Course Evaluations

http://www.siggraph.org/courses evaluation

4 Random Individuals will win an ATl Radeon™ HD2900XT

http://www.siggraph.org/courses_evaluation

A Gentle Introduction
to Bilateral Filtering and its Applications

BREAK

* Implementation — S. Paris
e Variants - J. Tumblin
* Advanced applications —J. Tumblin

e Limitations and solutions — P. Kornprobst

A Gentle Introduction
to Bilateral Filtering
and its Applications

Z,

SIGGRAPH2007

Recap

Sylvain Paris — MIT CSAIL

Decomposition into
Large-scale and Small-scale Layers

(texture, small scale)

08 -
06
o4 -

02

Weighted Average of Pixels

* Depends on spatial distance
and intensity difference

— Pixels across edges have almost influence

s A

20 40
<+ space =>

BF[I], = el

Y

Z:_Gar (l Ip _Iq |)]q

ges

space

A Gentle Introduction
to Bilateral Filtering
and its Applications

Z,

SIGGRAPH2007

Efficient Implementations
of the Bilateral Filter

Sylvain Paris — MIT CSAIL

Outline

Brute-force Implementation

Separable Kernel [Pham and van Viiet 05]

Box Kernel [weiss 06]

3D Kernel [Paris and Durand 06]

Brute-force Implementation

BF [I], ——ZG (Ilp-al)G, (1 1,-1,1) 1

p qes

For each pixel p

For each pixel g
Compute G, (Ip-qll) G, (11, -1,1) I,

8 megapixel photo: 64,000,000,000,000 iterations!

Complexity

Complexity = “how many operations are
needed, how this number varies”

S = space domain = set of pixel positions

| §'| = cardinality of S = number of pixels

— In the order of 1 to 10 millions

Brute-force implementation: O(| S |*)

Better Brute-force Implementation

Idea: Far away pixels are negligible A

For each pixel p

2. For each pixel o SUCMAIPEGIEEERE

looking at all pixels looking at neighbors only

Discussion

» Complexity: O(| S |xo?)

neighborhood area

* Fast for small kernels: o, ~ 1 or 2 pixels

e BUT: slow for larger kernels

Outline

Brute-force Implementation

Separable Kernel [Pham and Vvan Viiet 05]

Box Kernel [weiss 06]

3D Kernel [Paris and Durand 06]

Separable Kernel [Pham and van Viiet 05]

e Strategy: filter the rows then the columns

* Two “cheap” 1D filters
iInstead of an “expensive” 2D filter

Discussion

 Complexity: O(| S |xo)

— Fast for small kernels (<10 pixels)

e Approximation: BF kernel not separable
— Satisfying at strong edges and uniform areas

— Can introduce visible streaks on textured regions

brute-force
Implementation

separable kernel
mostly OK,

some visible artifacts
(streaks)

Outline

Brute-force Implementation

Separable Kernel [Pham and van Viiet 05]

Box Kernel [weiss 06]

3D Kernel [Paris and Durand 06]

Box Kernel [weiss 06]

* Bilateral filter with a square box window [varoviasky 85]

v, = - X8, (Ip-al)G, (17,~ 1, 1)1, _
9 GE box window
restrict the sum
1
Y[[]p — W Gar (l [p _Iq |)]q
P O e —

iIndependent of position g

* The bilateral filter can be computed only from
the list of pixels in a square neighborhood.

Box Kernel [weiss 06]
* |dea: fast histograms of square windows

Tracking one window

input: update:
full histogram is known add one line, remove one line

Box Kernel [weiss 06]
* |dea: fast histograms of square windows

input: update:
full histograms are known add one line, remove one line,
add two pixels, remove two pixels

1 iteration

Discussion

e Complexity: O(| S'|xlogo,)
— always fast

e Only single-channel images
3 iterations

Exploit vector instructions of CPU

e Visually satisfying results (no artifacts)

— 3 passes to remove artifacts due to
box windows (Mach bands)

brute-force
Implementation

I.- ‘

box kernel

visually different,

yet no artifacts

Outline

Brute-force Implementation

Separable Kernel [Pham and van Viiet 05]

Box Kernel [weiss 06]

3D Kernel [Paris and Durand 06]

3D Kernel [Paris and Durand 06]

* |dea: represent image data such that the weights
depend only on the distance between points

close in space

1D image
Plot
l LI
[: I 1
f(x) N 3
pixel W ge : .
intensity M . | far in range
0d I O
f | L

1st Step: Re-arranging Symbols

BEI1, = == Y6, (1p-al)G, (11, ~1,1) I
p gesS
w,= 36, (Ip-alG, (1, -1,1)

gesS

Multiply first equation by

w, BF[11, = .G, (lp-al)G, (11, -1,1) I,

ges

W, = 26, (p-alaG, (1,-1,I)1

ges

1st Step: Summary

w, BF[Il, = Y.G, (Ilp-al)G, (1,-1,1) I,

ges

w, = Y6, (Ilp-al)G, (17, -1, 1) L

ges

e Similar equations
* No normalization factor anymore

* Don’t forget to divide at the end

2"d Step: Higher-dimensional Space

* “Product of two Gaussians” = higher dim. Gaussian

space

! : range

08 P

08
04
02 P

2"d Step: Higher-dimensional Space

* 0 almost everywhere, I at “plot location”

space

N

range

2"d Step: Higher-dimensional Space
* 0 almost everywhere, I at “plot location”

* Weighted average at each point = Gaussian blur

—

2"d Step: Higher-dimensional Space
* 0 almost everywhere, I at “plot location”

* Weighted average at each point = Gaussian blur

* Result is at “plot location”

e

ul _ New num. scheme:
afwrwar T] * simple operations

L] - + & o) 1 T

Ll mesfone) s oo | * complex space

Higher
dimensional

Homogeneous
intensity

T -

T EERE

-f - Strategy:
apowan e downsampled

L] - + & o) 1 T

Ll mesfone) s oo | convolution

DOWNSAMPLE

Gaussian convolution

Heavily
downsampled

UPSAMPLE

dIVISIOI’l
[slicing] Conceptual view,
uf not exactly

nl ; the actual algorithm

Actual Algorithm

* Never compute full resolution
— On-the-fly downsampling
— On-the-fly upsampling

e 3D sampling rate = (o,,0,,0,)

Pseudo-code: Start

* |nput
—Image [

— Gaussian parameters o, and o;

e Qutput: BF [1]

e Data structure: 3D arrays wi and w (init. to 0)

Pseudo-code:

On-the-fly Downsampling

* For each pixel (X, Y)eS

— Downsample:

(x,3,2) =

— Update:

|

X

O

wi(x, y,z) +=

w(x,v,z) += 1

Pseudo-code:
Convolving

e

DOWNSAMPLE

: e
|
UPSAMPLE

* For each axis ¥, J/) and % - =

— For each 3D point (x, Y, Z)
P Y

 Apply a Gaussian mask (1,4,6,4,1)towiandw
e.g., for the x axis:

wi’(x) = wi(x-2) + 4.wi(x-1) + 6.wi(x) + 4.wi(x+1) + wi(x+2)

Pseudo-code:
On-the-fly Upsampling

* For each pixel (X, Y)eS

DOWNSAMPLE

— Linearly interpolate the values in the 3D arrays

interpolate(wi, X,Y,1(X,Y))

BF[I|(X,Y) =

interpolate(w, X,Y,1(X,Y))

number number

DiScussion ofpixels of 3D cells

|R|: number of

|S'||R| gray levels
ol o,

e Complexity: 0£|S| +

* Fast for medium and large kernels

— Can be ported on GPU [Chen 07]: always very fast
e Can be extended to color images but slower

* Visually similar to brute-force computation

brute-force
Implementation

3D kernel
visually similar

Running Times

E’ﬂ L

—
=

time {in) [log scale]

el 5T
T .
05 e e ey -_l'i.'_i_l_l_l_l_l_i:_l g o

100
spatial radius ¢, of the kernel (in pixels) [log scale]

How to Choose an Implementation?

Depends a lot on the application. A few guidelines:
e Brute-force: tiny kernels or if accuracy is paramount

 Box Kernel: for short running times on CPU with
any kernel size, e.g. editing package

e 3D kernel:
— If GPU available

— If only CPU available: large kernels, color images, cross BF
(e.g., good for computational photography)

Questions ?

	Course Evaluations
	A Gentle Introduction �to Bilateral Filtering and its Applications
	A Gentle Introduction�to Bilateral Filtering�and its Applications
	Decomposition into �Large-scale and Small-scale Layers
	Weighted Average of Pixels
	A Gentle Introduction�to Bilateral Filtering�and its Applications
	Outline
	Brute-force Implementation
	Complexity
	Better Brute-force Implementation
	Discussion
	Outline
	Separable Kernel
	Discussion
	Outline
	Box Kernel
	Box Kernel
	Box Kernel
	Discussion
	Outline
	3D Kernel
	1st Step: Re-arranging Symbols
	1st Step: Summary
	2nd Step: Higher-dimensional Space
	2nd Step: Higher-dimensional Space
	2nd Step: Higher-dimensional Space
	2nd Step: Higher-dimensional Space
	Actual Algorithm
	Pseudo-code: Start
	Pseudo-code: �On-the-fly Downsampling
	Pseudo-code: �Convolving
	Pseudo-code: �On-the-fly Upsampling
	Discussion
	Running Times
	How to Choose an Implementation?
	Questions ?

