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(b) defocus map(a) input (c) our result with magnified defocus

Figure 1: Our technique magnifies defocus given a single image. Our defocus map characterizes blurriness at edges. This enables shallow
depth of field effects by magnifying existing defocus. The input photo was taken by a Canon PowerShot A80, a point-and-shoot camera with a
sensor size of7.18×5.32mm, and a7.8 mm lens at f/2.8.

Abstract

A blurry background due to shallow depth of field is often desired for photographs such as portraits, but, unfortu-
nately, small point-and-shoot cameras do not permit enough defocus because of the small diameter of their lenses.
We present an image-processing technique that increases the defocus in an image to simulate the shallow depth of
field of a lens with a larger aperture.
Our technique estimates the spatially-varying amount of blur over the image, and then uses a simple image-based
technique to increase defocus. We first estimate the size of the blur kernel at edges and then propagate this defocus
measure over the image. Using our defocus map, we magnify the existing blurriness, which means that we blur
blurry regions and keep sharp regions sharp. In contrast to more difficult problems such as depth from defocus,
we do not require precise depth estimation and do not need to disambiguate textureless regions.

Categories and Subject Descriptors(according to ACM CCS): I.3.8 [Computer Graphics]: Applications

1. Introduction

Sharp foreground with blurred background is preferred in
many types of photography such as portraits. But point-and-
shoot cameras have small lenses and sensors, which fun-
damentally limits their ability to defocus the background
and generate shallow depth of field. We present an image-
processing technique that magnifies existing defocus given a
single photo.

For a given field of view and subject distance, depth of
field is directly related to the physical diameter of the lens

aperture. This means that compact cameras that rely on
smaller sensors – and therefore on smaller lenses – yield
less defocus and cannot blur the background the way a large-
aperture single-lens reflex (SLR) lens can (Fig.2). While a
smaller amount of defocus (larger depth of field) can be de-
sirable, for example in landscape or macro photography, it is
often a serious limitation for portraits and creative photog-
raphy. Users of compact cameras often complain that their
portraits do not look “artistic” and lack the clarity afforded
by defocused backgrounds. In fact, the quality of a blurry
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background, calledbokeh, has a real cult following among
some photographers.

(b) small sensor (7.18 x 5.32 mm)(a) large sensor (22.2 x 14.8 mm)

Figure 2: Given the same field of view and the same f-
number (f/2.8), a large sensor (a) yields more defocus than
a small sensor (b) does.

Our technique takes a single input image where the depth
of field is too large and increases the amount of defocus
present in out-of-focus regions. That is, our goal is oppo-
site to that of work that seeks to create images that are sharp
everywhere.

Our approach first estimates the spatially-varying amount
of blur over the image, and then uses an off-the-shelf image-
based technique to increase defocus. We first estimate the
size of the blur kernel at edges, building on the method by
Elder and Zucker [EZ98], and then propagate this defocus
measure over the image with a non-homogeneous optimiza-
tion. Using our defocus map, we can magnify the existing
blurriness, which means that we further blur blurry regions
and keep sharp regions sharp.

Note that in contrast to more difficult problems such as
depth from defocus, we do not require precise depth estima-
tion and do not need to accurately disambiguate smooth re-
gions of the image, since such regions are not much affected
by extra blur due to defocus. The fundamental ambiguity be-
tween out-of-focus edges and originally smooth edges is out
of the scope of our work. We also do not need to disam-
biguate between objects in front and behind the plane of fo-
cus. We simply compute the amount of blur and increase it.
While our method does not produce outputs that perfectly
matches images captured with a larger-aperture lens, it qual-
itatively reproduces the amount of defocus. We refer inter-
ested readers to AppendixA where we review thin-lens op-
tics and defocus.

1.1. Related work

Defocus effects have been an interest of the Computer Vi-
sion community in the context of recovering 3D from 2D.
Camera focus and defocus have been used to reconstruct
depth or 3D scenes from multiple images: depth from fo-
cus [Hor68,DW88,EL93,NN94,HK06] and depth of defo-
cus [Pen87,EL93,WN98,FS02,JF02,FS05]. These methods
use multiple images with different focus settings and esti-
mate the corresponding depth for each pixel. They have to

know the focus distance and focal length to computer the
depth map. In contrast, we do not estimate the depth but the
blur kernel. We want to treat this problem without the help
of any special camera settings, but only with image post-
processing techniques.

Image processing methods have been introduced to mod-
ify defocus effects without reconstructing depth. Eltoukhy
and Kavusi [EK03] use multiple photos with different focus
settings and fuse them to produce an image with extended
depth of field. Özkan et al. [OTS94] and Trussell and Fo-
gel [TF92] have developed a system to restore space-varying
blurred images and Reeves and Mersereau [RM92] find a
blur model to restore blurred images. This is the opposite of
what we want to do. They want to restore blurred images,
while we want to increase existing blurriness.

Kubota and Aizawa [KA05] use linear filters to recon-
struct arbitrarily focused images from two differently fo-
cused images. On the contrary, we want to modify defocus
effects only with a single image. Lai et al. [LFC92] use a sin-
gle image to estimate the defocus kernel and corresponding
depth. But their method only works on an image composed
of straight lines at a spatially fixed depth.

Given an image with a corresponding depth map, depth
of field can be approximated using a spatially-varying blur,
e.g. [PC81,BHK∗03], but note that special attention must be
paid to occlusion boundaries [BTCH05]. Similar techniques
are now available in commercial software such as AdobeR©
PhotoshopR© (lens blur) and Depth of Field Generator Pro
(dofpro.com). In our work we simply use these features and
instead of providing a depth map, we provide a blurriness
map estimated from the photo. While the amount of blurri-
ness is only related to depth and is not strictly the same as
depth, we have found that the results qualitatively achieve
the desired effect and correctly increase defocus where ap-
propriate. Note that a simple remapping of blurriness would
yield a map that resembles more closely a depth map.

2. Overview of Our Approach

For each pixel, we estimate the spatially-varying amount of
blur. We call our blur estimation thedefocus map. We es-
timate the defocus map in two steps. First, we estimate the
amount of blur at edges. Then, we propagate this blur mea-
sure to the rest of the image.

We model an edge as a step function and the blur of this
edge as a Gaussian blurring kernel. We adapt the method
by Elder and Zucker [EZ98], which uses multiscale filter re-
sponses to determine the size of this kernel. We add a cross-
bilateral filtering step [ED04,PAH∗04] to remove outlier es-
timates.

We propagate the blur measure using non-homogeneous
optimization [LLW04]. Our assumption is that blurriness
varies smoothly over the image except where the color is dis-
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continuous. We propagate blurriness measure to the neigh-
bors with similar intensity and color.

We can use our defocus map to magnify defocus effects.
We blur each pixel according to its estimated blurriness.
If we double our defocus map, it doubles defocus effects
as if the image is taken with an aperture that is twice as
large. In this paper, our results are generated using AdobeR©
PhotoshopR© lens blur with our defocus map as a depth map.

3. Blur Estimation

The amount of blur can be estimated reliably only in areas of
an image that has significant frequency content. This is why
we focus on edges. However, we need to extract and ana-
lyze edges with various levels of blurriness, which makes the
technique by Elder and Zucker [EZ98] particularly appro-
priate. We refine their technique by introducing the explicit
fitting of a blurred edge model that is more robust than the
original technique. Also, our refinement step reduce outliers
due to blurry features such as soft shadows.

3.1. Detect blurred edges

Following Elder and Zucker, we model an edge as a step
function in intensity, and the blur of this edge as a Gaussian
blurring kernel:

g(x,y,σb) =
1

2πσ2
b

exp(−(x2 +y2)/2σ2
b ) (1)

whereσb denotes the scale of the blur, and is what we want
to estimate.

For each pixel, Elder and Zucker determine the right
scale for edge detection using the noise thresholds. More
details can be found in the AppendixB. We usedσ1 ∈
{64 32 16 8 4 2 1 0.5} pixels andσ2∈{32 16 8 4 2 1 0.5} pix-
els. We apply a strict threshold,sn = 2.5 andαI = 0.0001%,
to achieve very reliable blur estimation.

3.2. Estimate blur

In their technique, Elder and Zucker estimate the amount
of blur by measuring the distanced between second deriva-
tive extrema of opposite sign in the gradient direction. This
directly follows from the analytical derivation of a perfect
step edge convolved with a Gaussian, as shown in their pa-
per [EZ98].

However, we have found that, for real images, the local-
ization of the second-derivative extrema of the edge using
the zero-crossing of the third derivative is not robust, which
is acknowledged in their article. This leads to errors in the
estimation of the blur amount. Therefore, instead of measur-
ing the distance between actual extrema, we fit the multiscale
models of the second derivative Gaussian filter response to
the pixel responses and find the distance with a least square

blurred edge

2nd derivative 

response model

d
0

Figure 3: The model for the distance between second-
derivative extrema. We numerically fit this response model
with variousd around the edge pixel and along the gradi-
ent direction to find the distanced with a least square fitting
error.

fitting error. Given the estimated distance, we compute the
size of blur kernelσb using Equation2 (d). This provides us
with a sparse set of blur measuresBM at edge pixels in the
image.

We fit the response model using a brute-force strategy. We
fit the response model with a number of values for distance
d (Fig. 3) to a window around the edge pixel and along the
gradient direction. Elder and Zucker use an edge pixel at the
dark side of the edge. But we found that using both bright
and dark sides of the edge generates more reliable defocus
maps. We use window sizes from3×3 to 71×71. Given a
blurred step edge along the y axis of amplitudeA and blur
parameterσb, the expected response to the second derivative
filter is modeled by:

rx
2(x,y,σ2) = Au(x)∗gx

2(x,y,σ
2
b +σ2

2 ) (2a)

=
−Ax√

2π(σ2
b +σ2

2 )3/2
exp(−x2/2(σ2

b +σ2
2 ))

(2b)

=
−Ax√

2π(d/2)3
exp(−x2/2(d/2)2) (2c)

with: (d/2)2 = σ2
b +σ2

2 (2d)

whereu(x) is a step function. We deriveA from the local
extrema within each window.

Figure 4 shows that our approach can successfully es-
timate blur measures while the zero-crossing of the third
derivative cannot localize the second derivative extrema.

3.3. Refine blur estimation

Depth of field effects are not the only cause of edge blur-
riness in images and phenomena such as soft shadows and
glossy highlights can result in erroneous estimates of defo-
cus.

We suppress the influence of these outliers by smoothing
the blur measure with an edge-preserving filter. We apply
cross bilateral filtering [ED04,PAH∗04] to our sparse set of
blur measures,BM. The cross-bilateral filtering output is a
weighted mean of its neighbors where the weights decrease
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(a) input (c) the zero-crossing of 

the third derivative

(d) blur measure 

using our approach

(b) actual blur sigma

Figure 4: The zero-crossing of the third derivative (c) is greatly affected by neighboring edges and cannot localize the second
derivative extrema. In contrast, our approach (d) can estimate the blur sigma that is close to the actual blur sigma (b). The
input (a) is generated using the blur sigma (b).

with the distance in space and with the range difference of a
reference image.

In addition to the original cross bilateral filtering weights,
we use a sharpness bias,b(BM) = exp(−BM/2). The sharp-
ness bias corrects blur measures in soft shadows and glossy
highlights that are higher than they are supposed to be.

With gσ (x) = exp(−x2/2σ2), a Gaussian function, we de-
fine the biased cross bilateral filtering of a sparse set of blur
measures,BM at an edge pixelp as the following:

bCBF(BM)p =
1
k ∑

q∈BM
wpq b(BMq) BMq (3a)

with: wpq ∝ ∑
i∈{R,G,B}

gσs(||p−q||) gσr (|Ci(p)−Ci(q)|)

(3b)

and k = ∑
q∈BM

wpq b(BMq) (3c)

whereσs controls the spatial neighborhood, andσr the
influence of the intensity difference, andk normalizes the
weights. We use the RGB color channels of the original input
image as the reference and setσr = 10%of the image range
and σs = 10% of the image size. This refinement process
does not generate much change but refines a few outliers as
shown in Figure5. The cross bilateral filtering refines out-
liers such as yellow and green measures (b) in the focused
regions to be blue (c).

4. Blur Propagation

Our blur estimation provides blur kernels only at edges
and we need to propagate this blur measure. We use non-
homogeneous optimization [LLW04] and assume that the
amount of defocus is smooth when intensity and color are
smooth.

4.1. Propagate using optimization

Our propagation is inspired by thecolorization paper by
Levin et al. [LLW04]. We impose the constraint that neigh-
boring pixelsp,q have similar blurriness if they have similar

intensities and colors. We minimize the difference between
the blurrinessB(p) and a weighted average of blurriness of
neighboring pixels:

E(B) = ∑(B(p)− ∑
q∈N(p)

wpqB(q))2 (4a)

+ ∑αp (B(p)−BM(p))2 (4b)

with: wpq ∝ ∑
i∈{R,G,B}

exp(
−(Ci(p)−Ci(q))2

2σ2
ip

) (4c)

whereσp is the standard deviation of the intensities and col-
ors of neiboring pixels in a window aroundp. The window
size used is7×7. We have experimented both with setting
the second term as hard constraints vs. as a quadratic data
term, and have found that the latter is more robust to poten-
tial remaining errors in the blur measure.

We solve this optimization problem by solving the cor-
responding sparse linear system. Figure6 shows the defocus
map for various values ofα. We useα = 0.5 for edge pixels.

5. Results

We have implemented our blur estimation using Matlab. Our
defocus map enables defocus magnification. We rely on Pho-
toshop’s lens blur to compute the defocused output. We crop
the upper and lower5% of the defocus map and clamp its
minimum value to 0. In addition, we apply Gaussian blur to
the defocus map to use it as a depth map. The Gaussian blur
radius is set to0.5%of the image size.

Using our defocus map, we can simulate the effect of dou-
bling the aperture size. Figure7 compares two input defocus
maps of two images with the f-number 8 (a) and 4 (b). As
we double the defocus map (c) of the f/8 image, we obtain a
result similar to the defocus map (d) of the f/4 image. While
the simulated defocused map (e) is not exactly the same as
the real map (d), the output image with magnified defocus
(f) is visually close to the f/4 photograph (b).

In Figure 11, we show the results of using our defocus
map to magnify the existing defocus effects in the original
images. The results preserve the sharpness of the focused re-
gions but increase the blurriness of the out-of-focus regions.
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(b) blur measure before 

the cross bilateral filtering

(c) blur measure after  

the cross bilateral filtering

(a) input
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Figure 5: Blur measure before and after the cross bilateral filtering. The cross bilateral filtering refines outliers such as yellow
and green measures (b), which mean blurry, in the focused regions to be blue measures (c), which means sharp. The blur
measures are downsampled using nearest neighbor for better illustration.

α = 0.1 α = 0.2 α = 0.5 α = 1
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Figure 6: Defocus map with variousα. α controls the balance between the smoothness penalty term and data term in Equation
4. We useα = 0.5 for edge pixels andα = 0 for non-edge pixels, which do not have values. In this plot, red means blurry region
and blue means sharp regions. The input image is Figure5.

In addition, while our defocus map is not really a depth
map, it is sometimes possible to use it to refocus a photo-
graph resembling the effect of Ng et al. [NLB∗05] and Isak-
sen et al. [IMG00]. Figure8 shows a result where our defo-
cus magnification is applied with a virtual focusing distance.
Before we apply lens blur, we performed deconvolution us-
ing our defocus map. The result looks as if the foreground is
focused.

Figure 1 and8 and the two rows in the middle of Figure
11were taken by a Canon PowerShot A80, a point-and-shoot
camera with a sensor size of7.18×5.32mm, and a7.8 mm
lens at f/2.8. Figure5 and7 were taken by a Canon 1D Mark
II with a sensor size of28.7× 19.1 mm and a Canon EF
85mm f/1.2L lens. The first input of Figure11 was taken
by a Nikon D50 with a sensor size of23.7×15.6 mm and a
180.0 mm lens at f/4.8. The two rows at the bottom of Figure
11are frombigfoto.com.

5.1. Discussion

Our defocus maps are different from their actual depth maps
mostly in smooth regions of the image that are not much

affected by extra blur due to defocus. For example, the gra-
dients in human skin are interpreted as blurry regions. How-
ever, such artifacts do not cause visual defects in the results
with magnified defocus. You can notice some of these issues
in Figure11.

A limitation of our technique is that occlusion boundaries
that separate sharp foreground and blurry background are
sometimes erroneously blurred (e.g. the top of the Teddy
bear in Fig. 1)

6. Conclusions

We have presented an image-processing technique to mag-
nify the amount of defocus due to lens aperture. Given a sin-
gle image, we estimate the size of the blur kernel at edges
and propagate the blur measure to the overall image. We use
a multiscale edge detector and model fitting to estimate the
size of blur kernel. We propagate the blur measure assum-
ing that blurriness is smooth where intensity and color are
similar.

Unlike more difficult problems such as depth from defo-
cus, we do not need to generate an accurate depth map and
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(c) f/8 defocus map(a) f/8 input (b) f/4 input (d) f/4 defocus map (e) doubling (c) (f) our synthesized result

using (a) and (e)

Figure 7: Doubled defocus. Doubling the defocus map generates a effect of doubling the aperture size. As we double the defocus
map (c) of the f/8 image, we obtain a result similar to the defocus map (d) of the f/4 image. While the simulated defocused map
(e) is not exactly the same as the real map (d), the output image with magnified defocus (f) is visually close to the f/4 photograph
(b).

(b) defocus map (c) refocusing result using (a) and (b)(a) input

Figure 8: Using our defocus map, we can synthesize refocusing effects. We perform deconvolution using our defocus map (b)
and apply lens blur. The result (c) looks as if the foreground is focused. The input photo was taken by a Canon PowerShot A80,
a point-and-shoot camera with a sensor size of7.18×5.32mm, and a7.8 mm lens at f/2.8.

do not need to disambiguate textureless regions. Our defocus
map focuses on edges and texture regions that are visually
affected by defocusing and approximates textureless regions
without causing visual defects.

In future work, we want to extend this work to video
inputs where the effect of motion blur needs to be distin-
guished from depth of field. Finally, we also want to further
study occlusion boundaries, a traditional issue for depth of
field effects.
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Appendix A: Defocus and circle of confusion size

Although most camera lenses use more intricate designs
with multiple lens elements, we review the simplified thin
lens model, which suffices in our context.

The main role of a lens is to make all the rays coming
from a point at the focus distance converge to a point in the
image plane. In contrast, the rays originating at a scene point
away from the focus distance converge in front of or behind
the lens, and that point appears as a blurred spot in the im-
age. The blurred spot is called the circle of confusion. It is
not strictly speaking a circle and depends on the aperture
shape and diffraction, but it is often modeled as a circle or a
Gaussian.

We express the circle of confusion diameterc of a point
at distanceS (Figure9). A detailed derivation can be found
in optics textbooks such as Hecht’s [Hec02]. Given the focal
length f of the lens, the thin-lens formula gives us the lens-
sensor distancefD to focus at distanceD: 1

f = 1
fD

+ 1
D .

D

S

A X
c

f

fD

Figure 9: A thin-lens system. The lens’ diameter isA and
its focal length isf . The image plane is at distancefD from
the lens and the focus distance isD. Rays from a point at
distanceS generates a circle of confusion diameterc. And
the rays generates a virtual blur circle diameterC at the
focus distanceD.

The f-numberN gives the aperture diameterAas a fraction
of the focal length (A = N f). Note thatN has no unit.N is
the number, such as 2.8, that photographers set to control
the diaphragm. The aperture is then denoted by, e.g., f/2.8 to
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express that the diameter is the focal length divided by the
f-number. The diameter of the circle of confusion is then

c =
|S−D|

S
· f 2

N(D− f )
(5)
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Figure 10: This plot shows how the circle of confusion diam-
eter,c, changes according to the change of object distanceS
and f-numberN. c increases as a point is away from the fo-
cus distanceD. The focus distanceD is 200cm, and the focal
length f is 8.5cm

Figure10 shows that the circle of confusion diameterc
increases as a point is away from the focus distanceD. The
relationship is not linear (hyperbolic) and is not symmetrical
for points in front of and behind the plane in focus.

We now study the effect of the sensor size,X. To express
the amount of defocus in terms of image-space blur, we use
the relative size of the circle of confusionc′ = c/X. For sen-
sors of different sizes, the same field of view is obtained if
the relative focal lengthf ′ = f/X is the same. Replacingc
and f by their relative version in Eq.5 we obtain

c′ =
|S−D|

S
· f ′2X
N(D− f ′X)

(6)

To a first-order approximation, the amount of defocus is
proportional to the sensor sizeX. This confirms that for a
given f-numberN, a smaller sensor does not yield as much
defocus as a larger sensor. More defocus could be achieved
by using a smaller f-number (larger lens aperture), but this
would require bending rays that reach the periphery of the
lens aperture by angles that are physically challenging to
achieve. Scaling down the sensor and lens inherently scales
down the amount of defocus.

Appendix B: Elder and Zucker’s edge detector

Elder and Zucker [EZ98] detect edges with various levels of
blurriness. To determine the right scale for edge detection,
they compute the minimum reliable scale for each pixel,

based on the noise thresholds . They locate edges by test-
ing nonzero gradient and zero-crossing of second derivative
at the minimum reliable scale.

For each pixel, Elder and Zucker compute its multiscale
responses to the steerable Gaussian first derivative filters and
steerable second derivative of Gaussian filters and compute
the gradient using the steerable Gaussian first derivative ba-
sis filters:

gx
1(x,y,σ1) =

−x

2πσ4
1

exp(−(x2 +y2)/2σ2
1 ) (7a)

gy
1(x,y,σ1) =

−y

2πσ4
1

exp(−(x2 +y2)/2σ2
1 ) (7b)

whereσ1 is the scale of the first derivative Gaussian estima-
tor. A weighted sum of these two filter responses is used to
compute the gradient directionθ that maximizes the gradi-
ent magnitude.

They compute the second derivative in the directionθ us-
ing a steerable second derivative of Gaussian operator:

gx
2(x,y,σ2) =

(x/σ2)2−1

2πσ4
2

exp(
−(x2 +y2)

2σ2
2

) (8a)

gy
2(x,y,σ2) =

(y/σ2)2−1

2πσ4
2

exp(
−(x2 +y2)

2σ2
2

) (8b)

gxy
2 (x,y,σ2) =

xy

2πσ6
2

exp(
−(x2 +y2)

2σ2
2

) (8c)

gθ
2 (x,y,σ2) = cos2(θ)gx

2(x,y,σ2)+sin2(θ)gy
2(x,y,σ2)

(8d)

−2cos(θ)sin(θ)gxy
2 (x,y,σ2) (8e)

whereσ2 is the scale of the second derivative of Gaussian
filter.

They test the reliability of filter responses by setting a
threshold for each scale. The thresholds are derived from the
sensor noise levelsn. In the following equations,c1 denotes
the threshold for Gaussian first derivative filter in a function
of σ1 andc2 denotes the threshold for the second derivative
of Gaussian filter in a function ofσ2.

c1(σ1) =
sn

√−2lnαp

2
√

2π ·σ2
1

(9a)

c2(σ2) =
sn
√

2·er f−1(αp)
4
√

π/3 ·σ3
2

(9b)

with: αp = 1− (1−αI )1/n (9c)

wheren is the number of pixels. The thresholds are com-
puted statistically based on the standard deviation of the sen-
sor noisesn and a false positive toleranceαI . At the mini-
mum reliable scale, pixel filter responses are larger than the
threshold of the scale.
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Figure 11: Results. The original images, their defocus maps, and results blurred using our approach. The inputs were taken
by (a) a Nikon D50 with a sensor size of23.7×15.6 mm and a180.0 mm lens at f/4.8, (b) a Canon 1D Mark II with a sensor
size of 28.7×19.1 mm and a Canon EF 85mm f/1.2L lens, and (c, d) a Canon PowerShot A80, a point-and-shoot camera with
a sensor size of7.18×5.32mm, and a7.8 mm lens at f/2.8. The two at the bottom are from bigfoto.com.
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