels), the frame rate of
the Manhattan scene is only 11.5 fps, far lower than the
default frame rate of 60 fps on Android. As shown in Fig-
ure 2, even if we reduce the resolution to 1280x720 pixels,
the frame rate only increases to 30.2 fps. When the frame
rate is too low (e.g., less than 30 fps), users may perceive
visible delay on the display. Thus, this high overhead of dis-
play may significantly impact apps performance and harm
the user experience.

Overheating. The high power consumption caused by a
high-resolution display also generates more heat energy. To
prevent overheating, smartphone systems will force to re-

28

Figure 2: GFX benchmark frame rate in different display
resolutions.

Figure 3: GPU frequency in running the Ridge Racer Slip-
stream game on Galaxy S5 LTE-A.

duce the operating frequencies of the CPU and GPU when
their temperatures exceed predefined thresholds. Such fre-
quency throttling would happen aggressively. Figure 3 shows
the GPU frequency in running the Ridge Racer Slipstream
game [4] on the Galaxy S5 LTE-A. Within 5 minutes, the
GPU frequency were quickly throttled from 600 MHz to 300
MHz. As a consequence, the gaming performance is signif-
icantly downgraded resulting in an unacceptable user expe-
rience.

To alleviate or eliminate these issues caused by extrav-
agant display resolutions, it is desirable for users to flexi-
bly change the display resolution of their smartphones when
needed. However, existing commercial smartphones includ-
ing iPhones, Windows Phones, and Android phones, always
run at the native display resolution and provide no way for
app developers or users to change the display resolution.

2.2 Goals
In this paper, we seek to enable users to change the display

resolution of their smartphones on-the-fly. The proposed
DRS system should work on existing commercial smartphones
and support all legacy applications without requiring any
changes or recompiling from applications, or re-building a
new ROM. The system should also be flexible enough for

various usage scenarios, and we below describe three exam-
ple scenarios.

Automatic power optimization. The DRS system
runs transparently in the background, automatically infers
the viewing distance, and decides the best display density for
maximum user experience but with minimal system power
consumption.

Run high-performance applications. Sometimes users
may want to run a high-performance application, e.g., the
latest version of a 3D game, but their last-generation old
phones cannot afford. With the DRS system, users can force
to reduce the rendering resolution and run it smoothly.

Extend battery life aggressively. Users may also use
our system to reduce the display resolution of their phones
in a proactive way. This would be particularly useful when
the battery is low but the user still wants to use the phone
for a longer time, e.g., to continue enjoying the game or
composing a long email. In this case, the user could tolerate
the compromised user experience to save power and extend
the battery life.

It is worth to note that we do not change the physical
resolution of smartphone displays. As a software solution,
we cannot change the number of hardware pixels of a smart-
phone display. What we change is the resolution of the user
interface (i.e., the final image generated to the system frame
buffer) to be displayed on the screen. After we reduce the
resolution, one pixel of the user-interface image is displayed
by multiple physical pixels of the display hardware. As the
physical pixels are very small, the users may still perceive
a smooth user experience. Consequently, we save power by
reducing the GPU computations in rendering the user in-
terface at a lower resolution, rather than by reducing the
power consumption of the display hardware. Unless other-
wise stated, in this paper, we refer “display resolution” as
the resolution of the content to be displayed on the screen.

On smartphones, GPU is mainly used for 3D and 2D
graphics acceleration. It is not only heavily used by high-
end 3D games but also widely used for rendering 2D user
interfaces in non-gaming apps and system UI. With the sup-
port of OpenCL [11] on smartphones, GPU can also be used
for general-purpose computing (GPGPU) such as acceler-
ating various machine-learning algorithms. In this paper,
we mainly focus on GPU-intensive gaming apps but we will
show that non-gaming apps can also benefit from our DRS
system to reduce their power consumption.

3. ANDROID GRAPHICS FUNDAMENTALS
In this section, we describe the background information on

Android graphics architecture and pipeline on top of which
we design our DRS system.

3.1 Android Graphics Overview
Figure 4 shows an overview of Android graphics archi-

tecture focusing on the data flow. On Android, OpenGL
ES/EGL1 is used for GPU-accelerated graphics. Applica-
tions call the OpenGL ES API [31] to use the GPU for graph-
ics processing and to draw their User Interface (UI). The
processing result is put into a graphics buffer in a structure

1OpenGL ES (Open Graphics Library for Embedded Sys-
tems) is the standard for embedded accelerated graphics [29].
OpenGL ES relies on the EGL (Embedded-System Graphics
Library) API [28].

29

Application 1

BufferQueue 1

Hardware Composer

OpenGL ES/EGL

Application 2

BufferQueue 2

OpenGL ES/EGL

SurfaceFlinger

DisplayFramebuffer

GPU

Figure 4: Android Graphics Overview.

glViewport
(256,256,512,512)

Transformation

(1.0, 1.0)

(-1.0, -1.0)

(0.0, 0.0)

(0, 0)

(1920, 1080)

(768, 768)

(256, 256)

Device Coordinates Window Coordinates

Figure 5: Transformation from normalized device coordi-
nates to window coordinates.

called BufferQueue. Each application has its own Buffer-
Queue that has three graphics buffers by default. The sys-
tem UI process also has a dedicated BufferQueue for drawing
the system UI elements such as the “navigation bar” at the
bottom of the screen and the “status bar” at the top of the
screen.

Android uses a system service called SurfaceFlinger to co-
ordinate all the graphics layers from the running applications
and the system UI process. SurfaceFlinger knows the layout
of all the UI windows in the system by working with the
WindowManager service. Smartphone displays typically re-
fresh at a rate of 60 fps and for each frame period the system
generates a VSYNC signal. When a VSYNC signal arrives,
SurfaceFlinger collects all the graphics buffers for visible lay-
ers and asks the Hardware Composer to composite all visible
layers together. Usually the Hardware Composer will do the
composition itself and generates the final graphics data into
the system Framebuffer for displaying on the screen. Some-
times the Hardware Composer may determine that the most
efficient way to composite the buffers is using the GPU and
thus asks SurfaceFlinger to call OpenGL ES API to use the
GPU for buffer composition. In this case, SurfaceFlinger also
generates GPU workload. After SurfaceFlinger consumes a
graphics buffer in a BufferQueue, the corresponding appli-
cation is notified for drawing a new frame.

3.2 Graphics Pipeline and Coordinates
Graphics processing consists of a sequence of steps called

graphics pipeline. A modern graphics pipeline may be very
complex and usually has more than ten stages. These stages
may be grouped into three high-level stages: vertex process-
ing, rasterization, and pixel processing.

In OpenGL ES, complex geometry scenes are represented
by basic vertexes and the relationships among them. For
example, three vertexes form a triangle face. The vertex-
processing stage processes vertices, typically performing op-
erations such as transformations and skinning [26]. Vertex
processing is done in a square, uniform coordinate system
called normalized device coordinate space. In this space, the
lower left corner corresponds to (-1, -1) and the upper right
corner corresponds to (1, 1), as shown on the left side in
Figure 5. After the vertex-processing stage, each vertex has
its own normalized device coordinates.

Then, the rasterization stage solves the relationships (lines,
triangles etc.) among these vertexes and maps these lines
and triangles from the continuous device-coordinate space
to a discrete window-pixel space as shown on the right side
in Figure 5. In OpenGL ES, this coordinate mapping is con-
figured by calling the glViewport() function that takes four
parameters to determine the affine transformation. As an
example shown in Figure 5, glViewport(256, 256, 512, 512)
maps the points (-1, -1) and (1, 1) in the normalized device
coordinates to the points (256, 256) and (256+512, 256+512)
in the window coordinates.

Finally, the pixel-processing stage generates per-pixel data
such as colors and depths for each pixel. This is done in the
window-coordinate space. Since OpenGL ES 2.0, vertex-
processing and pixel-processing become programmable. De-
velopers can define the functions of these two stages by using
shader programs. Typically, shader programs are written
using a specific programming language, OpenGL ES Shader
Language [30]. The source code can be compiled and linked
at runtime through OpenGL ES API calls.

For a given scene, if the display resolution increases, there
will be more pixels to compute, and thus the GPU work-
load of the two pixel-based stages of rasterization and pixel-
processing will increase accordingly. The GPU workload of
the vertex-processing stage will remain unchanged because
vertex-processing is done in the device-coordinate space which
is independent from the display resolution. Consequently,
DRS saves power by reducing the GPU workload generated
in the rasterization stage and the pixel-processing stage.

According to Figure 4, to reduce the resolution of dis-
play content, a simple approach is to let SurfaceFlinger scale
down the pixel resolution of the graphics buffers in the Buffer-
Queues. However, this approach cannot save power be-
cause the GPU workload required to generate those graph-
ics buffers remains the same and thus consumes the same
amount of power. Therefore, we have to seek for a new ap-
proach and next we describe how our approach works.

4. SYSTEM ARCHITECTURE
Enabling DRS on existing smartphones imposes a couple

of challenges. First, we must reduce the number of pixels
in all the pixel-related computations from the complex pro-
cedures of rasterization and pixel-processing involving many
OpenGL function calls. Second, OpenGL libraries are close
source and thus we cannot revise and re-compile the source
code to add new functionalities. And we cannot require re-
building a smartphone ROM or making application-specific
modifications. Third, we must design a lightweight approach
to decide the user-screen distance for automatic resolution
scaling.

To address the above challenges, we employ binary-rewriting
techniques that are able to hook and intercept the function

30

Application

BufferQueue

Hardware Composer

OpenGL ES/EGL

SurfaceFlinger

DisplayFramebuffer

Ultrasonic
Sensors

DRS Upper Layer

DRS Lower Layer

Config UI

Resolution
Controller

Figure 6: DRS System Architecture.

calls in existing binaries and add new functionalities. As a
result, we can enable DRS on commercial smartphones with-
out requiring any source-code level changes. Due to the com-
plexity of OpenGL rendering context, it is non-trivial to in-
tercept the right function calls to make DRS work correctly.
In Section 5 we describe the details. To detect the user-
screen distance, we design a lower-power ultrasonic based
approach and we provide more details in Section 6.

Figure 6 shows the architecture of our DRS system. To
enable resolution scaling, we add two new layers into the
existing system. The first layer is the DRS Upper Layer that
sits between the application layer and the OpenGL ES/EGL
layer. It intercepts the necessary OpenGL ES function calls
and EGL function calls to ensure that the graphics rendering
is done with a proper display resolution. It applies a scaling
factor to the parameters of the necessary OpenGL ES/EGL
function calls to transform the default display resolution to
a targeted one.

The second layer is the DRS Lower Layer that locates be-
tween the SurfaceFlinger layer and the Hardware Composer.
This layer intercepts the function calls passed to the Hard-
ware Composer to ensure that the composition is done with
a proper display resolution. This second layer is needed be-
cause after the DRS Upper Layer scales down the resolution,
we must scale the resolution up so that the rendered content
can be correctly displayed on the screen in the native dis-
play resolution. These two DRS layers synchronize with each
other to make sure they use the same targeted display reso-
lution for the same graphics buffer in the BufferQueue. This
is necessary because if a user changes the targeted display
resolution to a new value, the DRS Upper Layer will start
to use a new scaling factor to generate graphics buffers into
the BufferQueue. The DRS Lower Layer needs to make sure
that the older scaling factor is used for previously-generated
graphics buffers and the new scaling factor is applied only
to newly-generated graphics buffer during the composition.

To decide a proper targeted display resolution, we add
ultrasonic sensors into the system for instant and accurate
viewing-distance detection. Based on the measured viewing-
distance, the Resolution Controller calculates the best dis-
play resolution for maximum user experience and maximum
power optimization, and indicates the two DRS layers to do
scaling transformation for the calculated display resolution.
In addition, our DRS system also provide a UI for users to

glViewport
(0, 0, 1024, 1024)

glViewport
(0, 0, 512, 512)

(1.0, 1.0)

(-1.0, -1.0)

(0.0, 0.0)

(0, 0)

(1024, 1024)

Device Coordinates Window Coordinates
(In BufferQueue)

Step 1

(512, 512)Scale down 2x

Step 2

(0, 0)

(1024, 1024)

Window Coordinates
(In Framebuffer)

Scale up 2x

prepare (...)

prepare (...)

Figure 7: Scaling process for a default render target.

configure the system behaviors, e.g., enabling automatic res-
olution scaling based on the viewing-distance or setting to a
fixed display resolution.

5. DYNAMIC RESOLUTION SCALING
The key of DRS is to control the pixel-resolution of the

graphics results rendered by the GPU. In OpenGL ES, the
GPU-rendered graphics results are stored in a memory buffer
called render target. There are two types of render targets:
default render target and user-defined render target. A de-
fault render target is a graphics buffer in a BufferQueue as
shown in Figure 4. The size of a default render target is
typically equal to the native display resolution of the device
screen, as its content will be drawn on the device screen. In
applications that cannot support the native display resolu-
tion, they may use a smaller default render target. In this
case, the graphics buffers will be scaled up, e.g., by 2x, in
the composition stage of SurfaceFlinger, to fill up the whole
device screen.

User-defined render targets are usually used for off-screen
content rendering, to calculate the intermediate graphics re-
sults that will not be directly drawn on the device screen.
Instead, the content of a user-defined render target may be
used as the input to other render targets, e.g., to a default
render target for displaying on the device screen. User-
defined render targets are widely used in many graphics al-
gorithms such as high dynamic range [20], shadows [21] and
depth of field [47].

To achieve maximum power saving, our system support
DRS for both default render targets and user-defined ren-
der targets. For a given render target, we intercept all the
OpenGL ES/EGL API calls that manipulate the render tar-
get for correct resolution scaling. Next we describe the de-
tails.

5.1 DRS for Default Render Target
We design a two-step DRS scheme for default render tar-

gets, each step running in one of the two DRS layers, re-
spectively. Assume that the native display resolution of a
smartphone is 1024x1024 pixels and we want to scale down
the resolution by 2x to 512x512 pixels (i.e., the scaling fac-
tor is 0.5), Figure 7 shows the scaling process for a default
render target. In Step 1, we intercept all the glViewport()
function calls on the default render target and apply the
scaling factor of 0.5 to their parameters. That is, we convert
the function calls of glViewport(0, 0, 1024, 1024) to glView-
port(0, 0, 512, 512). As a result, the content of the default
render target is scaled down to 512x512 pixels as shown in
the middle of Figure 7. Then the GPU will do rasterization
and pixel processing using this small pixel block rather than

31

App. SurfaceFlinger

ID: X

ID: 1

ID:X

ID:X

ID:X

ID:1

ID:2

ID: 2

ID: 3

..
.

..
.

..
...
.

(a) Sync. of frame ID

App. SurfaceFlinger

ID: 3
0.8

ID: 4
0.5

ID: 1
0.8

ID: 2
0.8

ID: 3
0.8

ID: 4
0.5

ID: 5
0.5

ID: 5
0.5

ID: 6
0.5

..
.

..
.

..
...
.

(b) Sync. of scaling factor

Figure 8: Synchronizing frame ID and scaling factor between
application and SurfaceFlinger.

the original big one of 1024x1024. Consequently, the GPU
workload and thus its power consumption are reduced.

In Step 2, we intercept the prepare() function calls during
the composition stage in SurfaceFlinger. For each frame,
SurfaceFlinger uses the prepare() function to tell the Hard-
ware Composer how to do the composition. By changing the
parameters of the prepare() function call, we tell the Hard-
ware Composer to scale up the reduced pixel block back to
the original size so that it can be correctly displayed on the
device screen.

The scaling process in Figure 7 is simplified for easy il-
lustration. More functions must be intercepted to ensure
that all the function calls have a consistent OpenGL ES ren-
dering context. In Section 7, we list the functions that we
intercepted in our implementation.

Synchronization. The two steps must agree on the same
scaling factor to ensure that the final graphics UI is correctly
displayed on the device screen. As they run in different pro-
cesses, Step 1 in the application process and Step 2 in the
SurfaceFlinger process, a synchronization scheme is needed.
A simple approach is to extend the data structure of graphics
buffers in BufferQueue to add a new field for the scaling fac-
tor. However, this approach is not feasible without changing
and recompiling the source code of the Android graphics sys-
tem, because the graphics buffers are totally managed by the
Android graphics system and transparent from applications.
Thus, we design a new synchronization scheme as shown in
Figure 8.

The key idea of our scheme is to assign a unique ID to
each graphics buffer in a BufferQueue. We call it frame ID.
As we cannot change the data structure of a graphics buffer
to add a frame ID, the application and SurfaceFlinger main-
tain their own frame IDs separately. For a graphics buffer,
the same frame ID must be used by both the application and
SurfaceFlinger. To achieve it, the application initiates a pro-
cess to synchronize frame ID with SurfaceFlinger, as shown
in Figure 8a. The application holds its current graphics
buffer (dequeued from the BufferQueue) without adding it
back into the BufferQueue. The application assigns a frame
ID of 1 to the graphics buffer and sends a message to Sur-
faceFlinger and waits for a response. SurfaceFlinger contin-
ues to consume the graphics buffers in the BufferQueue of

the application as normal. After all the graphics buffers in
the BufferQueue are consumed, SurfaceFlinger sends a ready
message back to the application. Then the application re-
sumes to enqueue its graphics buffer into the BufferQueue as
normal and SurfaceFlinger assigns the same frame ID of 1 to
the first graphics buffer in the BufferQueue after the ready
message. Consequently, the application and SurfaceFlinger
are able to assign the same frame ID to all the graphics
buffers afterwards. As three graphics buffers are used in a
BufferQueue, with a frame rate of 60 fps, the application
waits for SurfaceFlinger to consume at most two graphics
buffers, i.e., up to 33 ms. Such a small latency is hardly
invisible to users, and we only need to do this synchroniza-
tion process once for each application launch. Therefore,
this frame-ID synchronization introduces negligible impact
on the user experience.

Figure 8b shows what happens when the scaling factor
is changed. The application simply applies the new scaling
factor to its current graphics buffer and sends a message to
tell SurfaceFlinger from which frame the scaling factor is
changes, and waits for a response. For the example in Fig-
ure 8b, the scaling factor is changed from 0.8 to 0.5 starting
from frame 4. As SurfaceFlinger uses the same frame ID,
it can reply a ready message immediately and use the new
scaling factor starting from frame 4. This process introduces
less than 1 ms extra latency. Thus, we are able to enable
per-frame, real-time resolution scaling.

5.2 DRS for User-Defined Render Target
Enabling DRS for a user-defined render target is more

complex than the case of a default render target. Similar
to a default graphics buffer in a BufferQueue that is man-
aged by the Android graphics system, a user-defined graphics
buffer is completely managed by OpenGL ES libraries and
we cannot directly change its content. Different from a de-
fault graphics buffer, a user-define graphics buffer is used in
a much more complex way. User-defined render targets are
typically used to create a variety of texture effects that can
be reused later, known as render to texture technique [46].
However, we cannot change the texture parameters such as
the texture size for resolution scaling without re-allocating
the memory of the graphics buffer. Furthermore, when a
user-defined render target is used as the input of another
rendering process, OpenGL ES system uses the relative co-
ordinates to locate points in a texture, which causes another
transformation from the relative coordinate to the absolute-
pixel coordinate. Maintaining those coordinate transforma-
tions in all the involved function calls can be very complex.

Therefore, we take a different approach to make DRS for
user-defined render targets easy. Instead of using the graph-
ics buffer managed by OpenGL ES system, we allocate a
new graphic buffer for a user-defined render target and use
the new buffer for the whole graphics-rendering pipeline. As
we can totally control the new buffer, we can easily set the
size and other necessary parameters for correct resolution
scaling. When the content of the render target is used by
other render targets, we replace the original graphics buffer
managed by OpenGL ES system with our new buffer. This
approach causes extra memory overhead. However, allocat-
ing a new buffer happens only when resolution scaling is
needed and the buffer is smaller than the default one for the
lower display resolution. Furthermore, latest smartphones

32

Original Exp. → New Exp.
gl FragCoord.x → (gl FragCoord.x * ScalingFactor Rec)
gl FragCoord.y → (gl FragCoord.y * ScaleFactor Rec)
gl FragCoord.xy → (gl FragCoord.xy * ScalingFactor Rec)

Table 1: Expression replacement in pixel-shader programs.

have a large memory size and thus this memory overhead
may not be significant.

As user-defined render targets are for off-screen rendering,
Step 2 in Figure 7 and thus the synchronization scheme in
Figure 8 are not required in DRS for user-defined render
targets.

5.3 Shader Program Issue
As aforementioned in Section 3, developers may use shader

programs that are compiled and shipped to the GPU by
OpenGL ES system at runtime. A shader program may ob-
tain the position of a point and use the returned position
values for further graphics processing. If the position of the
point is returned in relative values to the render target size,
it does not cause any problem. This is true for vertex pro-
cessing. However, for pixel processing, the returned values
are in the absolute-pixel coordinates. If we do resolution
scaling, the returned values will be wrong, making the ren-
dering result incorrect. This happens for both default render
targets and user-defined render targets.

To address this issue, we scan all the pixel-shader pro-
grams at the initialization stage. In OpenGL ES system, the
position of a point in window-pixel coordinates are stored in
a built-in variable gl FragCoord. We replace all the gl FragCoord
expressions in a pixel-shader program by multiplying the re-
ciprocal of the scaling factor (ScaleFactor Rec) used in our
resolution scaling, as shown in Table 1. We set ScaleFac-
tor Rec as an input variable of the shader program, thus
we can change its value on the fly, without re-compiling the
shader program. Consequently, we can guarantee the cor-
rectness of the pixel processing stage by assigning proper val-
ues to the ScaleFactor Rec, while display resolution chang-
ing.

6. DETERMINE DISPLAY RESOLUTION
In this section, we describe how to determine the best dis-

play resolution for maximum user experience and maximum
power saving. We utilize existing knowledge of the human
visual system to define the maximum observable display den-
sity based on the user-screen distance.

6.1 Human Visual Acuity and Display Density
Human visual acuity is typically measured by utilizing a

Snellen or Landolt C chart, on which multiple, similar char-
acters of set sizes are printed. Users are then asked to stand a
set distance from the chart and identify the smallest charac-
ters that are legible to them. In both cases, a human adult
is considered to have normal vision when they are able to
separate contours that are approximately 1.75 mm apart on
the chart when standing 20 feet away [42]. In order to con-
nect the vision ability and resolvable pixels conveniently, we
use angular resolving acuity to define the visual acuity. The
angular size of an object can be described using the equation

δ = 2 tan−1
(d

2D

)
(1)

Figure 9: Relationship among resolvable pixel number, user-
screen distance and user visual acuity.

where d is the actual size of an object, D is its distance from
the observer(both measured with the same unit), and δ is the
angular size of the object in radians. Based on Equation 1,
normal vision2 can be represented with an angular resolving
acuity of δnormal = 2.9×10−4 radians, and δoptimal = 1.45×
10−4 radians for optimal vision3.

For a specific device, we consider the number of pixels at
the longer side of the display as resolvable pixel number when
the pixel density of it can just meet the users’ visual acu-
ity. Obviously, resolvable pixel number will changed due to
different user-screen distance and different user visual acu-
ity. The relationship among resolvable pixel number, user-
screen distance and user visual acuity can be approximately
described using equation

N =
L

2D tan
(
δ
2

) (2)

where N is the resolvable pixel number, L is the length of the
longer side of the display, D is the user screen distance and
δ is the angular resolving acuity of the user. For example,
Figure 9 illustrates the variation of resolvable pixels number
with user screen distance for users with normal vision and
optimal vision on the Galaxy S5 LTE-A.

The Galaxy S5 LTE-A utilizes a 5.1-inch display with a
resolution of 2560x1440 pixels. It has 2560 pixels on the
longer side (4.44 inches). As shown in Figure 9, this high
display density surpasses the visual acuity of users with nor-
mal vision when the user-screen distance beyond 5.4 inches,
and 10.8 inches for users with optimal vision.

6.2 User-Screen Distance Detection
We adopt an ultrasonic-based approach for low-power user-

screen distance detection. We utilize an ultrasonic ranging
module HC-SR04 [5] that has an ultrasonic transmitter and
an ultrasonic receiver. The module measures the distance by

2Normal vision is commonly referred as 20/20 vision (vulgar
fraction expression) or 1.0 (decimal number expression).
3Optimal vision is commonly referred as 20/10 vision (vulgar
fraction expression) or 2.0 (decimal number expression).

33

3.7V Li-ion Battery

HC-SR04 Ultrasonic Ranging Module

MSP430 Microprocessor

Microphone Input Port

Figure 10: Ultrasonic-based hardware prototype for user-
screen distance detection.

sending a 40 KHz ultrasonic signal and measures the wait-
ing time until a reflected signal is detected by the ultrasonic
receiver. The measured distances are very accurate, with a
small error of only 3 mm, which is enough for our system.

Figure 10 shows our hardware prototype. We utilize an
ultra-low-power microprocessor (MSP430G2231) to control
the HC-SR04 module. The microprocessor simply encodes
and sends the distance values measured by the HC-SR04
module to the smartphone through the microphone input
headset port of the smartphone. At the smartphone side, the
Resolution Controller in Figure 6 samples and records the
microphone input data at 44.1 KHz rate, and then decodes
the input data to get a measured distance value. Based on
the distance value, the Resolution Controller can determine
the desirable display resolution according to Equation 2.

This ultrasonic-based approach consumes a very low power
less than 6 mW. For comparison, a camera-based approach
needs more than 100 mW [37], even without considering the
extra power consumption of the distance-estimation algo-
rithm. Furthermore, this ultrasonic based approach is con-
servative: its measured distance is never larger than the real
distance. This feature is desirable for our DRS system as
we want to do conservative resolution scaling for maximum
user experience.

7. IMPLEMENTATION
We have implemented our DRS prototype system on the

Galaxy S5 LTE-A [17] running a Samsung-customized OS
based Android 4.4.2. Like many other Android-based smart-
phones, the OS is not fully open source. In particular,
the OpenGL ES libraries are vendor specific and not open
source. Thus, we cannot modify the source code and re-build
the ROM. Instead, we utilize binary-rewriting techniques to
intercept the API calls.

API interception. As shown in Figure 11, there are
three different ways for an application to call an OpenGL
ES API function: link to the wrapper library and thus di-
rectly call the function (path 1); use the eglGetProcAddress

Applications

OpenGL ES Vendor Libraries

OpenGL ES
Wrapper Library EGL Library

Path 3Path 1 Path 2

dlopen()
dlsym()

eglGetProcAddress()

Figure 11: Three paths for applications to call OpenGL ES
API functions.

EGL Library
eglSwapBuffer eglGetProcAddress

OpenGL ES Library
glViewport glScissor
glClear glBindFramebuffer
glTexStorage2D glTexImage2D
glBindTexture glFramebufferTexture2D
glShaderSource glAttachShader
glUseProgram

HW Composer Driver Library and HAL Interface
prepare hw get module by class

Table 2: Intercepted functions.

function in EGL library to get a pointer to the function (path
2); and use the system dlopen and dlsym functions to dy-
namically load the OpenGL ES library (path 3). We handle
all these three cases. For path 1, we modify the system linker
program that is used to start application. In launching an
application, our new linker program scans all the intercepted
API calls and replaces the original functions using our own
functions. We implement all our interception functions in
a separate library. For path 2 and path 3, we intercept the
eglGetProcAddress, dlopen, and dlsym functions and change
the function address returned by them to re-direct to our
own interception function.

SurfaceFlinger call the prepare function in the hardware
composer driver through Android’s hardware abstract layer
(HAL) interface, which is packaged in the libhardware.so
shared library. Thus, we first intercept the interface function
(hw get module by class) in that library. Then, based on the
intercepted interface function, we intercept the prepare func-
tion in the hardware composer driver (hwcomposer.apq8084.so).

To implement the two DRS layers, in total we intercept
15 functions in the libraries of OpenGL ES/EGL, hardware
composer driver and HAL interface, as shown in Table 2.
The two DRS layers use Unix Domain Socket for inter pro-
cess communication (IPC), to implement the frame synchro-
nization.

Determine display resolution. We use a predefined
lookup table to determine the display resolution according
to the user-screen distance. For minimizing the overhead,
we use a set of discrete scaling factors rather than doing
continuous scaling. Table 3 shows the scaling factors used
in our implementation. When the distance is larger than
30 inches, we resume to the native display resolution for
conservative scaling. Such a large distance may indicate that

34

Scaling Factors 1.0 0.9 0.8 0.65 0.5 1.0
PPI 577 519 462 375 289 577

Range(inch) Start 0.0 12.0 13.5 16.6 21.5 30.0
Optimal Vision End 12.0 13.5 16.6 21.5 30.0 +∞

Range(inch) Start 0.0 6.0 6.7 8.3 10.8 30.0
Normal Vision End 6.0 6.7 8.3 10.8 30.0 +∞

Table 3: Scaling factors vs. distance range.

the user is out of the sensor’s detection range (±15 degrees),
which rarely happens in practice though.

We configure the ultrasonic sensor to detect the distance
for three times per second (3 Hz) and the Resolution Con-
troller reads the distance value from the sensor at a 2x sam-
pling rate of 6Hz. We smooth the detected distance values
using a one-second time window for stable resolution scaling.

Lines of code. In total our implementation consists of
4,280 lines of code, including the DRS Upper Layer and
Lower Layer, the Resolution Controller and its UI, the new
linker program, and the code running on the MSP430 mi-
croprocessor.

Implementation on the Nexus 6. To study whether
our implementation can work on other smartphones, we have
experimented on a Nexus 6 smartphone that uses the same
Adreno 420 GPU as the Galaxy S5 LTE-A but runs Android
5.0. Our implementation developed for the Galaxy S5 LTE-
A can seamlessly run on the Nexus 6, without requiring any
source-code changes, thanks to the common API layer of
OpenGL. We expect that our implementation may easily
work on more other Android smartphones.

8. EVALUATION
We evaluate our prototype system using a Galaxy S5 LTE-

A smartphone, in terms of the application coverage, power
savings in different display resolutions, system overhead, and
user feedback from a user study.

8.1 Application Coverage
To study how many OpenGL ES applications our DRS

system can support, we install 30 GPU-intensive applica-
tions (apps) on the S5 phone, including various 3D games
and graphics benchmarks. We choose these apps for their
large size and complex graphics computations. Thus, they
are supposed to be the hardest apps to support. 12 out of
the 30 apps have an installation package size larger than 500
MB. Two of them are extremely large, with an installation
package size larger than 1,500 MB. Our DRS system is able
to support all these 30 apps. That is, they run as normal
with our DRS system enabled, demonstrating that our sys-
tem has a very good app coverage.

8.2 Power Saving
From the 30 apps in the coverage test, we use 15 apps

including 14 games and a benchmark (names listed in Ta-
ble 4) to evaluate how much power can be saved in different
display resolutions. We select at least one game from each
game category and thus we think the games we use are rep-
resentative for various gaming behaviors. For each game, we
adopt a specific repeatable scene as the test case. For the
GFXBench benchmark, we test two different scenes: Man-
hattan and T-Rex. Thus, in total we have 16 test cases.

We run the test cases on the S5 phone and use a Monsoon
Power Monitor [3] to measure the system power. We turn

Application(Scene) Name
Scale Factor

0.9 0.8 0.65 0.5

Games
Badland 95.1% 91.2% 86.7% 83.5%

Hitman Sniper 94.0% 85.5% 80.6% 73.0%
Iron man 3 94.5% 90.1% 83.4% 75.9%

Leo’s Fotune 95.4% 92.8% 88.7% 84.3%
Minecraft PE 94.5% 90.4% 82.6% 76.1%

NFS Most Wanted 94.3% 89.6% 79.7% 72.3%
Over Kill 3 95.7% 92.0% 88.3% 82.5%

Ridge Racer Slipstream 94.5% 85.0% 76.8% 65.9%
Riptide GP2 95.3% 89.0% 77.5% 68.7%

Shine Runner 95.9% 90.1% 81.2% 74.2%
Smash Hit 93.9% 89.5% 81.1% 72.8%

Temple Run Brave 93.7% 85.6% 78.9% 71.2%
Tiny Troopers 2 94.4% 90.0% 82.7% 76.1%

Warships 95.3% 90.7% 84.3% 76.4%

Graphics Benchmark
GFX Bench Manhattan 84.2% 70.4% 56.7% 39.5%

GFX Bench T-Rex 85.9% 73.1% 57.6% 48.0%

Table 4: Normalized energy per frame of games and bench-
marks in different scaling factors.

the phone into airplane mode, disable unnecessary hardware
components such as GPS and camera, and set the backlight
brightness to 50%. We lock the GPU frequency to 500 MHz
to avoid the inference of DVFS of GPU. We cool down the
phone before each test to make sure that the GPU can keep
working at 500 MHz for at least 60 seconds. We repeat each
test for three times and report the average results.

We adopt the total system energy per frame (EPF) as the
metric to evaluate the power saving of our prototype sys-
tem. In order to conveniently compare the different results,
we normalize the results to the case of the native display
resolution. Table 4 shows the normalized EPF in different
scaling factors. The scaling factors are normalized to the
native display resolution, i.e., the scaling factor is 1.0 for
the full resolution. When we reduce the display resolution
by half (i.e., the scaling factor is 0.5, reducing the display
resolution from 2560x1440 pixels to 1280x720 pixels), on av-
erage for the 16 test cases, we can reduce the EPF by 30.1%,
ranging from 15.7% (in Leo’s Fortune) to 60.5% (in GFX-
Manhattan). For the 14 games, they always run at a fixed
frame rate no matter what value the scaling factor is. Thus,
the same amount of saving on power consumption can be
achieved in practice (24.9% if we only count the 14 games).

For the two GFXBench cases, as the benchmark always
tries to use up all the GPU processing capability, their power
consumptions remain almost the same in all the scaling fac-
tors. However, as we mentioned in Section 2, the resolution
can extremely influence the frame rate. For a smaller scaling
factor, they may run at a higher frame rate and thus provide
a better user experience.

Indeed, the display resolution of 1280x720 pixels (a.k.a
720p) is still pretty high and widely used on many main-
stream smartphones. If we reduce the display resolution fur-
ther, we may save more power. Furthermore, as smartphone
makers are continuing the arms race on even higher dis-
play resolutions (e.g., 4K, or 3840x2160 pixels), more power-
optimization opportunities can be provided by our DRS sys-
tem.

Benefits from DRS for user-defined render targets.
Figure 12 shows how much extra benefit can be achieved by
applying DRS to user-defined graphics buffers, for the two

35

Figure 12: Benefit from scaling for user-defined render tar-
get.

Application Name Scale Factor = 0.5
Adobe PDF Reader 90.6%

Dolphin Browser 92.4%
The Weather Channel 86.3%

Table 5: Normalized energy per frame of three non-gaming
applications with halved resolution.

benchmark cases and two games (Iron Man 3 and Ridge
Racer Slipstream), when the scaling factor is 0.5. On aver-
age, it improves the power/energy optimization room by an
extra 31.0%. The extra improvement for GFX-Manhattan is
as high as 52.1% as it extensively utilize user-defined graph-
ics buffers as the render targets. The extra saving for the two
apps are relatively small but still more than 14.1%. Thus,
user-defined render targets must be considered in scaling the
display resolution.

Power saving of DRS for non-gaming apps. Al-
though in this paper we focus on GPU-intensive apps, we
also evaluate how much power DRS can save for non-gaming
apps that are less GPU intensive than games. To this end,
we measure the power consumption of three popular non-
gaming apps, including Adobe PDF Reader, Dolphin Browser,
and The Weather Channel. We use monkeyrunner[2] to gen-
erate the same sets of touch events for repeatable experi-
ments including browsing a opened PDF file, scrolling the
web page of www.yahoo.com, and updating the weather in-
formation.

Table 5 shows the results when the resolution is halved,
compared to the full-resolution case. As expected, the sav-
ings are much smaller than the ones of games, only 10.2% on
average. This is because that these apps generate much less
GPU workload, compared to the games and graphics bench-
marks. However, 10.2% of saving is still valuable, given that
energy is a very scarce resource on smartphones.

In all the experiments we have conducted, we take a con-
servative approach, assuming that the user has the optimal
vision (i.e., 2.0 in decimal number expression). If a user has
the normal vision (i.e., 1.0 in decimal number expression),
our DRS system may further save more power.

8.3 System Overhead
Synchronization latency. As shown in Section 5, when

the scaling factor is changed, the DRS Upper Layer needs to
notify the DRS Lower Layer and block the graphics render-
ing for a while due to the communication delay. To quantify

the delay, we manually generate a large number of resolution-
scaling signals into our DRS system and measure the syn-
chronization latency. We run the test for 100 seconds. The
extra latency caused by each resolution-scaling ranges from
0.41 ms to 0.94 ms. It is small, compared to the frame du-
ration of 16.7 ms. Furthermore, in our implementation, we
change the screen resolution at most for three times per sec-
ond. Thus, such a small latency is negligible.

Memory overhead. Our system allocate extra memory
for handling user-defined render targets. To quantify the
memory overhead, we measure the extra memory used in the
four games/benchmarks in Figure 12. The memory overhead
depends on how many user-defined render targets are used.
The GFX:Manhattan test has a high memory overhead of
238.8 MB because it is a benchmark program using user-
defined render targets extensively. However, the memory
overheads of the two real games are not large: 59.7 MB
for Iron Man 3 and 33.6 MB for Ridge Racer Slipstream,
respectively. The GFX:T-Rex test also has a small memory
overhead of 59.7 MB.

Energy overhead. The extra hardware we used for user-
screen distance detection consumes extra energy. However,
the energy overhead is small. We use the Monsoon Power
Monitor [3] to measure the additional hardware’s power con-
sumption. Due to the power consumption of the additional
hardware is relatively stable and repeatable, we simply re-
gard the average power consumption of a long time (e.g., 60
seconds) as the power consumption of the additional hard-
ware. For a distance-detecting rate of 3 Hz, we measure that
the total power consumption of the ultrasonic sensor and the
MSP430 microprocessor is only 5-6 mW, depending on how
large the user-screen distance is. We imagine that in the fu-
ture, smartphones may integrate an internal ultrasonic sen-
sor to further reduce the power consumption of user-screen
detection, as the MSP430 is not needed anymore.

8.4 User Study
To study the impact of DRS on user experience, we con-

ducted a user study with 10 users. They are all young stu-
dents and all of them have at least normal vision.

In the study, we let each user play two games, one is
Smash Hit and the other is Temple Run Brave. For each
game, the users play it for 10 minutes. During the 10 min-
utes, we randomly select the first 5 minutes or the last 5
minutes to enable our DRS system without notifying the
users. We encourage the users to play the games in any way
they want, changing their postures freely and trying differ-
ent user-screen distances during the test. After the test, we
ask the users whether they felt any differences between the
first 5 minutes and the last 5 minutes. None of the 10 users
could tell the difference when our DRS system was turned
on or off, even though the resolution has been changed for
136 times on average for each user. This result demonstrates
that our DRS system is able to remain good user experience.

9. DISCUSSION
In this section, we discuss the limitations of our current

implementation and further work.

9.1 Limitations
Our implementation is limited in several aspects. First, it

only supports one app for resolution scaling. While for the
most of the time, smartphones typically runs only one front-

36

ground app, some latest smartphones such as the LG G3 [16]
allow running two apps simultaneously and show their UIs
side-by-side on the screen. Resolution scaling for multiple
apps can be supported by extending our current implemen-
tation so that SurfaceFlinger can connect to multiple apps
and do the frame synchronization with all of them. Consider
that multiple apps share the display simultaneously is a rare
case, the current system is already useful for many users.

Our implementation is also limited that it is only devel-
oped and tested on the Galaxy S5 LTE-A and the Nexus 6.
It is not clear whether it works for other types of Android
smartphones. Despite our API-interception based design is
general, more efforts are needed to study how to implement
the design and test it on more Android smartphones. Fur-
thermore, it may be worthy to study how to enable DRS
for other mobile OSes such as iOS and Windows Phone. It
may not be hard to implement DRS in iOS, since iOS uses
the same OpenGL ES as Android that is mostly platform
neutral. However, Windows Phone utilizes the Direct X [9]
as the graphic API, which needs extra engineering efforts.

Another limitation is that we only test the performance
of our DRS prototype on Adreno 420 GPU. It is not clear
how much energy we can save on other types of GPUs, with-
out porting our implementation on them. Mobile GPU’s
architectures vary significantly from vendors to vendors. In
terms of the graphic pipelines, ARM’s Mali GPU [7] adopts
TBR (Tiled Based Render) pipeline, PowerVR GPU [12]
and Nvidia’s Tegra series GPUs [13] adopt TBDR (Tailed
Based Deferred Render) pipeline, and Qualcomm’s Adreno
GPU [6] adopts a flex render pipeline that can support both
TBR and TBDR. In terms of the shader organization form,
PowerVR GPU, Mali GPU, and Adreno GPU adopt uni-
fied shader [14], while Tegra series GPUs adopt non-unified
shader. Luckily, although the architectures of different GPUs
are very different, they all share the same character that
the GPU workload is proportional to the number of pixels.
Meanwhile, several power models for mobile GPU [34, 33, 45]
have already pointed out that the GPU power consumption
and GPU workload approximately have the linear relation-
ship. Thus we believe our DRS system can achieve similar
performance on other GPUs as well as it does on Adreno
420.

In addition, we add extra hardware for user-instance de-
tection and the ultrasonic sensor is not very small. It may be
an issue how to integrate an ultrasonic sensor into a smart-
phone. Fortunately, the emerging miniaturization techniques
have already brought micrometer-level ultrasonic emitters [22]
and detectors [36] into reality. It is even possible to put an
ultrasonic detector into human body [39] for medical treat-
ment. Therefore, we expect that it is not hard to integrate
an ultrasonic sensor into new-generation smartphones, due
to the small size and low power.

9.2 Future Work
We plan to extend our current implementation to support

resolution scaling for multiple apps, and port our implemen-
tation onto more Android smartphones for more testing. In
addition, we also plan to consider other opportunities to fur-
ther reduce the power consumption of the GPU. Below we
describe some ideas.

Scene moving speed. Existing studies and our own user
study show that human visual-perceivable ability depends on
the moving speed of objects. If the objects in a scene move

fast, users are not as sensitive on the display resolution as
they are for a slowly-changing scene. This suggests another
angle besides user-screen distance for resolution scaling with-
out compromising the user experience. We may detect the
moving speed of a scene and apply more aggressive resolu-
tion scaling to save more power without compromising the
user experience.

Frame rate. Another factor tightly related to GPU work-
load is frame rate [25, 45, 43]. The higher frame rate, the
more GPU workload and thus the more power consumption.
Thus, we may consider frame rate scaling for more power
saving. The frame rate scaling also depends on the user-
screen distance. It would be interesting to see how the right
dynamic frame rate scaling strategy is designed given that
we have already a costless approach to detect user-screen
distance.

GPU frequency. We only qualitatively conclude that
resolution down-scaling can reduce the GPU workload, but
do not consider how it may affect GPU frequency. As a lower
workload may trigger the GPU frequency down-scaling, it
may be interesting to study how our DRS can work together
with GPU DVFS for more power saving.

10. RELATED WORK
Dynamic Resolution Scaling. Dynamic resolution scal-

ing is not a new technique, which has been already discussed
and recommended to application developers to achieve bet-
ter image quality and performance optimization [8]. Also
this technique has already been used in real games, e.g.,
Witcher 3 [15], to achieve the tradeoff between resolution
and framerate. However, these techniques are implemented
by application developers or implemented as plugin for spe-
cific applications [10]. In this paper, we reuse the term of
dynamic resolution scaling but our work is different from pre-
vious application-specific approaches. Specifically, we design
a system-level dynamic resolution scaling to optimize the
power consumption of smartphones. Our DRS system can
achieve per-frame resolution scaling for legacy applications
without any modifications of their source code and introduce
minimal system overhead.

Dalton et al. [24] proposed to use camera to detect the
presence of users to turn on or off the display to save power.
This work can be considered as an extreme case of DRS but
it does not provide a full DRS system and the camera-based
approach is less useful for smartphones due to the high power
consumption.

GPU power optimization. There have been related
works on GPU power modeling [32, 35, 33], power con-
sumption characters [38] and optimization mainly for desk-
top/server, which mainly resort to dynamic frequency scal-
ing [41, 35, 19, 27, 48]. These techniques are generally ap-
plicable to smartphones. Usually, GPU frequency scaling is
controlled in the vendor-provided drivers, and it is hard to
be configured by applications even at the operating system
level. In this paper, we optimize GPU power from another
angle via dynamic resolution scaling.

Analysis on the PC gaming experience is presented [23,
40] when display resolution and refresh rate is changed. It
is reported that lower frame rates may lead to system power
reduction [25, 45, 43]. In this paper, we further give the
detailed quantitative analysis among GPU power and dis-
play resolution, and present specific techniques on dynamic
resolution scaling without changing the app source code.

37

Tradeoff between power saving and user experi-
ence. Techniques such as frequency scaling usually do not
consider the user experience, either poor user experience
with aggressive frequency scaling or poor power saving with
conservative frequency scaling. Huge opportunities exist if
we take into consideration the tradeoff between power sav-
ing and user experience. Previous analysis only discusses
the relationship between power saving and display resolution
scaling [23, 40] or frame rate scaling [25, 45, 43], however,
they did not discuss the relationship between user experience
and resolution or frame rate scaling. In this paper, quanti-
tative analysis between resolution and user-screen distance
is presented with user experience preserved, and the anal-
ysis framework can also guide app developers or users to
decide the right tradeoff if they tolerate certain degree of
downgraded user experience.

Nixon et al. [44] reported that the display on some mod-
ern devices already exceeds human perceptive capabilities
and studied the relationship between GPU power and dis-
play resolution on the Nexus 4 and 5. They share the same
motivation with us. However, they did not provide any end-
to-end implementation and evaluation.

11. CONCLUSION
In this paper, we have built the first end-to-end DRS sys-

tem for smartphones. By intercepting the function calls
of OpenGL ES/EGL, our system requires no changes from
applications and is able to work on existing smartphones
without re-building a new ROM. We design an ultrasonic-
based, low-power approach for user-screen distance detec-
tion. Based on the measured user-screen distance, our sys-
tem can enable automatic resolution scaling for maximum
user experience and power saving. Experimental results and
user feedback demonstrate that our system is able to sup-
port a large set of real applications, provide per-frame and
real-time resolution scaling with low system overhead, and
retain good user experience.

ACKNOWLEDGEMENTS
We thank our anonymous reviewers and shepherd for their
insightful and constructive comments that helped us improve
this paper. We also thank Kent W. Nixon for his help on
the early investigations and experiments of this work.

12. REFERENCES
[1] GFXBench 3.0, Unified cross-platform 3D graphics

benchmark . http://gfxbench.com/.

[2] Monkeyrunner. http://developer.android.com/
tools/help/monkeyrunner_concepts.html.

[3] Monsoon Power Monitor. https:
//www.msoon.com/LabEquipment/PowerMonitor/.

[4] RidgeRacerSlipstream. http://www.ign.com/prime/
promo/ridge-racer-slipstream-free.

[5] Ultrasonic Ranging Module HC - SR04.
http://www.micropik.com/PDF/HCSR04.pdf.

[6] Adreno GPU.
https://developer.qualcomm.com/software/adreno-

gpu-sdk/gpu,
2015.

[7] ARM Mali Graphics.
http://www.arm.com/products/multimedia/mali-

graphics-hardware/,
2015.

[8] Dynamic Resolution Rendering.
https://software.intel.com/en-us/articles/

dynamic-resolution-rendering-article, 2015.

[9] Graphics and Gaming.
https://msdn.microsoft.com/en-us/library/

windows/desktop/ee663279(v=vs.85).aspx, 2015.

[10] Hialgo Boost.
http://www.hialgo.com/TechnologyBOOST.html,
2015.

[11] OpenCL - the open standard for parallel programming
of heterogeneous systems.
https://www.khronos.org/opencl/, 2015.

[12] PowerVR GPU.
http://www.imgtec.com/powervr/graphics.asp,
2015.

[13] Tegra GPU. http://www.nvidia.com/object/tegra-
4-processor.html,
2015.

[14] Unified Shader Model.
https://en.wikipedia.org/wiki/Unified_shader_model,
2015.

[15] Witcher 3 uses dynamic resolution scaling on Xbox
One to hit 1080p.
http://www.extremetech.com/gaming/205487-

witcher-3-uses-dynamic-resolution-

scaling-on-xbox-one-to-hit-1080p, 2015.

[16] LG G3. http://www.lg.com/us/mobile-phones/g3,
Feb. 2015.

[17] Samsung Galaxy S5 LTE-A.
http://www.samsung.com/us/news/23327, Feb. 2015.

[18] Apple iPhone. http://www.apple.com/iphone/
features/retina-display.html, Jun. 2010.

[19] Y. Abe, H. Sasaki, M. Peres, K. Inoue, K. Murakami,
and S. Kato. Power and performance analysis of
gpu-accelerated systems. In Proceedings of the 2012
USENIX conference on Power-Aware Computing and
Systems, ser. HotPower, volume 12, pages 10–10, 2012.

[20] A. O. Akyüz. High dynamic range imaging pipeline on
the gpu. Journal of Real-Time Image Processing,
10(2):273–287, 2012.

[21] L. Bavoil. Advanced soft shadow mapping techniques.
In Presentation at the game developers conference,
volume 2008, page 11, 2008.

[22] L. Belsito, E. Vannacci, F. Mancarella, M. Ferri, G. P.
Veronese, E. Biagi, and A. Roncaglia. Fabrication of
fiber-optic broadband ultrasound emitters by
micro-opto-mechanical technology. Journal of
Micromechanics and Microengineering, 24(8):085003,
2014.

[23] M. Claypool and K. Claypool. Perspectives, frame
rates and resolutions: it’s all in the game. In
Proceedings of the 4th International Conference on
Foundations of Digital Games, pages 42–49. ACM,
2009.

[24] A. B. Dalton and C. S. Ellis. Sensing user intention
and context for energy management. In HotOS, pages
151–156, 2003.

[25] M. Dong and L. Zhong. Power modeling and
optimization for oled displays. Mobile Computing,
IEEE Transactions on, 11(9):1587–1599, 2012.

38

[26] R. Fernando. Chapter 3 and 4. In GPU gems.
Addison-Wesley Professional, 2004.

[27] R. Ge, R. Vogt, J. Majumder, A. Alam, M. Burtscher,
and Z. Zong. Effects of dynamic voltage and frequency
scaling on a k20 gpu. In Parallel Processing (ICPP),
2013 42nd International Conference on, pages
826–833. IEEE, 2013.

[28] K. Group. Khronos Native Platform Graphics
Interface (EGL Version 1.4 - February 11, 2013).
https://www.khronos.org/registry/egl/specs/

eglspec.1.4.20130211.pdf, Feb. 2013.

[29] K. Group. OpenGL ES – The Standard for Embedded
Accelerated 3D Graphics.
https://www.khronos.org/opengles/, Jan. 2013.

[30] K. Group. The OpenGL ES Shading Language
(Specification). https://www.khronos.org/files/
opengles_shading_language.pdf, May. 2009.

[31] K. Group. OpenGL ES Common Profile Specification
Version 2.0.25 (Full Specification).
https://www.khronos.org/registry/gles/specs/2.

0/es_full_spec_2.0.25.pdf, Nov. 2010.

[32] S. Hong and H. Kim. An integrated gpu power and
performance model. In ACM SIGARCH Computer
Architecture News, volume 38, pages 280–289. ACM,
2010.

[33] T. Jin, S. He, and Y. Liu. Towards accurate gpu power
modeling for smartphones. In Proceedings of the 2nd
Workshop on Mobile Gaming, pages 7–11. ACM, 2015.

[34] Y. G. Kim, M. Kim, J. M. Kim, M. Sung, and S. W.
Chung. A novel gpu power model for accurate
smartphone power breakdown. ETRI Journal,
37(1):157–164, 2015.

[35] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani,
N. S. Kim, T. M. Aamodt, and V. J. Reddi.
Gpuwattch: enabling energy optimizations in gpgpus.
ACM SIGARCH Computer Architecture News,
41(3):487–498, 2013.

[36] H. Li, B. Dong, Z. Zhang, H. F. Zhang, and C. Sun. A
transparent broadband ultrasonic detector based on an
optical micro-ring resonator for photoacoustic
microscopy. Scientific reports, 4, 2014.

[37] R. LiKamWa, B. Priyantha, M. Philipose, L. Zhong,
and P. Bahl. Energy characterization and optimization
of image sensing toward continuous mobile vision. In
Proceeding of the 11th annual international conference

on Mobile systems, applications, and services, pages
69–82. ACM, 2013.

[38] X. Ma, Z. Deng, M. Dong, and L. Zhong.
Characterizing the performance and power
consumption of 3d mobile games. Computer,
(4):76–82, 2013.

[39] T. Maleki, N. Cao, S. H. Song, C. Kao, S.-C. A. Ko,
and B. Ziaie. An ultrasonically powered implantable
micro-oxygen generator (imog). Biomedical
Engineering, IEEE Transactions on, 58(11):3104–3111,
2011.

[40] J. D. McCarthy, M. A. Sasse, and D. Miras. Sharp or
smooth?: comparing the effects of quantization vs.
frame rate for streamed video. In Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 535–542. ACM, 2004.

[41] X. Mei, L. S. Yung, K. Zhao, and X. Chu. A
measurement study of gpu dvfs on energy
conservation. In Proceedings of the Workshop on
Power-Aware Computing and Systems, page 10. ACM,
2013.

[42] E. Messina. Standards for visual acuity. National
Institute for Standards and Technology, 2006.

[43] B. Mochocki, K. Lahiri, and S. Cadambi. Power
analysis of mobile 3d graphics. In Proceedings of the
conference on Design, automation and test in Europe:
Proceedings, pages 502–507. European Design and
Automation Association, 2006.

[44] K. W. Nixon, X. Chen, H. Zhou, Y. Liu, and Y. Chen.
Mobile gpu power consumption reduction via dynamic
resolution and frame rate scaling. In Proceedings of the
6th USENIX conference on Power-Aware Computing
and Systems, pages 5–5. USENIX Association, 2014.

[45] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra.
Integrated cpu-gpu power management for 3d mobile
games. In Design Automation Conference (DAC),
2014 51st ACM/EDAC/IEEE, pages 1–6. IEEE, 2014.

[46] C. Wynn. Opengl render-to-texture. GDC. NVIDIA
Corporation, 2002.

[47] T.-T. Yu. Depth of field implementation with opengl.
Journal of Computing Sciences in Colleges,
20(1):136–146, 2004.

[48] Y. Zhu, A. Srikanth, J. Leng, and V. J. Reddi.
Exploiting webpage characteristics for energy-efficient
mobile web browsing. Computer Architecture Letters,
13(1):33–36, 2014.

39

