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A Gentle Introduction
to Bilateral Filtering and its Applications

BREAK

* Implementation — S. Paris
e Variants - J. Tumblin
* Advanced applications —J. Tumblin

e Limitations and solutions — P. Kornprobst



A Gentle Introduction
to Bilateral Filtering
and its Applications

Z,

SIGGRAPH2007

Recap

Sylvain Paris — MIT CSAIL



Decomposition into
Large-scale and Small-scale Layers

(texture, small scale)
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Weighted Average of Pixels

* Depends on spatial distance
and intensity difference

— Pixels across edges have almost influence
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Brute-force Implementation

Separable Kernel [Pham and van Viiet 05]

Box Kernel [weiss 06]

3D Kernel [Paris and Durand 06]



Brute-force Implementation

BF [I], ——ZG (Ilp-al)G, (1 1,-1,1) 1

p qes

For each pixel p

For each pixel g
Compute G, (Ip-qll) G, (11, -1,1) I,

8 megapixel photo: 64,000,000,000,000 iterations!



Complexity

Complexity = “how many operations are
needed, how this number varies”

S = space domain = set of pixel positions

| §'| = cardinality of S = number of pixels

— In the order of 1 to 10 millions

Brute-force implementation: O(| S |*)



Better Brute-force Implementation

Idea: Far away pixels are negligible A

For each pixel p

2. For each pixel o SUCMAIPEGIEEERE

looking at all pixels looking at neighbors only




Discussion

» Complexity: O(| S |xo?)

neighborhood area

* Fast for small kernels: o, ~ 1 or 2 pixels

e BUT: slow for larger kernels
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Brute-force Implementation

Separable Kernel [Pham and Vvan Viiet 05]

Box Kernel [weiss 06]

3D Kernel [Paris and Durand 06]



Separable Kernel [Pham and van Viiet 05]

e Strategy: filter the rows then the columns

* Two “cheap” 1D filters
iInstead of an “expensive” 2D filter



Discussion

 Complexity: O(| S |xo)

— Fast for small kernels (<10 pixels)

e Approximation: BF kernel not separable
— Satisfying at strong edges and uniform areas

— Can introduce visible streaks on textured regions






brute-force
Implementation




separable kernel
mostly OK,

some visible artifacts
(streaks)
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Brute-force Implementation

Separable Kernel [Pham and van Viiet 05]

Box Kernel [weiss 06]

3D Kernel [Paris and Durand 06]



Box Kernel [weiss 06]

* Bilateral filter with a square box window [varoviasky 85]

v, = - X8, (Ip-al)G, (17,~ 1, 1)1, _
9 GE box window
restrict the sum
1
Y[[]p — W Gar (l [p _Iq |)]q
P O e —

iIndependent of position g

* The bilateral filter can be computed only from
the list of pixels in a square neighborhood.



Box Kernel [weiss 06]
* |dea: fast histograms of square windows

Tracking one window

input: update:
full histogram is known add one line, remove one line



Box Kernel [weiss 06]
* |dea: fast histograms of square windows

input: update:
full histograms are known add one line, remove one line,
add two pixels, remove two pixels




1 iteration

Discussion

e Complexity: O(| S'|xlogo,)
— always fast

e Only single-channel images
3 iterations

Exploit vector instructions of CPU

e Visually satisfying results (no artifacts)

— 3 passes to remove artifacts due to
box windows (Mach bands)







brute-force
Implementation




I.- ‘

box kernel

visually different,

yet no artifacts
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Brute-force Implementation

Separable Kernel [Pham and van Viiet 05]

Box Kernel [weiss 06]

3D Kernel [Paris and Durand 06]



3D Kernel [Paris and Durand 06]

* |dea: represent image data such that the weights
depend only on the distance between points

close in space

1D image
Plot
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1st Step: Re-arranging Symbols

BEI1, = == Y6, (1p-al)G, (11, ~1,1) I
p gesS
w,= 36, (Ip-alG, (1, -1,1)

gesS

Multiply first equation by

w, BF[11, = .G, (lp-al)G, (11, -1,1) I,

ges

W, = 26, (p-alaG, (1,-1,I)1

ges



1st Step: Summary

w, BF[Il, = Y.G, (Ilp-al)G, (1,-1,1) I,

ges

w, = Y6, (Ilp-al)G, (17, -1, 1) L

ges

e Similar equations
* No normalization factor anymore

* Don’t forget to divide at the end



2"d Step: Higher-dimensional Space

* “Product of two Gaussians” = higher dim. Gaussian

space
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2"d Step: Higher-dimensional Space

* 0 almost everywhere, I at “plot location”

space

N

range




2"d Step: Higher-dimensional Space
* 0 almost everywhere, I at “plot location”

* Weighted average at each point = Gaussian blur

—



2"d Step: Higher-dimensional Space
* 0 almost everywhere, I at “plot location”

* Weighted average at each point = Gaussian blur

* Result is at “plot location”

e




ul _ New num. scheme:
afwrwar T ] * simple operations

L] - + & o) 1 T

Ll mesfone) s oo | * complex space

Higher
dimensional

Homogeneous
intensity

T -
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-f - Strategy:
apowan e downsampled

L] - + & o) 1 T

Ll mesfone) s oo | convolution

DOWNSAMPLE

Gaussian convolution

Heavily
downsampled

UPSAMPLE

dIVISIOI’l
[ slicing ] Conceptual view,
uf not exactly

nl ; the actual algorithm




Actual Algorithm

* Never compute full resolution
— On-the-fly downsampling
— On-the-fly upsampling

e 3D sampling rate = (o,,0,,0,)



Pseudo-code: Start

* |nput
—Image [

— Gaussian parameters o, and o;

e Qutput: BF [ 1]

e Data structure: 3D arrays wi and w (init. to 0)



Pseudo-code:

On-the-fly Downsampling

* For each pixel (X, Y)eS

— Downsample:

(x,3,2) =

— Update:

|

X

O

wi(x, y,z) +=

w(x,v,z) += 1



Pseudo-code:
Convolving

e

DOWNSAMPLE

: e
|
UPSAMPLE

* For each axis ¥, J/) and % - =

— For each 3D point (x, Y, Z)
P Y

 Apply a Gaussian mask (1,4,6,4,1)towiandw
e.g., for the x axis:

wi’(x) = wi(x-2) + 4.wi(x-1) + 6.wi(x) + 4.wi(x+1) + wi(x+2)



Pseudo-code:
On-the-fly Upsampling

* For each pixel (X, Y)eS

DOWNSAMPLE

— Linearly interpolate the values in the 3D arrays

interpolate(wi, X,Y,1(X,Y))

BF[I|(X,Y) =

interpolate(w, X,Y,1(X,Y))



number number

DiScussion  ofpixels of 3D cells

|R|: number of

|S'||R| gray levels
ol o,

e Complexity: 0£|S| +

* Fast for medium and large kernels

— Can be ported on GPU [Chen 07]: always very fast
e Can be extended to color images but slower

* Visually similar to brute-force computation






brute-force
Implementation




3D kernel
visually similar




Running Times

E’ﬂ L

—
=

time {in ) [log scale]

el 5T
T .
05 e e ey -_l'i.'_i_l_l_l_l_l_i:_l g o

100
spatial radius ¢, of the kernel (in pixels) [log scale]



How to Choose an Implementation?

Depends a lot on the application. A few guidelines:
e Brute-force: tiny kernels or if accuracy is paramount

 Box Kernel: for short running times on CPU with
any kernel size, e.g. editing package

e 3D kernel:
— If GPU available

— If only CPU available: large kernels, color images, cross BF
(e.g., good for computational photography)



Questions ?
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