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Rephotographers aim to recapture an existing photograph from the same
viewpoint. A historical photograph paired with a well-aligned modern
rephotograph can serve as a remarkable visualization of the passage of time.
However, the task of rephotography is tedious and often imprecise, because
reproducing the viewpoint of the original photograph is challenging. The
rephotographer must disambiguate between the six degrees of freedom of
3D translation and rotation, and the confounding similarity between the ef-
fects of camera zoom and dolly.

We present a real-time estimation and visualization technique for repho-
tography that helps users reach a desired viewpoint during capture. The in-
put to our technique is a reference image taken from the desired viewpoint.
The user moves through the scene with a camera and follows our visualiza-
tion to reach the desired viewpoint. We employ computer vision techniques
to compute the relative viewpoint difference. We guide 3D movement using
two 2D arrows. We demonstrate the success of our technique by repho-
tographing historical images and conducting user studies.

Categories and Subject Descriptors: H.5.2 [Information interfaces and
presentation (e.g., HCI)]: User Interfaces; I.4.9 [Image processing and
computer vision]: applications

General Terms: Algorithms, Design, Human factors

Additional Key Words and Phrases: Computational photography, pose esti-
mation, rephotography

1. INTRODUCTION

Rephotography is the act of repeat photography; capturing a pho-
tograph of the same scene from the same viewpoint of an existing
photograph that is typically much older. An image and its repho-
tograph can provide a compelling “then and now” visualization
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of the progress of time (Figure 1). Rephotography is a powerful
tool for the study of history. Well-known examples include Sec-
ond View [Klett et al. 1990] (a rephotographic survey of landscape
images of the American West), New York Changing [Levere et al.
2004], and a series of forty Then & Now books that each rephoto-
graph a major world city (e.g., [McNulty 2002]). Beyond history,
rephotography is also used to document glacier melting as evidence
of global warming [Gore 2006], and to monitor geological erosion
and change [Hall 2002].

When a photograph and its rephotograph match well, a digital
cross-fade between the two is a remarkable artifact; decades go by
in the blink of an eye, and it becomes evident which scene ele-
ments are preserved and which have changed across time. To create
a faithful rephotograph, the viewpoint of the original photograph
must be carefully reproduced at the moment of capture. However,
as we have confirmed through a user study, exactly matching a pho-
tograph’s viewpoint “by eye” is remarkably challenging; the repho-
tographer must disambiguate between the six degrees of freedom
of 3D translation and rotation, and, in particular, the confounding
similarity between the effects of camera zoom and dolly. There are
digital techniques for shifting viewpoint after capture [Kang and
Shum 2002], but they are still brittle and heavyweight, and depend
on the solution of several classic and challenging computer vision
problems.

Fig. 1. Rephotography gives two views of the same place around a century
apart. Pictures are from New York Changing [Levere et al. 2004] and Boston
Then and Now [McNulty 2002].
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In this paper, we present an interactive, computational technique
for rephotography that focuses on the task of matching the view-
point of a reference photograph at capture time. We envision our
tool running directly on the digital camera; but since these plat-
forms are currently closed and do not yet have enough process-
ing power, our prototype consists of a digital camera connected
to a laptop. The user simply points the camera towards the scene
depicted in the reference image, and our technique estimates and
visualizes the camera motion required to reach the desired view-
point in realtime. Algorithmically, we build on existing computer
vision algorithms to compute the relative pose between two pho-
tographs [Stewénius et al. 2007; Hartley 1992] after detecting and
matching features [Lowe 2004] common to both images.

The main contribution of our work is the development of the first
interactive, computer vision tool for rephotography. This tool in-
cludes a number of novel techniques, such as a method to calibrate
a historical camera without physical access to it by photographing
the same scene with a modern, calibrated camera. We also present
a stabilization technique that substantially reduces the degrees of
freedom that the user needs to explore while following the motions
suggested by our tool. We demonstrate the success of our technique
by rephotographing historical images and conducting user studies.

1.1 Previous Work

To the best of our knowledge, we are the first to build an interactive
tool that directs a person to the viewpoint of a reference photo-
graph. However, estimating camera positions and scene structures
from multiple images has long been a core problem in the com-
puter vision community [Faugeras 1993; Heyden and Sparr 1999;
Hartley 1992; Hartley and Zisserman 2000].

We direct the user to the correct viewpoint at capture time. One
alternative to our approach would be to capture a nearby view-
point and warp it to the desired viewpoint after capture [Chen and
Williams 1993; Werner et al. 1995; Sand and Teller 2004]. How-
ever, parallax and complex scene geometry can be challenging for
these algorithms, and the possibility of inaccuracies means that the
result might not be considered a faithful documentation of the view-
point for scientific or historical purposes.

Our technique is related to visual homing research in robotics,
where a robot is directed to a desired 3D location (e.g., a charg-
ing station) specified by a photograph captured from that location.
The visual homing approach of Basri et al. [1999] also exploits fea-
ture matches to extract relative pose; the primary difference is that
robots can respond to precise motion parameters, while humans
respond better to visualizations in a trial and error process. More
recent work exists on real-time algorithms that recover 3D motion
and structure [Pollefeys et al. 2008; Davison et al. 2007], but they
do not aim to guide humans. There exist augmented reality systems
[Scheuering et al. 2002] that ease navigation. However they assume
that the 3D model is given, while the only input to our technique is
an old photograph taken by an unknown camera.

We are not the first to exploit the power of historical photographs.
The 4D Cities project (www.cc.gatech.edu/4d-cities) hopes to build
a time-varying 3D model of cities, and Photo Tourism [Snavely
et al. 2006] situated older photographs in the spatial context of
newer ones; neither project, however, helped a user capture a new
photograph from the viewpoint of a historical one.

Recent digital cameras and mobile phones employ a number of
advanced computer vision techniques, such as face detection, the
Viewfinder Alignment of Adams et al. [2008], feature matching
and tracking on mobile phones [Wagner et al. 2008; Takacs et al.
2008], and the Panoramic Viewfinder of Baudisch et al. [2005]. The

Panoramic Viewfinder is the most related to our technique, though
its focus is the real-time preview of the coverage of a panorama
with no parallax. The implementation of matching and tracking al-
gorithms on mobile phones is complementary to our technique. We
focus on the development of an interactive visualization method
based on similar tools.

2. OVERVIEW

We designed the user interface and technical approach of our
rephotography tool after performing two of initial experiments that
helped us understand the challenges of rephotography. In our first
pilot user study (Section 6.2.1), we addressed the obvious question:
how hard is manual rephotography? We found that users untrained
in rephotography were unable to reproduce the viewpoint of a refer-
ence image successfully even with the aid of simple visualizations,
such as a side-by-side visualization of the current and reference
views, or a linear blend of the two views.

In the next study (Section 6.2.2) we implemented a standard rel-
ative pose algorithm [Stewénius et al. 2007], and visualized, in 3D,
the recovered camera frustums of the current and reference views
to users whenever they captured a new photograph (Figure 11(a)).
We again found that the users were unsuccessful, because they had
difficulties interpreting the visualization into separate translation
and rotation actions, and were challenged by the lack of real-time
feedback.

These two pilot user studies, along with our own experiments
using the tool to perform historical rephotography, helped us
identify five main challenges in computational rephotography:
1. It is challenging to communicate both a 3D translation and
rotation to the user, since this motion has six degrees of freedom.
Camera zoom adds a seventh degree.
2. Even with calibrated cameras, 3D reconstruction from images
alone suffers from a global scale ambiguity. This ambiguity
makes it hard to communicate how close the user is to the desired
viewpoint, or to keep the scale of the motion communicated to the
user consistent over iterations.
3. Relative pose algorithms suffer from a degeneracy in the case
of zero motion between the cameras [Torr et al. 1999], which is
exactly our goal. This degeneracy means the estimation becomes
unstable as the user reaches the reference view.
4. Historical images can appear very different from new pho-
tographs because of architectural modifications, different film
response, aging, weather, time-of-day, etc. . . These dramatic
differences can make it challenging for even state-of-the art feature
descriptors to find the correspondences needed to compute relative
pose.
5. Finally, historical images are captured with cameras of unknown
calibration, e.g., focal length and principal point. Furthermore,
historical architectural photographs were often captured with
non-central principal points using view cameras, to make the
vertical lines of building vertical in the image.

We address these challenges with a combination of user inter-
action and algorithms. Our approach has a number of key features,
which we describe in the rest of this paper. The first is our approach
to calibration of the unknown camera used to capture the historical
image (Section 3), i.e., challenge 5. We require the user to cap-
ture two images of the scene with a wide baseline (Figure 2). The
user is instructed to capture a first frame and second frame with
a roughly 20 degree angle about the main scene subject, with the
second frame as the user’s best eyeballed approximation of the de-
sired viewpoint. We then reconstruct the scene in 3D and use this
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Fig. 2. The first photograph is captured from a location rotated about 20
degrees from the user’s best approximation of the desired viewpoint. The
second photograph is then captured from the user’s best approximation.

structure to calibrate the historical camera after asking the user to
manually identify a few correspondences with the historical image
(challenge 4). We also use this wide baseline to solve challenge 3 by
performing pose estimation relative to the first frame rather than the
reference view, which helps avoid degeneracy. The computed 3D
structure also helps us to compute a consistent 3D scale across iter-
ations (challenge 2). Finally, our calibration method also includes
an optional interactive approach to calibrating a non-central prin-
cipal point (Section 3.2.1), which asks the user to identify sets of
parallel lines in the scene.

Another key aspect of our approach is real-time visual guidance
that directs the user towards the desired viewpoint (Section 4). This
feedback includes a visualization of the needed 3D translation to
the reference view computed by interleaving a slower, robust rel-
ative pose algorithm (Section 4.1) with faster, lightweight updates
(Section 4.2). We also use the computed relative pose to perform ro-
tation stabilization (Section 4.5); that is, we show the current view
to the user after warping it with an infinite homography [Hartley
and Zisserman 2000] fit to the reference view, which can account
for both camera rotation and zoom. Because of this stabilization
the user does not need to worry about precisely rotating the cam-
era, and can focus on following the 3D translation directions from
our tool (challenge 1).

After giving an overview of the user experience of our rephotog-
raphy tool, the rest of this paper describes the technical details of
our approach, evaluates it with several user studies, and presents
results of using our tool to perform historical rephotography.

2.1 User Experience

While we ultimately wish to embed our tool entirely on a cam-
era, our current implementation relies on a laptop connected to a
camera as shown in Figure 3. The camera’s viewfinder images are
streamed to the laptop, which performs computation to visualize
the necessary motions to the user.

The user begins by loading a reference image. If the user suspects
that the image was shot with a non-central principal point (e.g., ver-
tical lines on tall buildings are vertical in the historical photograph),
she can optionally calibrate the principal point by identifying three
sets of parallel lines in the reference image. We allow the use of a
screen magnifier to make the lines more visible. Identifying these
lines is typically easy for photographs of buildings, which is the
most common scenario in which a photographer chooses to manip-
ulate the principal point using a view camera or a tilt-shift lens.

Fig. 3. In our prototype implementation, a laptop is connected to a camera.
The laptop computes the relative camera pose and visualizes how to trans-
late the camera with two 2D arrows. Our alignment visualization, which
consists of edges detected from the reference image composited onto the
current view, helps users to evaluate whether they have reached the final
viewpoint.

The user is next instructed to shoot an image that is rotated
roughly 20 degrees away from the reference viewpoint. The actual
amount of rotation is unimportant and is only specified to simplify
instructions; it is only important that the baseline from the refer-
ence viewpoint be reasonably wide. We call this image the “first
frame.” Next, the user goes to her best estimate of the reference
viewpoint, and shoots a “second frame.” The system computes 3D
structure from these two frames, and then asks the user to click six
correspondences between the reference image and the 3D structure
projected onto the second frame. After doing so, the real-time feed-
back begins and arrows direct the user towards the goal. Alongside
the arrows we show the rotation-stabilized current viewpoint. The
user can switch between several visualizations (Section 5), such as
an overlay of edges detected from the reference image onto the cur-
rent viewpoint, which can help the user in evaluating whether the
current viewpoint is a successful rephotograph. Once the user is
happy with the viewpoint, she can capture her final rephotograph.

3. CALIBRATION

The first step of our computational rephotography tool is to cal-
ibrate both the intrinsic and extrinsic parameters of the unknown
historical camera. We do so by performing a sparse 3D reconstruc-
tion of the same scene imaged by the historical camera using two
user-captured images, and then optimizing the parameters of the
unknown camera to minimize projection error of the features man-
ually corresponded by the user. We also optionally allow the user
to calibrate a non-central principal point by specifying sets of par-
allel scene lines in the historical image. This process is shown in
Figure 4.

3.1 Wide baseline 3D reconstruction

The user begins by capturing two images (the first and second
frames) with a wide baseline (Figure 2); a wide baseline improves
the accuracy and stability of 3D reconstruction. We assume the
current camera is calibrated (we use Bouguet’s calibration tool-
box [2007]), and then perform structure-from-motion to register
the two cameras and reconstruct sparse 3D structure. Specifically,
we use the robust pose estimation algorithm described in Sec-
tion 4.1. In brief, it uses the algorithm of Stewenius et al. [2007]
to compute relative pose given SIFT [Lowe 2004] correspondences
between the two views within a robust sampling loop similar to
RANSAC [Fischler and Bolles 1981]. Then, given the projection
matrices of the two cameras, we reconstruct the 3D coordinates of
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Fig. 4. Our procedure to calibrate and register the reference camera.

each correspondence using triangulation [Hartley and Zisserman
2000]. These 3D points are then projected into the second view,
and displayed to the user alongside the reference photograph; the
user is asked to click 6-8 correspondences. These correspondences
are used to register the reference camera in the next step.

3.2 Reference camera registration

We next relate the reference image to the reconstructed scene from
the first two photographs taken by the user, given matches be-
tween the reference and the second view. For this, we infer the
intrinsic and extrinsic parameters of the reference camera using
Levenberg-Marquardt optimization (specifically, Lourakis’s LM
package [2004]), minimizing the sum of squared projection errors
of the matched points. We assume zero skew and optimize nine de-
grees of freedom: one for focal length, two for the principal point,
three for rotation, and three for translation. We initialize the rota-
tion matrix to the identity matrix, the translation matrix to zero,
and the focal length to the focal length of the current camera. We
initialize the principal point by analyzing the vanishing points as
described in Section 3.2.1.

Although this initialization is not close to the ground truth, we
observe that the Levenberg-Marquardt algorithm converges to the
correct answer since we allow only 9 degrees of freedom and the
rotation matrix tends to be close to the identity matrix for repho-
tography.

3.2.1 Principal point estimation. The principal point is the in-
tersection of the optical axis with the image plane. If a shift move-
ment is applied to the lens to make the verticals parallel or if the im-
age is cropped, the principal point is not in the center of the image,
and it must be computed. The analysis of vanishing points provides
strong cues for inferring the location of the principal point. Under
perspective projection, parallel lines in space appear to meet at a
single point in the image plane; this point is the vanishing point of
the lines. Given the vanishing points of three orthogonal directions,
the principal point is located at the orthocenter of the triangle whose
vertices are the vanishing points [Hartley and Zisserman 2000], as
shown in Figure 5.

We ask the users to click on three parallel lines in the same di-
rection; although two parallel lines are enough for computation, we

Vanishing point

Principal point

Fig. 5. Under perspective projection, parallel lines in space appear to meet
at their vanishing point in the image plane. Given the vanishing points of
three orthogonal directions, the principal point is located at the orthocenter
of the triangle with vertices at the vanishing points

ask for three to improve robustness. We compute the intersections
of the parallel lines. We locate each vanishing point at the weighted
average of three intersections. The weight is proportional to the an-
gle between two lines [Caprile and Torre 1990], since the location
of the vanishing point becomes less reliable at smaller angles. We
discard the vanishing point when the sum of the three angles is less
than 5 degrees.

During Levenberg-Marquardt non-linear optimization, we ini-
tialize and constrain the principal point as the orthocenter, given
three finite vanishing points. If we have one finite and two infinite
vanishing points, we initialize and constrain the principal point as
the finite vanishing point. With two finite vanishing points, we con-
strain the principal point to be on the vanishing line that connects
the finite vanishing points.

In summary, the result of the above methods is a 3D reconstruc-
tion of the scene from the first and second frames, as well as a
calibration of the reference view and its relative pose from the first
view. This information is then used in the next stage, which guides
the user to the viewpoint of the reference image.

4. REAL-TIME USER GUIDANCE

Our rephotography tool provides the user with real-time guidance
towards the reference viewpoint. To do so, we compute relative
pose between the current view and the reference view and visualize
the needed 3D translation to the user in the form of two arrows, as
shown in Figure 9. We also show the current view to the user after
a best-fit rotation alignment between the current view and the refer-
ence view is applied. This rotational stabilization allows the user to
focus on 3D translation and avoid worrying about precisely rotating
the camera. To achieve real-time performance, we interleave a ro-
bust but slower relative-pose computation with a faster, lightweight
updating scheme. A diagram of our real-time guidance approach is
shown in Figure 6.

4.1 Robust Camera Pose Estimation

In our robust estimation process, we estimate the camera pose rel-
ative to the first frame instead of the reference in order to avoid
degeneracy in the estimation when the user approaches the desired
viewpoint. Since we know the reference camera location relative to
the first frame [R10|T10], we can derive the relative pose between
the current and reference photographs. [Rij |Tij ] is the jth camera
location relative to the ith camera location. R is its rotational com-
ponent, and T is its translational component. For each frame n, we
compute the current camera location relative to the first camera lo-
cation [R1n|T1n]. The translational component T0n of the current
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Fig. 6. Overview of our real-time guidance approach. In this stage, the
reference camera is already registered to the first view. In our main process,
we use an interleaved strategy where a lightweight estimation is refreshed
periodically by a robust estimation to achieve both real-time performance
and robustness. Yellow rounded rectangles represent robust estimation and
purple ellipses are for lightweight estimation. The robust estimation passes
match inliers to the lightweight estimation at the end.

camera location relative to the reference camera is

T0n = T1n −R1n ∗R�
10 ∗ T10. (1)

In our full pipeline, we interleave this robust estimation with a
lightweight estimation. We present details in Section 4.2.

4.1.1 Correspondence Estimation. To find matches between
the first and current frames, we use SIFT [Lowe 2004] feature
points. SIFT is designed to be invariant to scale changes and lin-
ear brightness changes. It is also partially invariant to viewpoint
changes. For speed, we use a GPU implementation [Sinha et al.
2006]. Input images have around one megapixel and we downsam-
ple the images by two for speed. For the downsampled images,
SIFT detects around one thousand feature points. We use an ap-
proximate searching method, ANN [Arya et al. 1998] to find corre-
spondences. We set the threshold of the second ratio test [Lowe
2004] quite strictly at 0.6 to keep only trustworthy correspon-
dences.

4.1.2 Essential Matrix Estimation. We compute relative cam-
era pose between the first view and the current frame because the
baseline is wide, which avoids a motion degeneracy when the user
reaches the goal. Since the user’s camera is already calibrated, we
only need to estimate the essential matrix that relates the calibrated
images. We use Stewénius’s five-point algorithm [2007], which es-
timates the essential matrix between two calibrated cameras in real-
time. We run MSAC (m-estimator sample consensus) [Torr and Zis-
serman 2000] to find inliers and the best fitting essential matrix.
MSAC is similar to RANSAC, but it modifies the cost function so

that outliers are given a fixed penalty while inliers are scored on
how well they fit the data. The accuracy of MSAC is close to MLE-
SAC (maximum likelihood consensus) without the loss of speed
[Torr and Zisserman 2000]. We fix the number of iterations at 1000.
We determine inliers and the best-fitting essential matrix using the
symmetric epipolar distance [Hartley and Zisserman 2000]. Our
threshold is 0.01 in normalized point coordinates.

4.2 Real-time Camera Pose Estimation

We want to provide robust results but also interact with users in
real-time. Our robust estimation generates reliable results but its
computation is expensive and takes seconds. To provide real-time
feedback, we interleave our robust estimation with a lightweight es-
timation, which is not as robust but inexpensive. In our lightweight
estimation, we do not update the correspondences but track the
most recent set of inliers using feature tracking and recompute the
relative camera pose in one iteration.

We use Birchfield’s KLT implementation [2007] to track feature
points. It performs an affine consistency check [Shi and Tomasi
1994] and performs a multiscale tracking that refines the feature
point locations from coarse to fine resolution.

Our robust estimation and lightweight estimation are interleaved
as shown in Figure 7. Robust estimation detects feature points, finds
matches, and estimates a new set of inliers and an epipolar geom-
etry using robust statistics. This takes around two seconds while
our lightweight estimation runs at more than 10 frames per second.
This interleaved process allows the accuracy of the inliers to be
preserved and provides users with a real-time update.

1 2 6543 7 8

5 6 1010987 1111 1212Camera frames
Robust estimation
Lightweight estimation

Time
1 98765432 121211111010 ...

9 1010 ...

Fig. 7. Our interleaved pipeline. Robust estimation and lightweight esti-
mation are interleaved using three threads: one receives the current frame
from the camera, the other finds inliers, and another tracks the inliers. The
robust estimation updates a set of inliers to be tracked. Numbers in this fig-
ure indicate the camera frame numbers. Note that for simplicity, this figure
shows fewer frames processed per robust estimation.

4.3 Interleaved Scheme

Our interleaved pipeline is implemented as three threads: one com-
municates with the camera, the other conducts robust estimation,
and another performs lightweight estimation. At the end of each ro-
bust estimation, a set of inliers is passed to the lightweight estima-
tion thread. We store subsequent frames of the key frame on which
the robust estimation computes inliers. When the light estimation
is refreshed with an inlier set from the robust estimation, it starts
tracking from the next frame of the key frame instead of the current
camera frame. Since the lightweight estimation uses optical flow to
track points, there should not be a large gap between the key frame
where the inliers are computed and the first frame when tracking
starts. When the inlier set is refreshed with a new robust estimation
result users can observe a one-second delay. However, this is neg-
ligible compared to the whole rephotography process, and it does
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  0. Register the reference camera  

  1. Robust estimation starts. Estimate correspondences.

  2. Estimate camera pose.

  3. Estimate the scale of the translation.

  4. Check if the robust estimation result passes sanity testing. 

      If yes, proceed to the next step. Otherwise repeat from Step 1.

  5. Visualize the direction to move. The robust estimation ends.

  6. Multi-threading starts. Thread A repeats robust estimation

      from Step 1, while Thread B performs a lightweight estimation.

  7. Thread B tracks inliers found in Step 2 and estimates camera

      pose using only one iteration.

  8. Estimate the scale of the translation.

  9. Check if the lightweight estimation result passes sanity testing. 

      If yes, proceed to the next step. Otherwise repeat from Step 7.

10. Visualize the direction to move.

11. Repeat from Step 7 until Thread A finishes Step 5 and updates

      the set of inliers.

Fig. 8. The flow chart of our interleaved scheme.

not affect the user performance or resulting rephotograph quality.
Our interleaved version operates as in Figure 8.

4.3.1 Sanity Testing. For each resulting pose, we perform three
sanity tests to make sure our visualization is reliable. We compare
the 3D structure reconstructed from each frame with our initial 3D
reconstruction from the first two images. We measure the 3D error
of all points and ignore the pose estimation if the median of the 3D
error is more than 10 %. Typically, the median error is less than
5 %.

In addition, we check if the current camera pose result is con-
sistent with previous ones. We found that a simple filter works, al-
though the Kalman filter [Kalman 1960] would likely generate a
good result as well. We measure the mean and the standard devia-
tion of the camera locations at the previous ten frames and confirm
that the current estimated camera location is within 4 standard de-
viations from the mean. We assume the camera motion is smooth
and the pose variation is small. The above two tests typically detect
a wrong answer roughly once in 100 frames.

Finally, we test for a structure degeneracy caused when all the
inliers come from one single plane in the scene. We find the best-
fitting homography using RANSAC with 1.5 pixel average map-
ping errors within 500 iterations. If the number of homography in-
liers is more than 70 % of the epipolar geometry inliers, we ignore
the pose estimation result. Since we use a large-enough baseline,
this error does not occur frequently.

When our estimation result fails to pass the above tests, we sim-
ply do not update the visualization. Since wrong answers do not
occur often, this does not affect the user experience significantly.

4.4 Scale Estimation

After relative pose is computed, a problem remains: the scale of the
translation between the current frame and the first frame is ambigu-
ous. We therefore scale it to maintain consistency between itera-
tions. In the initial calibration step, we reconstructed a 3D structure
between the first and second frames using triangulation. In a subse-
quent iteration n, we reconstruct 3D structure between the first and
nth frames. The scale between these two reconstructions should be
different by a constant factor. We can make the scales consistent by
estimating the scale factor that causes the distance between the first

camera and the 3D scene to be equivalent between the two recon-
structions. To do so, we place the first camera at the origin for both
reconstructions. We then compute the median ratio of distance to
the origin for each 3D point in the first reconstruction and the nth
reconstruction. Finally, we multiply the length of the translation
vector by this ratio, which makes the length of our arrow visualiza-
tion meaningful and consistent across frames.

4.5 Rotation Stabilization

We also use the result of relative pose estimation to rotationally
stabilize the current frame before displaying it. Since users find it
challenging to simultaneously follow instructions suggesting both
translational and rotational motions, we instead only communicate
translation to the user. We automatically compute the best camera
rotation between the current and reference views, and apply this
rotation as a warp before displaying the current frame. This rota-
tion alignment allows the user to focus on translating the camera in
the right direction without striving to hold the camera in the right
orientation.

The effect of a 3D camera rotation and zoom can be described
with an infinite homography [Hartley and Zisserman 2000]. The
infinite homography is a subclass of the general homography, as it
is restricted to rigid camera rotations and zooms. We use the algo-
rithm of Brown et al. [2007] to compute the infinite homography
that fits all the epipolar geometry inliers with the least squared er-
ror.

5. VISUALIZATION

Fig. 9. A screen capture of our visualization, including our primary visu-
alization of two 2D arrows, as well as an edge visualization. The upper left
view shows the suggested motion direction from the top while the lower
left view is perpendicular to the optical axis. The edge visualization shows
a linear blend of the edges of the reference image and the current scene af-
ter rotation stabilization. The alignment of the edges can be used to evaluate
whether the user has reached the desired viewpoint.

Comparing the reference and current image side by side does not
provide precise information about viewpoint difference. In our pilot
user study, we provided a linear-blend of the reference and current
image, and users could not estimate the desired viewpoint by ex-
amining the pixel difference. In a subsequent test, we showed the
relative pose information in 3D (See Figure 11(a)). Still we found
that it was hard for users to interpret 3D information. In our final
visualization design, we visualize the relative camera pose in two
2D planes: one is the direction seen from the top view and the other
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is perpendicular to the optical axis, as shown in Figure 9. In our
final user studies, users found our arrow visualization easy to learn
and follow.

In addition, we visualize the alignment between the reference
and current views to help users refine and confirm the final view-
point. Because of the potentially large appearance differences be-
tween historical and current images, we found that a linear-blend
of the old reference photograph and the current scene to be confus-
ing. We experimented with three alternate visualizations: an edge
visualization, a flipping visualization, and a visualization with a
reference camera projected onto the current frame.

In the edge visualization, we overlay the edges extracted from
the reference image over the current frame. In the flipping visu-
alization, users can quickly flip between the reference photograph
and the current frame. In both the edge and flipping visualizations,
we warp the current frame using a best-fitting infinite homogra-
phy (Section 4.5), which is not particularly useful when the user
is far from the desired viewpoint because the current and reference
views cannot be related by the infinite homography, but very useful
for small translations.

As the translational component becomes zero, the rotational
component is well resolved by a homography. Finally, for the third
visualization we simply project a 3D model of the reference camera
onto the current frame, to provide a visual target for the user.

During user studies, we let users choose among three visualiza-
tions. All the users chose the edge visualization as their preferred
visual feedback. Users used the flipping visualization only at the
final viewpoint to confirm the viewpoint. Users did not find the
projected reference camera very useful. Figure 9 shows our final
visualization design.

6. RESULTS

In our prototype, we estimate relative pose using the output we get
from the camera viewfinder. We use a Canon 1D Mark III live view,
which outputs 5-10 frames per second. Each robust estimation takes
about 2 seconds on a 2.4GHz laptop with NVIDIA GeForce 8600M
GT, while a lightweight estimation tracks inliers, estimates the rel-
ative pose, and visualizes the arrows at 10-20 frames per second.
With multi-threading, GPU-SIFT takes one second and the approx-
imate nearest neighbor (ANN) takes one second.

6.1 Pre-registration evaluation

We analyze the accuracy of our estimation of the principal point
and camera pose using two synthetic images. We first evaluate the
robustness of our estimation to user input error. Figure 10 shows
our synthetic test cases: cube (a) has its principal point at the im-
age center, and cube (b) has its principal point moved to the image
bottom. The cube size is 3x3x3, and the distance between the cube
and the camera is around 6. The input image size is 512 × 340.

For the first test, we simulate user errors by randomly adding
or subtracting up-to 2 pixels to the ground truth input positions

Table I. Analysis of the robustness of our estimation against
simulated user input error. Small errors show that our

principal point estimation is robust.

cube (a) cube (b)
Viewpoint 0.001 (0.02% of the 0.016 (0.25% of the
error camera distance) camera distance)
Principal 0.2 pixels (0.05% of the 1.8 pixels (0.4% of the
point error image size) image size)

for principal point estimation and pose estimation. The inputs to
our principal point estimation are 18 points for three parallel lines
in the three orthogonal directions. The inputs to pose estimation
are 6 points. We estimate the principal point and pose 100 times
and record the average error. Table I shows the result. The aver-
age viewpoint errors are 0.001 for cube (a) and 0.016 for cube (b),
which are 0.02% and 0.25% of the camera distance. The average
principal point errors are 0.2 pixels and 1.8 pixels, respectively,
which are 0.05% and 0.4% of the image size. This shows that our
principal point estimation is robust against user input error.

For the second test, we add errors to the 3D coordinates used for
the non-linear optimization in addition to the user input error. We
compare two cases: (1) the principal point is constrained by our es-
timation method using vanishing points, and (2) the principal point
is estimated relying solely on Levenberg-Marquardt non-linear op-
timization. Table II shows the results. With our vanishing point es-
timation, the average errors of the estimated principal points are 17
pixels for cube (a) and 13 pixels for cube (b), and the average view-
point errors are 0.26 and 0.24. These numbers are 4% and 3% of the
image size, and 3% of the camera distance. In contrast, if we only
rely on Levenberg-Marquardt non-linear optimization to estimate
the principal point and the viewpoint, the principal point errors are
153 pixels and 126 pixels on average, respectively. These errors
are 36% and 30% of the image size, more than 9 times larger than
the errors using vanishing points. The average viewpoint errors are
3.75 and 3.8 respectively, which are almost 50% of the camera dis-
tance. Levenberg-Marquardt nonlinear optimization is a local de-
scent approach and relies on good initialization. When significant
measurement noise is present in the initialization, it might converge
to a wrong local minimum. In addition, the projection errors are not
discriminative enough to determine the viewpoint and the principal
point at the same time. There exist ambiguities between changing
the principal point and moving the camera. This is reduced by the
vanishing point method.

Finally we analyze the effect of varying the focal length while
changing the camera distance. As a result, the size of the projected
cube stays the same, but camera rotation and principal point modi-
fication become harder to disambiguate. The focal lengths used are
400, 600, 800, and 1000. 400 is equivalent to 20mm, and 1000 is
equivalent to 50mm for a 35mm film. The errors increase as the
focal length and the camera distance increase. The principal point
errors are 13, 27, 45, and 66 pixels respectively, which are 3%,
6%, 11%, and 15% of the image size. The viewpoint errors are 0.4,
0.6, 1.15, and 1.86, which are 5%, 5%, 7%, and 9% of the camera
distance. The more we zoom, the more ambiguous the estimation
becomes. This is related to the fact that the projection error is less
discriminative for a photograph taken by a telephoto lens, because
the effect of a 3D rotation and that of a 2D translation become sim-
ilar.

(a) (b)

Principal point

Fig. 10. The synthetic cube images we used to test the accuracy of our
estimation of principal point and camera pose. The left cube image (a) has
its principal point at the image center, while the right cube image (b) has
had its principal point moved to the image bottom.
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Table II. Our principal point constraint with vanishing point estimation
enables an accurate estimation of the viewpoint in comparison with

Levenberg-Marquardt non-linear optimization alone.

Principal point error Viewpoint error
cube (a) cube (b) cube (a) cube (b)

WITH our principal 17 pixels 13 pixels 0.26 0.24
point constraint < 4% of the image size 3% of the camera distance

NO principal point 153 pixels 126 pixels 3.75 3.80
constraint > 30% of the image size > 50% of the camera distance

(b) Rephotograph 
using this 3D visualization

(c) Rephotograph 
using a linear blend

(a) A 3D camera pyramid 
visualization

New

Ref

New

Ref

Fig. 11. User study results with our first visualization. We displayed the
relative camera pose using 3D camera pyramids (a). The red pyramid
showed the reference camera, and the green one was for the current camera.
Although the rephotograph using this 3D visualization (b) was better than
that using a linear-blend (c), neither helped users to take accurate repho-
tographs.

6.2 User interface evaluation

We performed multiple pilot user studies before finalizing the de-
sign of our user interface. The studies included eight females and
eight males with ages ranging from 22 to 35. Only one of them par-
ticipated in multiple studies. We recruited the participants via per-
sonal contacts; eight of them had computer science backgrounds,
while the other eight did not.

6.2.1 First pilot user study. In our first pilot user study, we
wanted to test whether humans would be able to estimate the view-
point differences by simply comparing two photographs.
Procedure. We asked users to estimate the viewpoint of a refer-
ence photograph by comparing it with the output of the camera
viewfinder, while they moved the camera. We provided two users
with three different visualization techniques: the reference and cur-
rent image side by side, a linear-blend of the reference and current
image, and a color-coded linear blend of the reference in red and
current image in blue. We asked the users questions upon comple-
tion of the task.
Results and conclusions. Comparing the reference and current im-
age side by side did not seem to provide information about view-
point differences; both user’s final rephotographs were poor. Al-
though users preferred the linear-blend among three visualization,
the users could still not estimate the desired viewpoint by examin-
ing parallax. This leads to our first visualization design.

6.2.2 Second pilot user study. In our first visualization design,
we showed the relative pose information in 3D and updated the
camera pyramid every 3 seconds (See Figure 11(a)). In a pilot user
study, we wanted to test whether users would be able to take more

accurate rephotographs using our 3D pose visualization than using
a linear-blend visualization.

In addition to showing 3D camera pyramids, we provided the
user with her distance to the desired viewpoint with respect to the
scene distance. Among the reconstructed scene points, we picked
one point roughly in the direction the user needed to move and
told her how far she was from the desired viewpoint relative to the
scene point. We asked users whether this additional information
was useful upon completion of the task.
Procedure. Given the reference photograph taken by the same
camera, we asked six users to reach the viewpoint where the ref-
erence photograph was taken. Note that this task was easier than
typical rephotography: there was not a large appearance difference,
and users did not need to estimate the focal length. We tested 4 in-
door scenes. Each participant experienced all the scenes and both
techniques, but each scene was paired with only a single repho-
tography technique for that participant. We measured the accuracy
of rephotographs by comparing the pixel differences between the
reference and resulting rephotographs.
Results and conclusions. We observed that neither the 3D pyra-
mid visualization nor a linear-blend visualization helped users to
take accurate rephotographs. Figure 11 shows the resulting repho-
tographs.

In terms of the pixel differences, users made less error with this
3D visualization, specifically 70% of the error with a linear-blend.
However, we realized that comparing pixel differences was not a
good metric. We decided to measure the distance from the users’
final camera location to the ground-truth in the next studies.

In the camera pyramid visualization, users found it hard to in-
terpret 3D information; most had a hard time separating translation
and rotation. Besides, users did not find the distance indicator use-
ful. In general, users preferred a simple visualization; having one
visualization window helped users focus on the task. Users became
tired and lost when they had to jump between different visualiza-
tion windows. In addition, users asked for real-time feedback.

6.2.3 First final user study. In our final estimation and visu-
alization, we compute relative camera pose in real-time and show
the direction to move using two 2D arrows (See Figure 9). We con-
ducted two additional user studies to validate our technique.

In the first final user study, we wanted to compare our arrow vi-
sualization technique with a linear-blend visualization. In addition,
we included the focal length estimation: users had to manually es-
timate the zoom setting of the lens using the linear-blend estima-
tion, while our visualization automatically resolved the focal length
difference. We evaluated accuracy as measured by the distance be-
tween the reference and new cameras.
Procedure. Given the reference photograph taken by a different
camera, we asked four users to reach the viewpoint where the ref-
erence photograph was taken, with a 3 minute time limit. We tested
two indoor scenes. Each participant experienced both scenes and
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Table III. User study error. With our method, users
made less than 8 % of error than with a linear blend.

Our method Linear blend Remark
avg. (m) (a) 0.47 (b) 6.03 (a)/(b) = 7.8%
std. (m) 0.14 2.83
P-value 0.02

The P-value is smaller than 0.05. This means that this result is statisti-
cally meaningful and significant.

New

Ref

New

Ref

New

Ref

New

Ref

Fig. 12. User study results in the indoor scenes. Split comparison between
the reference image and users’ rephotographs after homography warping.
The result at the top is from a user using our method, and the one at the
bottom is from a user using a linear blend visualization. Though neither
result is completely successful, notice that result at top is aligned much
better.

techniques, but each scene was paired with only a single rephotog-
raphy technique for that participant. We marked the reference cam-
era location on the map and measured the distance from the users’
final camera location to the ground-truth. We did not ask users to
choose the first and second viewpoints; they were fixed among all
the users.
Results and conclusions. Table III shows the average distance be-
tween the ground truth and the final locations where four users took
the rephotographs for two test cases. The error with our method was
less than 8 % of the error with a linear blend. Users found that our
2D arrows were easy to learn and follow. Figure 12 compares two
rephotograph results using both techniques. In every test case, users
took more accurate rephotographs with our arrow visualization than
with a linear blend visualization.

6.2.4 Second final user study. In our final user study, we
wanted to test our user interaction schemes including providing
a wide-baseline, clicking on matches, and comparing two pho-
tographs with large appearance differences. We compared the ac-
curacies of the resulting rephotographs using our technique against
those with a naı̈ve visualization. In particular, we sought to com-
pare the accuracy of the viewpoint localization.

Fig. 13. In the final user study, the reference photographs had aged ap-
pearances.

Table IV. User study error. The error with a linear
blend is 2.5 times larger than the error with our

method.
Our method Linear blend Remark

avg. (m) (a) 1.8 (b) 4.4 (b)/(a) = 2.5
std. (m) 0.6 2.9

Procedure. We compared our technique with a naı̈ve visualiza-
tion and used reference images for which the ground truth loca-
tion is known. To make the scenario more realistic, we simulated
an aged appearance on the reference photographs that we captured:
we transferred the tonal aspects from old photograph samples to
the reference photographs [Bae et al. 2006], as shown in Figure
13. As a result, the reference photographs had large appearance
differences from current photographs. We asked six users to reach
the viewpoint where the reference photograph was taken within 10
mins. We tested three outdoor scenes. Each participant experienced
all the scenes and both techniques, but each scene paired with only
a single technique for that participant.

For both methods, all users started from the same initial location.
With our technique, we only fixed the first viewpoint (as the initial
location), and asked users to choose the second viewpoint. In ad-
dition, users provided correspondences between the reference and
the second frame by clicking six matches. In the naı̈ve visualiza-
tion method, we showed both linear blend and side-by-side visu-
alizations of the reference and current frame, since a linear blend
suffered from large appearance differences between the reference
and current photographs. Again, users had to manually estimate the
zoom setting of the lens using the naı̈ve visualization, while our vi-
sualization automatically resolved the focal length difference. Be-
fore each user study, we provided users with a quick tutorial of both
methods.
Results and conclusions. In every test case, users took more accu-
rate rephotographs with our arrow visualization than with the naı̈ve
visualizations. Figures 14 and 15 compare the rephotographs taken
with our technique and those using a naı̈ve visualization. The re-
maining parallax in the rephotograph results using a naı̈ve visual-
ization is quite large, while our technique allowed users to mini-
mize parallax.

Table IV shows the average distance between the ground truth
and the final locations where six users took the rephotographs for
three test cases. The average error with our method is 40% of the
average error with a linear blend. The distance difference became
smaller than the indoor cases. In the indoor scenes, the parallax
was subtle, but in the outdoor scenes, users could notice some im-
portant cues such as whether buildings were occluded or not. Still
many people could not figure out how to move the camera to re-
solve the parallax. With a naı̈ve blend, users had to estimate the
location and focal length of the reference camera by themselves.
With our method, users needed only to follow our arrow visualiza-
tion while our technique automatically estimated the location and
focal length of the reference camera.

6.3 Results on historical photographs

Figures 16, 17, 18, and 19 show our rephotograph results of histor-
ical photographs taken by unknown cameras. It usually took 15-30
minutes to reach the desired viewpoint. This task required more
extensive time because we often had to walk 50-100m with a lap-
top and tripod, and cross busy roads. In Figure 19, we apply style
transfer from the reference to the rephotographs [Bae et al. 2006].
By matching the tonal aspects, it becomes even more evident which
scene elements are preserved and which have changed across time.
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(a) Reference photograph (b) Rephotograph 
using our technique

New Ref

New Ref

(c) Rephotograph 
using a naïve visualization

New Ref

New Ref

Fig. 14. User study results. Left to right: (a) the reference photograph and users’ rephotographs using our technique (b) and a naı̈ve visualization (c) after
homography warping. The second row shows a split comparison between the reference image and users’ rephotographs, and the third row shows a zoomed-in
inset. With our method, users took more accurate rephotographs.

Faithful rephotographs reveal the changes of roofs, windows, and
the overall neighborhood.

6.4 Discussion

The bulk of the laptop currently limits portability and we hope that
open-platform digital cameras with additional processing power
will enable rephotography directly from the camera.

Our relative pose estimation works best when there is sufficient
parallax between the images. When nearing the viewpoint, the user
typically relies more on the alignment blend, which can limit final
precision. Our technique requires a reasonable number of feature
points (around 20), and can suffer in scenes with little texture. The
scene must present enough 3D structure to make viewpoint estima-
tion well-posed. If the scene is mostly planar, a homography can
match any pair of views and the viewpoint cannot be inferred.

In addition, the resulting rephotograph’s precision depends on
the user’s tolerance for error. For example, users typically focus
on landmarks in the center of the image, and may not notice that
features towards the periphery are not well-aligned. If the user only

checks alignment in the center, parallax towards the periphery may
not be resolved, as in Figures 15 and 17.

We share a number of limitations with traditional rephotography:
if the desired viewpoint is not available or the scene is occluded and
cannot be seen at the desired viewpoint, rephotography is impossi-
ble. Nevertheless, our technique can still help users realize that the
viewpoint is no longer available.

Audio feedback is a natural extension to our visualization that
we hope to explore in the future.

7. CONCLUSIONS

In this paper we described a real-time pose estimation and visu-
alization technique for guiding a user while performing rephotog-
raphy. Our method includes an approach to calibrating the histor-
ical camera by taking several photographs of the same scene, a
wide-baseline reconstruction that avoids relative pose estimation
degeneracy when the user reaches the desired target, and a visu-
alization technique that guides the user with two 2D arrows and a
rotationally-stabilized current view.
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(a) Reference photograph (b) Rephotograph 
using our technique

(c) Rephotograph 
using a naïve visualization

Fig. 15. User study results. Left to right: (a) the reference photograph and users’ rephotographs using our technique (b) and a naı̈ve visualization (c) after
homography warping. The last row shows a zoomed-in inset blend of rephotographs and several features from (a) highlighted in red; these highlights match
image features in (b) better than in (c). This shows that users take more accurate rephotographs using our technique than using a naı̈ve visualization.

We believe that our work points towards an exciting longer-term
direction — embedding more computation in cameras to support
more complex interaction at capture time than is offered by current
commodity hardware. While our prototype requires a laptop con-
nected to a camera, we hope that more open camera platforms are
developed in the future that allow more experimentation in design-
ing novel user interfaces that can run on the camera.
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(a) Reference photographs (b) Our rephotograph results (c) Split comparison: (a) and (b)

Fig. 18. Results. Left to right: the reference photographs, our rephotograph results, split comparisons between the references and our rephotographs.
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Fig. 19. Results with style transfer. Left to right: the reference photographs, our rephotograph results, and our rephotographs with styles transferred from the
reference photographs.
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