Applications

Frédo Durand MIT CSAIL

Overview

Denoising

• Tone mapping

 Relighting & texture editing

Overview

Denoising

Not most powerful application Not best denoising, but good & simple

Tone mapping

Relighting & texture editing

Noisy input

Bilateral filter 7x7 window

Bilateral filter

Bilateral filter

Median 5x5

Bilateral filter

Bilateral filter – lower sigma

Bilateral filter

Bilateral filter – higher sigma

Impulse noise

- High amplitude noise at few pixels
- Outlier rejection of bilateral filter works too well
 - the noise is treated as a strong edge
- Solution:
 - Pre-filter with median filter
 - Use median-filtered image M as reference for range Gaussians

$$BF[I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (||\mathbf{p} - \mathbf{q}||) G_{\sigma_{r}} (|\mathbf{M}_{\mathbf{p}} - I_{\mathbf{q}}|) I_{\mathbf{q}}$$

Denoising

- Small spatial sigma (e.g. 7x7 window)
- Adapt range sigma to noise level
- Maybe not best denoising method, but best simplicity/quality tradeoff
 - No need for acceleration (small kernel)
 - But the denoising feature in e.g. Photoshop is better
- Pre-filter with median for impulse noise

Overview

Denoising

Tone mapping

Relighting & texture editing

Real world dynamic range

- Eye can adapt from $\sim 10^{-6}$ to 10^{6} cd/m²
- Often 1 : 10,000 in a scene

Multiple exposure photography Merge multiple exposure to cover full range • 10-6 10^{6} High dynamic range Real world HDF Merge ts per p

- But we still can't display it

The future: HDR Cameras

- HDR sensors using CMOS - Use a log response curve - e.g. SMaL,
- Assorted pixels
 - Fuji
 - Nayar et al.
- Per-pixel exposure
 - Filter
 - Integration time

(LCD Input)

- Multiple cameras using beam splitters •
- Other computational photography tricks

Problem: Contrast reduction

- Match limited contrast of the medium
- Preserve details

Tone mapping

 Input: high-dynamic-range image – (floating point per pixel)

Naïve technique

- Scene has 1:10,000 contrast, display has 1:100
- Simplest contrast reduction?

Naïve: Gamma compression

- X \rightarrow X^{γ} (where γ =0.5 in our case)
- But... colors are washed-out. Why?

Gamma

Gamma compression on intensity

 Colors are OK, but details (intensity high-frequency) are blurred

Gamma on intensity

Oppenheim 1968, Chiu et al. 1993

- Reduce contrast of low-frequencies (log domain)
- Keep high frequencies

Low-freq.	Reduce low frequency
High-freq.	
Color	

The halo nightmare

- For strong edges
- Because they contain high frequency

Bilateral filtering to the rescue

- Large scale = bilateral (log intensity)
- Detail = residual

[Durand & Dorsey 2002]

Contrast too high!

Input HDR image

Intensity

Input HDR image

Bilateral Filter (in log domain!)

Color

Spatial sigma: 2 to 5% image size Range sigma: 0.4 (in log 10)

Color

Detail = log intensity –large scale (residual)

Contrast reduction in log domain

- Set target large-scale contrast (e.g. log₁₀ 10)
 In linear output, we want 1:10 contrast for large scale
 Compute range of input large scale layer:
 - largeRange = max(inLogLarge) min (inLogLarge)
- Scale factor k = log₁₀ (10) / largeRange
- Normalize so that the biggest value is 0 in log

outLog= inLogDetail + inLogLarge * k - max(inLogLarge)

Alternative explanation

- Explanation 1 (previous slides):
 outLog =k inLogLarge + inLogDetail (ignoring offset)
- Explanation 2
 - outLog = k inLogIntensity + (1-k) detail
 - Reduce contrast of full intensity layer
 - Add back some detail
- Same final effect since
 - inLogDetail+inLogLarge scale = inLogIntensity
 - But different philosophy: decomposition vs. add back detail

Denoising vs. tone mapping

- Denoising:
 - decompose into noise+signal
 - Throw away noise, keep signal
 - Small kernel
- Tone mapping
 - Decompose into large scale + detail
 - Preserve detail, reduce large scale
 - Opposite of denoising!
 - Large kernel
 - because detail=high+medium frequency
 - →computation challenge

Crossing lines

- The bilateral filter is influenced by pixels across thin line
- Good for tone mapping

What matters

- Spatial sigma: not very important
- Range sigma: quite important
- Use of the log domain for range: critical
 - Because HDR and because perception sensitive to multiplicative contrast
 - CIELab might be better for other applications
- Luminance computation
 - Not critical, but has influence
 - see our Flash/no-flash paper [Eisemann 2004] for smarter function

Tone mapping evaluation

- Recent user experiments to evaluate competing tone mapping
 - Ledda et al. 2005 http://www.cs.bris.ac.uk/
 Publications/Papers/2000255.pdf
 - Kuang et al. 2004 <u>http://www.cis.rit.edu/fairchild/</u> PDFs/PR022.pdf
- Interestingly, the former concludes bilateral is the worst, the latter that it is the best!
 - They choose to test a different criterion: fidelity vs. preference
- More importantly, they focus on algorithm and ignore parameters

From Kuang et al.

	1st	2nd	3rd	4th	5th	6th
Scene 1	Р	В	A	Н	Ι	L
Scene 2	Ι	P	Н	A	В	L
Scene 3	Р	Ι	A	H	L	В
Scene 4	Р	L	Ι	A	Н	В
Scene 5	Ι	Н	A	P	L	В
Scene 6	Ι	Н	A	P	L	В
Scene 7	Ι	A	P	H	В	L
Scene 8	Ι	P	A	Н	L	В
Scene 9	P	A	L	H	В	I

Adapted from Ledda et al.

Alternative explanation

- Contrast reduction w/ intrinsic layers [Tumblin et al. 1999]
- For 3D scenes: Reduce only illumination layer

Output

Dirty vision for cool graphics

Three wrongs make one right

- Analyze image
 - Intrinsic image: albedo & illumination
 - Simple bilateral filter
- Modify
 - In our case, reduce contrast of large-scale (illumination)
- Recombine
 - Get final image

Overview

Denoising

Tone mapping

Relighting & texture editing

Discounting Existing Lighting

- Motivation
 - Relighting
 - Image manipulation (e.g. clone brush, texture synthesis)
- Context:
 - The following slides are from a project dealing with images +depth

Inverse Lighting Simulation

Physically-based approaches

e.g. [Fournier et al.93, Drettakis et al.97, Debevec.98, Yu et al.99, Loscos et al. 99, Loscos et al.00]

Inverse simulation

Texture-Illuminance Decoupling

- Not physically based
 - Our "texture" and "illuminance" are reasonable estimates

Texture-Illuminance Decoupling

- Not physically based: Filtering
- Assumptions:
 - Small-scale features \rightarrow "texture"
 - Large-scale features \rightarrow "illuminance"

General Idea

Large-scale features using low-pass filter
 Color is assumed to be from texture

General Idea

• Extract texture from illuminance and input image

"illuminance"

Edge-Preserving Filter

Examples

- [Lvdi Wang, Liyi Wei, Kun Zhou, Baining Guo, Heung-Yeung Shum, EGSR 2007]
- Low-dynamic-range images have under- and over-exposed parts

 Information missing

Separate illumination and texture (Bilateral!)

input

output

input

output

Recap

- Decompose into
 - Large scale (with bilateral filter)
 - Detail (residual: medium+high frequencies)
 - Use big kernels
- Use appropriate domain (log for HDR)
- Manipulate/process independently
- Tone mapping
- Relighting, HDR hallucination
- HDR hallucination