

## SIGGRAPH2008

A Gentle Introduction to Bilateral Filtering and its Applications



#### SIGGRAPH2008

## 07/10: Novel Variants of the Bilateral Filter

Jack Tumblin – EECS, Northwestern University

#### **Review: Bilateral Filter**



## **Review: Bilateral Strengths**

Piecewise smooth result

- averages local small details, ignores outliers
- preserves steps, large-scale ramps, and curves,...
- Some equivalence to anisotropic diffusion, robust statistics [Black98,Elad02,Durand02]
- Simple & Fast (esp. w/ [Durand02], [Paris06], [Porikli08] other speedup methods)



#### **Review: Bilateral Filter**

#### Why it works: graceful segmentation

- Smoothing for 'similar' parts ONLY
- Range Gaussian **s** acts as a 'filtered region' finder





#### **Bilateral Filter Variants**

- Before the 'Bilateral' name :
  - Yaroslavsky (1985): T.D.R.I.M.
  - Smith & Brady (1997): SUSAN
- And now, a growing set of extended variants:
- 'Trilateral' Filter (Choudhury et al., EGSR 2003)
- Cross-Bilateral (Petschnigg04, Eisemann04)
- NL-Means (Buades05)
- Bilateral Retinex(Elad05), Joint-Bilateral Upsampling (Kopf07), many more exist...

And many more coming: application driven...

#### Who was first? Many Pioneers

Elegant, Simple, Broadly useful Idea
 → → 'Invented' several times

 Different Approaches, Increasing Clarity

 Yaroslavsky(1985): 'Transform Domain Image Restoration Methods'
 Smith & Brady (1995): 'SUSAN' "Smallest Univalue Segment-Assimilating Nucleus"
 Tomasi & Manduchi(1998): 'Bilateral Filter'

#### New Idea! 1985 Yaroslavsky:

## A 2-D filter window: $\sqrt{1}$ weights vary with intensity ONLY



Square neighborhood, Gaussian Weighted 'similarity'

Normalize weights to always sum to 1.0



#### **New Idea!** 1995 Smith: 'SUSAN' Filter

A 2-D filter window: weights vary with intensity

Range f(x)Domain

**2 Gaussian Weights:** product = ellisoidal footprint

> Normalize weights to always sum to 1.0



#### **Bilateral Filter: 3 Difficulties**

M

- Poor Smoothing in High Gradient Regions
- Smoothes and blunts cliffs, valleys & ridges
- Can combine disjoint signal regions

Output at • is average of a tiny region

C

## **Bilateral Filter: 3 Difficulties**

- Poor Smoothing in High Gradient Regions
- Smoothes and blunts cliffs, valleys & ridges
- Can combine disjoint signal regions



## **Bilateral Filter: 3 Difficulties**

- Poor Smoothing in High Gradient Regions
- Smoothes and blunts cliffs, valleys & ridges
- Disjoint regions can blend together





#### 'Blunted Corners' → Weak Halos

#### Bilateral :

What we get



#### 'Blunted Corners' → Weak Halos



What

'Trilateral' result

#### Try to fix this: Trilateral Filter (Choudhury 2003)

#### Goal:

Piecewise linear smoothing, not piecewise constant

#### **Method:**

'Steer' Bilateral Filter with smoothed gradients



Position

**EXAMPLE**: remove noise from a piecewise linear scanline

## Outline: Bilateral→Trilateral Filter

#### **Three Key Ideas:**

- **Tilt** the filter window according to bilaterallysmoothed gradients
- Limit the filter window to connected regions of similar smoothed gradient.
- Adjust Parameters Adjust Parameters from measurements of the windowed signal



## Outline: Bilateral→Trilateral Filter

#### Key Ideas:

- **Tilt the filter window** according to bilaterallysmoothed gradients
- Limit the filter window to connected regions of similar smoothed gradient.
- Adjust Parameters
   from measurements
   of the windowed signal



## Outline: Bilateral→Trilateral Filter

#### Key Ideas:

- **Tilt the filter window** according to bilaterallysmoothed gradients
- Limit the filter window to connected regions of similar smoothed gradient.
- Adjust Parameters<sup>1</sup>/<sup>1</sup>/<sub>1</sub>
   from measurements
   of the windowed signal





#### Bilateral



Trilateral



## **Trilateral Filter (Choudhury 2003)**

- Strengths
  - Sharpens corners
  - Smoothes similar gradients
  - Automatic parameter setting
  - 3-D mesh de-noising, too!





- Weaknesses
  - <u>S-L-O-W</u>; very costly connected-region finder
  - Shares Bilateral's 'Lonely Outlier Pixel' artifacts
  - Noise Tolerance limits; disrupts 'tilt' estimates

#### NEW IDEA : 'Joint' or 'Cross' Bilateral' Petschnigg(2004) and Eisemann(2004)

Bilateral  $\rightarrow$  <u>two kinds</u> of weights

**NEW :** get them from <u>two kinds</u> of images.

Smooth image A pixels locally, but
Limit to "similar regions" found in image B

#### Why do this? To get 'best of both images'

## **Ordinary Bilateral Filter**

Bilateral  $\rightarrow$  <u>two kinds</u> of weights, one image A :



### **'Joint' or 'Cross' Bilateral Filter**

NEW: <u>two kinds</u> of weights, <u>two</u> images

$$BF [A]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (||\mathbf{p} - \mathbf{q}||) G_{\sigma_{r}} (|B_{\mathbf{p}} - B_{\mathbf{q}}|) A_{\mathbf{q}}$$
  
A: Noisy, dim  
ambient image)  
$$B: Clean, strong$$
(Flash image)  
$$(Flash image)$$

S

#### Image A: Warm, shadows, but too Noisy (too dim for a good quick photo)



#### Image B: Cold, Shadow-free, Clean (flash: simple light, ALMOST no shadows)



#### MERGE BEST OF BOTH: apply 'Cross Bilateral' or 'Joint Bilateral'



## (it really is *much* better!)



#### **Recovers Weak Signals Hidden by Noise**



#### **Ordinary Bilateral Filter?**



#### **Ordinary Bilateral**



#### 'Cross' or 'Joint' Bilateral Idea:



#### 'Joint' or 'Cross' Bilateral Filter Petschnigg(2004) and Eisemann(2004)

CBF(A,B): smoothes image A only; (e.g. the 'no flash' image)
Limits smoothing to stay within regions where Image B is ~uniform (e.g. flash)

Useful Residues. To transfer details,
 - CBF(A,B) to remove A's noisy details
 - CBF(B,A) to extract B's clean details, and
 - Add to CBF(A,B) → clean, detailed image!

#### New Idea: NL-Means Filter (Buades 2005)

Same goals: 'Smooth within Similar Regions'

- <u>KEY INSIGHT</u>: Generalize, extend 'Similarity'
   <u>Bilateral</u>: Averages neighbors with <u>similar intensities</u>;
  - NL-Means:
     Averages neighbors with

<u>similar neighborhoods</u>!

#### For each and every pixel p:



#### For each and every pixel p: – Define a small, simple fixed size neighborhood;



## For each and every pixel p: Define a small, simple fixed size neighborhood; Define vector V<sub>p</sub>: a list of neighboring pixel values.

<u>'Similar'</u> pixels p, q

#### → SMALL vector distance;

 $||V_p - V_q||^2$ 





 $|| V_p - V_q ||^2$ 





big distance  $\rightarrow$  tiny weight

dist

p, q neighbors define a vector distance;

 $|| V_p - V_q ||^2$ 

Filter with this: No spatial term!



 $NLMF [I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{s}} (\|\mathbf{p} - \mathbf{q}\|) G_{\sigma_{r}} (\|\vec{V}_{\mathbf{p}} - \vec{V}_{\mathbf{q}}\|^{2}) I_{\mathbf{q}}$ 

pixels p, q neighbors Set a vector distance

$$||V_{p} - V_{q}||^{2}$$

Vector Distance to p sets weight for each pixel q

$$NLMF [I]_{\mathbf{p}} = \frac{1}{W_{\mathbf{p}}} \sum_{\mathbf{q} \in S} G_{\sigma_{\mathbf{r}}} \left( \|\vec{V}_{\mathbf{p}} - \vec{V}_{\mathbf{q}}\|^2 \right) I_{\mathbf{q}}$$

 Noisy source image:



Gaussian
 Filter

Low noise, Low detail



• Anisotropic Diffusion:

(Note 'stairsteps': ~ piecewise constant)

• Bilateral Filter:

(better, but similar 'stairsteps':



#### • NL-Means:

Sharp, Low noise, Few artifacts.



## Non-Local Similarity (You, 2008)

- Buades NL Means: vector similarity helps, but is only shift-invariant...
- You: expand to rotation & scale invariance; exploit SIFT for similarity finding...



#### **Weighted Least-Squares Optimization**

http://www.cs.huji.ac.il/~danix/epd/

#### Improved low-halo detail scales....



SIGGRAPH2008 "Edge-Preserving Decompositions for Multi-Scale Tone and Detail Manipulation" Z.Farbman, R. Fattal, ID. Lischinski R. Szeliski

## Many More Possibilities: EXPERIMENT!

Bilateral goals are subjective;

--'Local smoothing within similar regions'
--'Edge-preserving smoothing'
--'Separate large structure & fine detail'
--'Eliminate outliers'
--'Filter within edges, not across them'

• It's simplicity invites new & inventive answers.

![](_page_51_Picture_0.jpeg)

## SIGGRAPH2008

![](_page_52_Picture_0.jpeg)

# 15 Minutes

# •<20 slides