
A Fast Approximation of the Bilateral Filter

using a Signal Processing Approach

Sylvain Paris Frédo Durand

Massachusetts Institute of Technology

Computer Science and Artificial Intelligence Laboratory

Abstract

The bilateral filter is a nonlinear filter that smoothes a signal while preserving strong edges.

It has demonstrated great effectiveness for a variety of problems in computer vision and computer

graphics, and fast versions have been proposed. Unfortunately, little is known about the accuracy

of such accelerations. In this paper, we propose a new signal-processing analysis of the bilateral

filter which complements the recent studies that analyzed it as a PDE or as a robust statistical

estimator. The key to our analysis is to express the filter in a higher-dimensional space where the

signal intensity is added to the original domain dimensions. Importantly, this signal-processing

perspective allows us to develop a novel bilateral filtering acceleration using downsampling in

space and intensity. This affords a principled expression of accuracy in terms of bandwidth and

sampling. The bilateral filter can be expressed as linear convolutions in this augmented space

followed by two simple nonlinearities. This allows us to derive criteria for downsampling the key

operations and achieving important acceleration of the bilateral filter. We show that, for the same

running time, our method is more accurate than previous acceleration techniques. Typically, we

are able to process a 2 megapixel image using our acceleration technique in less than a second, and

have the result be visually similar to the exact computation that takes several tens of minutes.

The acceleration is most effective with large spatial kernels. Furthermore, this approach extends

naturally to color images and cross bilateral filtering.

1 Introduction

The bilateral filter is a nonlinear filter proposed by Aurich and Weule [1995], Smith and Brady [1997],

and Tomasi and Manduchi [1998] to smooth images. It has been adopted for several applications such as

image denoising [Tomasi and Manduchi, 1998; Liu et al., 2006], relighting and texture manipulation [Oh

et al., 2001], dynamic range compression [Durand and Dorsey, 2002], illumination correction [Elad,

2005], and photograph enhancement [Eisemann and Durand, 2004; Petschnigg et al., 2004; Bae et al.,

2006]. It has also be adapted to other domains such as mesh fairing [Jones et al., 2003; Fleishman et al.,

2003], volumetric denoising [Wong et al., 2004], optical flow and motion estimation [Xiao et al., 2006;

Sand and Teller, 2006], and video processing [Bennett and McMillan, 2005; Winnemöller et al., 2006].

This large success stems from several origins. First, its formulation and implementation are simple:

a pixel is simply replaced by a weighted mean of its neighbors. And it is easy to adapt to a given

context as long as a distance can be computed between two pixel values (e.g. distance between hair

orientations [Paris et al., 2004]). The bilateral filter is also non-iterative, thereby achieving satisfying

1

results with only a single pass. This makes the filter’s parameters relatively intuitive since their effects

are not cumulated over several iterations.

The bilateral filter has proven to be very useful, however it is slow. It is nonlinear and its evaluation

is computationally expensive since traditional accelerations, such as performing convolution after an

FFT, are not applicable. Brute-force computation is on the order of tens of minutes. Nonetheless,

solutions have been proposed to speed up the evaluation of the bilateral filter [Durand and Dorsey,

2002; Elad, 2002; Pham and van Vliet, 2005; Weiss, 2006]. Unfortunately, most of these methods rely

on approximations that are not grounded on firm theoretical foundations, and it is difficult to evaluate

the accuracy that is sacrificed.

Overview In this paper, we build on this body of work but we interpret the bilateral filter in terms

of signal processing in a higher-dimensional space. This allows us to derive an improved acceleration

scheme that yields equivalent running times but dramatically improves accuracy. The key idea of

our technique is to analyze the frequency content of this higher-dimensional space. We demonstrate

that in this new representation, the signal of interest is mostly low-frequency and can be accurately

approximated using coarse sampling, thereby reducing the amount of data to be processed. The quality

of the results is evaluated both numerically and visually to characterize the strengths and limitations

of the proposed method. Our study shows that our technique is especially fast with large kernels and

achieves a close match to the exact computation. As a consequence, our approach is well-suited for

applications in the field of computational photography, as illustrated by a few examples. Furthermore,

we believe that our new high-dimensional interpretation of images and its low-sampling-rate encoding

provide novel and powerful means for edge-preserving image manipulation in general.

This article extends our conference paper [Paris and Durand, 2006]. We provide more detailed

description and discussion, including the algorithm pseudo-code. We conducted new conceptual and

quantitative comparisons with existing approximations of the bilateral filter. We describe a new

and faster implementation based on direct convolution with a small kernel rather than FFT, and

demonstrate and discuss the extension of our acceleration scheme to color-image filtering and cross

bilateral filtering. We also refer readers to our recent work that extends the image representation

described in this article to other edge-aware applications beyond bilateral filtering such as scribble

interpolation, painting, and local histogram equalization [Chen et al., 2007].

2 Related Work

The bilateral filter was first introduced by Aurich and Weule [1995] under the name “nonlinear Gaussian

filter”, then by Smith and Brady [1997] as part of the “SUSAN” framework. It was rediscovered later

by Tomasi and Manduchi [1998] who called it the “bilateral filter” which is now the most commonly

used name. The filter output at each pixel is a weighted average of its neighbors. The weight assigned

to each neighbor decreases with both the distance in the image plane (the spatial domain S) and the

distance on the intensity axis (the range domain R). Using a Gaussian Gσ as a decreasing function,

and considering a gray-level image I, the result Ib of the bilateral filter is defined by:

Ib
p

=
1

W b
p

∑

q∈S

Gσs(||p− q||) Gσr(|Ip − Iq|) Iq (1a)

with W b
p

=
∑

q∈S

Gσs(||p− q||) Gσr(|Ip − Iq|) (1b)

2

The parameter σs defines the size of the spatial neighborhood used to filter a pixel, and σr controls

how much an adjacent pixel is downweighted because of the intensity difference. W b normalizes the

sum of the weights.

2.1 Choice of the Weighting Functions

The bilateral filter can be defined with various weighting functions. The choice of the spatial function

is mainly driven by its frequency spectrum. Two options have been explored in the literature: a box

function [Yaroslavsky, 1985; Weiss, 2006] that leads to simple computation due to its binary nature

but introduces Mach bands and thus requires several iterations of the bilateral filter (see Section 6.3

for details), and a Gaussian kernel which is computationally more expensive but does not require

iterations. In practice, the latter option is mostly used.

Durand and Dorsey [2002] showed that the choice of the range function can be interpreted in terms

of robust statistics [Huber, 1981; Hampel et al., 1986; Black et al., 1998]. Different functions yield to

different behaviors with respect to outliers. For instance, compactly supported functions are insensitive

to gross outliers but are not able to filter out extreme defects such as salt-and-pepper noise.

In this article, we focus on the Gaussian bilateral filter which uses Gaussian kernels for both the

spatial and range weights because all the practical applications use this version. Furthermore, we

will see that these two Gaussian kernels can be elegantly combined into a single higher-dimensional

Gaussian kernel leading to a well-defined notion of bandwidth for the bilateral filter. We keep the

study of other weighting functions as future work.

2.2 Link with Other Filters

Barash [2002] showed that the two weight functions are actually equivalent to a single weight function

based on a distance defined on S×R. Using this approach, he related the bilateral filter to adaptive

smoothing. Our work follows a similar idea and also uses S×R to describe bilateral filtering. Our

formulation is nonetheless significantly different because we not only use the higher-dimensional space

for the definition of a distance, but we also use convolution in this space. Elad [2002] demonstrated

that the bilateral filter is similar to using Jacobi iterations to minimize an energy function defined

over a large neighborhood. Buades et al. [2005] exposed an asymptotic analysis of the Yaroslavsky

filter which is a special case of the bilateral filter with a step function as spatial weight [Yaroslavsky,

1985]. They proved that asymptotically, the Yaroslavsky filter behaves as the Perona-Malik filter, i.e.

it alternates between smoothing and shock formation depending on the gradient intensity. Aurich and

Weule [1995] pointed out the link with robust statistics [Huber, 1981; Hampel et al., 1986; Black et al.,

1998]. Durand and Dorsey [2002] also cast their study into this framework and showed that the bilateral

filter is a w -estimator [Hampel et al., 1986] (p.116). This explains the role of the range weight in terms

of sensitivity to outliers. They also pointed out that the bilateral filter can be seen as an extension of

the Perona-Malik filter using a larger neighborhood and a single iteration. Weickert et al. [1998] and

Barash et al. [2003] described acceleration techniques for PDE filters. They split the multi-dimensional

differential operators into combinations of one-dimensional operators that can be efficiently integrated.

The obtained speed-up stems from the small spatial footprint of the 1D operators, and the extension

to bilateral filtering is unclear. Van de Weijer and van den Boomgaard [2001] demonstrated that the

bilateral filter is the first iteration of a process that seeks the local mode of the intensity histogram of

the adjacent pixels. Mrázek et al. [2006] related bilateral filtering to a large family of nonlinear filters.

From a single equation, they expressed filters such as anisotropic diffusion and statistical estimators

by varying the neighborhood size and the involved functions.

3

The main difference between our study and existing work is that the previous approaches link

bilateral filtering to another nonlinear filter based on PDEs or statistics whereas we cast our study

into a signal processing framework. We demonstrate that the bilateral filter can be mainly computed

with linear operations, leaving the nonlinearities to be grouped in a final step.

2.3 Variants of the Bilateral Filter

Higher-Order Filters The bilateral filter implicitly assumes that the desired output should be

piecewise constant: such an image is unchanged by the filter when the step discontinuities between

constant parts are high enough. Several articles [Elad, 2002; Choudhury and Tumblin, 2003; Buades

et al., 2005] extended the bilateral filter to a piecewise-linear assumption. They share the same idea and

characterize the local “slope” of the image intensity to better represent the local shape of the signal.

Thus, they define a modified filter that better preserves the image characteristics. In particular, they

avoid the formation of shocks. We have not explored this direction but it is an interesting avenue for

future work.

Cross Bilateral Filter In computational photography applications, it is often useful to decouple

the data I to be smoothed from the data E defining the edges to be preserved. For instance, in a “flash

no-flash” scenario [Eisemann and Durand, 2004; Petschnigg et al., 2004], a picture P nf is taken in a

dark environment without flash and another picture P f is taken with flash. Directly smoothing P nf is

hard because of the high noise level typical of low-light images. To address this problem, Eisemann and

Durand [2004] and Petschnigg et al. [2004] introduced the cross bilateral filter (a.k.a. joint bilateral

filter) as a variant of the classical bilateral filter. This filter smoothes the no-flash picture P nf = I

while relying on the flash version P f = E to locate the edges to preserve. The definition is similar to

Equation 1 except that E replaces I in the range weight Gσr :

Ic
p

=
1

W c
p

∑

q∈S

Gσs(||p− q||) Gσr(|Ep − Eq|) Iq

with W c
p

=
∑

q∈S

Gσs(||p− q||) Gσr(|Ep − Eq|)

Aurich and Weule [1995] introduced ideas related to the cross bilateral filter, but for a single input

image when the filter is iterated. After a number of iterations of bilateral filtering, they filter the

original images using range weights derived from the last iteration.

The method described in this article also applies to cross bilateral filtering.

Channel Smoothing Felsberg et al. [2006] described an efficient smoothing method based on a

careful design of the intensity weighting function. They showed that B-splines enable the discretiza-

tion of the intensity range into a small set of channels. Filtering these channels yields smooth images

with preserved edges akin to the output of the bilateral filter. B-splines allowed for a precise theo-

retical characterization of their filter using robust statistics. The downside of B-splines is the higher

computational effort required to handle them. This approach and ours are complementary and closely

related on a number of points that we discuss in Section 9.2.

2.4 Fast Methods for Bilateral Filtering

The work most related to ours are the techniques that speed up the evaluation of the bilateral filter.

There are two categories of acceleration schemes: specialized filters that perform an exact computation

4

but are restricted to a specific scenario, and approximated filters that are more general but do not

produce exact results.

Exact Computation Elad [2002] used Gauss-Seidel iterations to accelerate the convergence of it-

erative filtering. This technique is only useful when the filter is iterated to reach the stable point,

which is not the standard use of the bilateral filter (one iteration or only a few). Weiss [2006] de-

scribes an efficient algorithm to incrementally compute the intensity histogram of the square windows

surrounding each pixel. This technique is primarily used for median filtering. As an extension, Weiss

showed that integrating these histograms weighted by a range function Gσr (cf. Equation 1) is equiv-

alent to calculating a bilateral filter where a step function is used on a square window instead of the

isotropic Gaussian Gσs . This filter actually corresponds to a Yaroslavsky filter computed on square

neighborhoods. The achieved computation times are on the order of a few seconds for 8 megapixel

images. The downside is that the spatial weighting is restricted to a step function that incurs defects

such as ripples near strong edges because its Fourier transform contains numerous zeros. In addition,

this technique can only handle color images channel-per-channel, which can introduce color-bleeding

artifacts. Although these two techniques are fast and produce an exact result, they are too specialized

for many applications such as image editing as shown later.

Approximate Computation At the cost of an approximate result, several authors propose fast

methods that address more general scenarios. For instance, Weiss [2006] iterated his filter based on

square windows to obtain a smoother profile, thereby removing the ripple defects. To avoid shocks

that sharpen edges and result in a cartoon look, the range weights Gσr are kept constant through the

iterations i.e. they are always evaluated according to the original input picture. Van de Weijer and

van den Boomgaard [2001] showed that it corresponds to a search for the closest local mode in the

neighborhood histogram.

Durand and Dorsey [2002] linearized the bilateral filter which makes possible the use of fast Fourier

transforms. They also downsample the data to accelerate the computation to a second or less for one-

megapixel images. Although their article mentions FFT computation for the linearized bilateral filter,

once the data is downsampled, a direct convolution is more efficient because the kernel is small enough.

While their article does not emphasize it, their final results are obtained with direct convolution,

without FFT. Our technique is related to their work in that we also express the bilateral filter with

linear operations and draw much of our speedup from downsampling. However, our formulation relies

on a more principled expression based on a new higher dimensional interpretation of images. This

affords a solid signal processing perspective on the bilateral filter and improved accuracy.

Pham and van Vliet [2005] applied a 1D bilateral filter independently on each image row and then

on each column. It produces smooth results that still preserve edges. The convolutions are performed

in the spatial domain (without FFT). Compared to brute-force computation, all these approximations

yield a better computational complexity and shorter running times suitable for interactive applications,

and even real-time processing using modern graphics cards [Winnemöller et al., 2006]. However, no

theoretical study is proposed, and the accuracy of these approximations is unclear. In contrast, we base

our technique on signal processing grounds which helps us to define a new and meaningful numerical

scheme. Our algorithm performs low-pass filtering in a higher-dimensional space. We show that

our approach extends naturally to color images and can also be used to speed up cross-bilateral

filtering [Eisemann and Durand, 2004; Petschnigg et al., 2004]. The cost of a higher-dimensional

convolution is offset by downsampling the data without significant accuracy loss, thereby yielding a

better precision for running times equivalent to existing methods.

5

2.5 Contributions

This paper introduces the following contributions:

• An interpretation of the bilateral filter in a signal processing framework. Using a higher dimen-

sional space, we formulate the bilateral filter as a convolution followed by simple nonlinearities.

• Using this higher dimensional space, we demonstrate that the convolution computation can be

downsampled without significant impact on the resulting accuracy. This approximation technique

enables a speed-up of several orders of magnitude while controlling the induced error.

• We evaluate the accuracy and performance of the proposed acceleration over several scenarios.

The obtained results are compared to existing techniques, thereby characterizing the strengths

and limitations of our approach.

• We show that this method naturally handles color images and can be easily adapted to cross

bilateral filtering.

2.6 Notation

Table 1 summarizes the main notation we use throughout this article. All the vectors in this paper

are column vectors. We sometimes use a row notation and omit the transpose sign to prevent clutter

in the equations.

S spatial domain R range domain

I , W ... 2D functions defined on S i, w... 3D functions defined on S×R

p, C... vectors p ∈ S pixel position (2D vector)

||x|| L2 norm of vector x Ip ∈ R image intensity at p

⊗ convolution operator δ(x) Kronecker symbol (1 if x = 0, 0 otherwise)

Gσ 1D Gaussian: x 7→ exp(− x2

2σ2) gσs,σr 3D Gaussian: (x, ζ) ∈ S×R 7→ exp(− x·x
2σs2

− ζ2

2σr2
)

ss, sr sampling rates (space and range) σs, σr Gaussian parameters (space and range)

Ib result of the bilateral filter W b normalization factor

Table 1: Notation used in the paper.

3 Signal Processing Approach

We propose a new interpretation of the bilateral filter as a higher-dimensional convolution followed by

two nonlinearities. For this, we propose two important re-interpretations of the filter that respectively

deal with its two nonlinear components: the normalization division and the data-dependent weights

(Equation 1). First, we define a homogeneous intensity that will allow us to obtain the normalization

term W b
p

as a homogeneous component. Second, we introduce an additional dimension to the 2D image

domain, corresponding to the image intensity a.k.a. range. While the visualization of images as height

fields in such 3D space is not new, we actually go further and interpret filtering using functions over

this full 3D domain, which allows us to express the bilateral filter as a linear shift-invariant convolution

in 3D. This convolution is followed by simple pixel-wise nonlinearities to extract the relevant output

and perform the normalization by our homogeneous component.

6

3.1 Homogeneous Intensity

Similar to any weighted average, the two lines of Equation 1 that define the bilateral filter output and

its normalization factor are almost the same. The main difference is the normalizing factor W b
p

and

the image intensity Iq in the first equation. We emphasize this similarity by multiplying both sides of

Equation 1a by W b
p
. We then rewrite the equations using two-dimensional vectors:

W b
p

Ib
p

W b
p

 =
∑

q∈S

Gσs(||p− q||) Gσr(|Ip − Iq|)

Iq

1

 (2)

where Gσs and Gσr are Gaussian functions, S is the spatial domain, I the input image, and Ib the

result of the bilateral filter. To maintain the property that the bilateral filter is a weighted mean, we

assign a weight W = 1 to the input values:

W b
p

Ib
p

W b
p

 =
∑

q∈S

Gσs(||p− q||) Gσr(|Ip − Iq|)

Wq Iq

Wq

 (3)

By assigning a couple (Wq Iq, Wq) to each pixel q, we express the filtered pixels as linear com-

binations of their adjacent pixels. Of course, we have not “removed” the division since to access the

actual value of the intensity, the first coordinate (WI) still has to be divided by the second one (W).

This is similar to homogeneous coordinates used in projective geometry. Adding an extra coordinate

to our data makes most of the computation pipeline computable with linear operations; a division is

made only at the final stage. Inspired by this parallel, we call the two-dimensional vector (WI, W) the

homogeneous intensity. It is also related to the use of pre-multiplied alpha in image algebra [Porter

and Duff, 1984; Blinn, 1996; Willis, 2006]. We discuss this aspect in Section 7.1.1.

An important aspect of this homogeneous formulation is its exact equivalence with the original

formulation (Equation 1). Using a homogeneous representation enables a simpler formulation of the

filter. However, although Equation 3 is a linear combination, this does not define a linear filter yet

since the weights depend on the actual values of the pixels. The next section addresses this issue.

3.2 The Bilateral Filter as a Convolution

If we ignore the term Gσr(|Ip − Iq|), Equation 3 is a classical convolution by a Gaussian kernel:

(W b Ib, W b) = Gσs ⊗ (WI, W). Furthermore, it has been pointed out that the product of the spatial

and range Gaussian defines a higher dimensional Gaussian in the 3D product space of the domain and

range of the image. However, this 3D Gaussian interpretation has so far only been used to illustrate

the weights of the filter, not to linearize computation. Since these weights are in 3D but the summation

in Equation 1 is only over the 2D spatial domain, it does not define a convolution. To overcome this,

we push the 3D interpretation further and define an intensity value for each point of the product space

so that we can define a summation over this full 3D space.

Formally, we introduce an additional dimension ζ and define the intensity I for each point (x, y, ζ).

With the Kronecker symbol δ(ζ) (δ(0) = 1, δ(ζ) = 0 otherwise) and R the interval on which the

intensity is defined, we rewrite Equation 3 using δ(ζ − Iq) such that the terms are cancelled when

ζ 6= Iq:

W b
p

Ib
p

W b
p

 =
∑

q∈S

∑

ζ∈R

Gσs(||p− q||) Gσr(|Ip − ζ|) δ(ζ − Iq)

Wq Iq

Wq

 (4)

7

Equation 4 is a sum over the product space S×R. We now focus on this space. We use lowercase

names for the functions defined on S×R. The product GσsGσr defines a separable Gaussian kernel

gσs,σr on S×R:

gσs,σr : (x ∈ S, ζ ∈ R) 7→ Gσs(||x||) Gσr(|ζ|) (5)

From the remaining part of Equation 4, we build two functions i and w:

i : (x ∈ S, ζ ∈ R) 7→ Ix (6a)

w : (x ∈ S, ζ ∈ R) 7→ δ(ζ − Ix) = δ(ζ − Ix) Wx since Wx = 1 (6b)

With Definitions 6, we rewrite the right side of Equation 4:

δ(ζ − Iq)

Wq Iq

Wq

 =

δ(ζ − Iq) Wq Iq

δ(ζ − Iq) Wq

 =

w(q, ζ) i(q, ζ)

w(q, ζ)

 (7)

Then with Definition 5, we get:

W b
p

Ib
p

W b
p

 =
∑

(q,ζ)∈S×R

gσs,σr(p− q, Ip − ζ)

w(q, ζ) i(q, ζ)

w(q, ζ)

 (8)

The above formula corresponds to the value at point (p, Ip) of a convolution between gσs,σr and the

two-dimensional function (wi, w):

W b
p

Ib
p

W b
p

 =

gσs,σr ⊗

wi

w

 (p, Ip) (9)

According to the above equation, we introduce the functions ib and wb:

(wb ib, wb) = gσs,σr ⊗ (wi, w) (10)

Thus, we have reached our goal. The bilateral filter is expressed as a convolution followed by nonlinear

operations:

linear: 3D convolution (wb ib, wb) = gσs,σr ⊗ (wi, w) (11a)

nonlinear: slicing+division Ib
p

=
wb(p, Ip) ib(p, Ip)

wb(p, Ip)
(11b)

The nonlinear section is actually composed of two operations. The functions wbib and wb are evaluated

at point (p, Ip). We name this operation slicing. The second nonlinear operation is the division that

retrieves the intensity value from the homogeneous vector. This division corresponds to applying the

normalization that we delayed earlier. In our case, slicing and division commute i.e. the result is

independent of their order because gσs,σr is positive and w values are 0 and 1, which ensures that wb

is positive.

8

3.3 Intuition

To gain more intuition about our formulation of the bilateral filter, we propose an informal description

of the process before further discussing its consequences.

x

ζ

x

ζ

x

ζ

x

ζ

x

ζ

sampling in the xζ space

space (x)

ra
n
g
e
 (

ζ
)

Gaussian convolution

division

slicing

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

w

w
b i b w b

w i

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Fig. 1: Our computation pipeline applied to a 1D signal. The original data (top row) are represented by a two-dimensional
function (wi, w) (second row). This function is convolved with a Gaussian kernel to form (wb ib, wb) (third row). The
first component is then divided by the second (fourth row, blue area is undefined because of numerical limitation,
wb ≈ 0). Then the final result (last row) is extracted by sampling the former result at the location of the original data
(shown in red on the fourth row).

The spatial domain S is a classical xy image plane and the range domain R is a simple axis

labelled ζ. The w function can be interpreted as “the plot in the xyζ space of ζ = I(x, y)” i.e. w is

null everywhere except on the points (x, y, I(x, y)) where it is equal to 1. The wi product is similar

to w. Instead of using binary values 0 or 1 to “plot I”, we use 0 or I(x, y) i.e. it is a plot with a pen

whose brightness equals the plotted value. An example is shown in Figure 1.

Using these two functions wi and w, the bilateral filter is computed as follows. First, we “blur” wi

and w, that is we convolve wi and w with a Gaussian defined on xyζ. This results in the functions

9

wb ib and wb. For each point of the xyζ space, we compute ib(x, y, ζ) by dividing wb(x, y, ζ) ib(x, y, ζ)

by wb(x, y, ζ). The final step is to get the value of the pixel (x, y) of the filtered image Ib. This

corresponds directly to the value of ib at (x, y, I(x, y)) which is the point where the input image I was

“plotted”. Figure 1 illustrates this process on a simple 1D image.

Note that although the 3D functions get smoothed agressively, the slicing nonlinearity makes the

output of the filter piecewise-smooth and the strong edges of the input are preserved.

4 Fast Approximation

The key idea which speeds up the computation is computing the 3D convolution at a coarse resolution.

For this, we demonstrate that the wi and w functions can be downsampled without introducing

significant errors. In fact, we never construct the full-resolution product space. This ensures the

good memory and speed performance of our method. We discuss the practical implementation of this

strategy and analyze the accuracy and performance of the proposed technique.

4.1 Downsampling the Data

We have shown that the bilateral filter can be interpreted as a Gaussian filter in a product space. Our

acceleration scheme directly follows from the fact that this operation is a low-pass filter. (wb ib, wb) is

a band-limited function which is well approximated by its low frequencies. According to the sampling

theorem [Shannon, 1949], [Smith, 2002] (p.35), it is sufficient to sample with a rate at least half of the

smallest wavelength considered. We exploit this idea by performing the convolution at a lower resolu-

tion. Formally, we downsample (wi, w), perform the convolution, and upsample the result as indicated

by the following equations. Note, however, that our implementation never stores full-resolution data:

the high-resolution data is built at each pixel and downsampled on the fly, and we upsample only at

the slicing location. The notion of using a high-resolution 3D space which we then downsample is used

only for formal exposition (cf. Section 4.2 for implementation details):

(w↓i↓, w↓) = downsample(wi, w) [computed on the fly] (12a)

(wb
↓ ib↓ , w

b
↓) = gσs,σr ⊗ (w↓i↓, w↓) (12b)

(wb
↓↑ ib↓↑, w

b
↓↑) = upsample(wb

↓ ib↓, w
b
↓) [evaluated only at slicing location] (12c)

The rest of the computation remains the same except that we slice and divide (wb
↓↑ ib↓↑, w

b
↓↑) instead

of (wb ib, wb), using the same (p, Ip) points. Since slicing occurs at points where w = 1, it guaran-

tees wb ≥ gσs,σr(0), which ensures that we do not divide by small numbers that would degrade our

approximation.

We use box-filtering for the prefilter of the downsampling (a.k.a. average downsampling), that is,

we first convolve the data with a box profile before downsampling. For upsampling, we use linear

interpolation. While these filters do not have perfect frequency responses, they offer much better

performances than schemes such as tri-cubic filters. We name ss and sr the sampling rates of S and

R, i.e. we use a box function that measures ss × ss pixels and sr intensity units.

4.2 Implementation

This section details the actual implementation of our algorithm. We have not performed low-level

optimization. Although some optimization may be introduced by compilers (we used GCC 3.3.5), the

10

code used in these tests does not explicitly rely on vector instructions of modern CPU nor on the

streaming capacities of recent GPU. In a dedicated article [Chen et al., 2007], we describe a graphics-

hardware implementation that achieves performances two orders of magnitude faster than the CPU

implementation tested here. Our code is publicly available on our webpage: http://people.csail.mit.

edu/sparis/bf/#code. The software is open-source and under the MIT license.

4.2.1 Design Overview

In order to achieve high performance, we never build the S×R space at the fine resolution. We only deal

with the downsampled version. In practice, this means that we directly construct the downsampled

S×R domain from the image, i.e. we store each pixel directly into the corresponding coarse bin. At

the slicing stage, we evaluate the upsampled values only at the points (p, Ip), i.e. we do not upsample

the entire S×R space, only the points corresponding to the final result.

4.2.2 Pseudo-code

Our algorithm is summarized in Figure 2. Step 3 directly computes the downsampled versions of wi

and w from the input image I. The high-resolution value (wi, w) computed in Step 3a is a temporary

variable. Downsampling is performed on the fly: We compute (wi, w) (Step 3a) and directly add it

into the low-resolution array (w↓ i↓) (Step 3c). In Step 3b, we offset the R coordinate to ensure that

the array indices start at 0. Note that in Step 3c, we do not need to normalize the values by the size of

the downsampling box. This results in a uniform scaling that propagates through the convolution and

upsampling operations. It is cancelled by the final normalization (Step 5b) and thus does not affect

the result. Step 4 performs the convolution. We discuss two different options in the following section.

Steps 5a and 5b correspond respectively to the slicing and division nonlinearities described previously.

For completeness, Figure 3 gives the pseudo-code of a direct implementation of Equation 1.

4.2.3 Efficient Convolution

Convolution is at the core of our technique and its efficiency is important to the overall performance

of our algorithm. We describe two options that will be evaluated in Section 5.

Full Kernel One can use the fast Fourier transform to efficiently compute the convolution. This has

the advantage that the computation does not depend on the Gaussian size, but on only the domain

size. Thus, we can use an exact Gaussian kernel. In this case, the approximation comes only from the

downsampling and upsampling applied to the data before and after the convolution and from cross-

boundary artifacts inherent in FFT. To minimize these artifacts, the domain is padded with zeros

over 2σ.

Truncated Kernel When the convolution kernel is small, an explicit computation in the spatial

domain is an effective alternative since only a limited number of samples are involved. Although

the Gaussian kernel has no compact support, its tail falls off quickly. We therefore use the classical

approximation by truncating the kernel beyond 2σ. We only apply this technique for the case where the

sampling rate equals the Gaussian standard deviation (i.e. s = σ) since, in this case, the downsampled

kernel is isotropic and has a variance equal to 1. The truncated kernel then covers a 5× 5× 5 region

which is compact enough to ensure fast computation. Since the kernel is shift-invariant and separable,

we further shorten the running times by replacing the 3D kernel by three 1D kernels. This well-known

technique reduces the number of points to an average of 15 (= 3 × 5) instead of 125 (= 53). Unlike

11

Fast Bilateral Filter input: image I
Gaussian parameters σs and σr

sampling rates ss and sr

output: filtered image Ib

1. Initialize all w↓ i↓ and w↓ values to 0.

2. Compute the minimum intensity value:

Imin ← min
(X,Y)∈S

I(X, Y)

3. For each pixel (X, Y) ∈ S with an intensity I(X, Y) ∈ R

(a) Compute the homogeneous vector (wi, w):

(wi, w) ←
(

I(X, Y), 1
)

(b) Compute the downsampled coordinates (with [·] the rounding operator)

(x, y, ζ) ←

([

X

ss

]

,

[

Y

ss

]

,

[

I(X, Y)− Imin

sr

])

(c) Update the downsampled S×R space
(

w↓ i↓(x, y, ζ)

w↓(x, y, ζ)

)

←

(

w↓ i↓(x, y, ζ)

w↓(x, y, ζ)

)

+

(

wi

w

)

4. Convolve (w↓ i↓, w↓) with a 3D Gaussian g whose parameters are σs/ss and σr/sr

(wb
↓ ib↓, w

b
↓) ← (w↓ i↓, w↓) ⊗ g

5. For each pixel (X, Y) ∈ S with an intensity I(X, Y) ∈ R

(a) Tri-linearly interpolate the functions wb
↓ ib↓ and wb

↓ to obtain W b Ib and W b:

W b Ib(X, Y) ← interpolate

(

wb
↓ ib↓ ,

X

ss
,
Y

ss
,
I(X, Y)

sr

)

W b(X, Y) ← interpolate

(

wb
↓ ,

X

ss
,
Y

ss
,
I(X, Y)

sr

)

(b) Normalize the result

Ib(X, Y) ←
W b Ib(X, Y)

W b(X, Y)

Fig. 2: Pseudo-code of our algorithm. The algorithm is designed such that we never build the full-resolution S×R space.

the separable approximation [Pham and van Vliet, 2005], this separation is exact since the original 3D

kernel is Gaussian and therefore separable.

We shall see that this convolution in the spatial domain with a truncated kernel yields a better ratio

of numerical accuracy over running time than the frequency-space convolution with the full kernel.

This latter option remains nonetheless useful to achieve high numerical accuracy, at the cost of slower

performances.

12

Brute Force Bilateral Filter input: image I
Gaussian parameters σs and σr

output: filtered image Ib

1. Initialize all Ib and W b values to 0.

2. For each pixel (X, Y) ∈ S with an intensity I(X, Y) ∈ R

(a) For each pixel (X ′, Y ′) ∈ S with an intensity I(X ′, Y ′) ∈ R

i. Compute the associated weight:

weight ← exp

(

−
(I(X ′, Y ′)− I(X, Y))2

2σr
2

−
(X ′ −X)2 + (Y ′ − Y)2

2σs
2

)

ii. Update the weight sum W b(X, Y):

W b(X, Y) ← W b(X, Y) + weight

iii. Update Ib(X, Y):

Ib(X, Y) ← Ib(X, Y) + weight× Ib(X ′, Y ′)

(b) Normalize the result:

Ib(X, Y) ←
Ib(X, Y)

W b(X, Y)

Fig. 3: Pseudo-code of the brute force algorithm.

5 Evaluation of our Approximation

This section investigates the accuracy and performance of our technique compared to the exact com-

putation. The timings are measured on an Intel Xeon 2.8GHz with 1MB cache using double-precision

floating-point numbers.

On Ground Truth In practical applications such as photograph enhancement [Bae et al., 2006] or

user-driven image editing [Weiss, 2006], the notions of numerical accuracy and ground truth are not

always well defined. Running times can be objectively measured, but other aspects are elusive and

difficult to quantify. Furthermore, whether the bilateral filter is the ideal filter for an application is a

separate question.

Since our method achieves acceleration through approximation, we have chosen to measure the

numerical accuracy by comparing the outputs of our technique and of other existing approximations

with the result of the original bilateral filter. This comparison pertains only to the “numerical quality”

of the approximation, and the readers should keep in mind that numerical differences do not necessarily

produce unsatisfying outputs. To balance this numerical aspect, we also provide visual results to let the

readers examine by themselves the outputs. Important criteria are then the regularity of the achieved

smoothing, artifacts that add visual features which do not exist in the input picture, tone (or color)

faithfulness, and so on.

13

5.1 Numerical Accuracy

To evaluate the error induced by our approximation, we compare the result Ib
↓↑ from our fast algorithm

to the exact result Ib obtained from Equation 1. We have chosen three images as different as possible

to cover a broad spectrum of content (Figure 12):

• An artificial image with various edges, frequencies, and white noise.

• An architectural picture structured along two main directions.

• And a photograph of a natural scene with more stochastic structure.

To express numerical accuracy, we compute the peak signal-to-noise ratio (PSNR) considering

R = [0; 1]: PSNR(Ib
↓↑) = −10 log10

1

|S|

∑

p∈S

∣

∣Ib
↓↑(p)− Ib(p)

∣

∣

2

. For instance, considering intensity

values encoded on 8 bits, if two images differ from one gray level at each pixel, the resulting PSNR

is 48dB. As a guideline, PSNR values above 40dB often corresponds to limited differences, almost

invisible. This should be confirmed by a visual inspection since a high PSNR can “hide” a few large

errors because it is a mean over the whole image.

0.40.20.10.050.025

64

32

16

8

4

0.40.20.10.050.025

64

32

16

8

4

0.40.20.10.050.025

64

32

16

8

4

intensity sampling [log scale]

sp
ac

e
sa

m
p
li

n
g
 [

lo
g
 s

ca
le

]

intensity sampling [log scale]intensity sampling [log scale]

sp
ac

e
sa

m
p
li

n
g
 [

lo
g
 s

ca
le

]

sp
ac

e
sa

m
p
li

n
g
 [

lo
g
 s

ca
le

]

(a) artificial (b) architectural (c) natural

50dB

50dB

50dB

40dB

40dB
40dB

30dB 30dB 30dB

Fig. 4: Accuracy evaluation. All the images are filtered with (σs = 16, σr = 0.1). The PSNR in dB is evaluated at various
sampling rates of S and R (greater is better). Our approximation scheme is more robust to space downsampling than
range downsampling. It is also slightly more accurate on structured scenes (a,b) than on stochastic ones (c). This test
uses the full-kernel implementation of the 3D convolution based on FFT.

The box downsampling and linear upsampling schemes yield very satisfying results while being

computationally efficient. We tried other techniques such as tri-cubic downsampling and upsampling.

Our tests showed that their computational cost exceeds the accuracy gain, i.e. a similar gain can be

obtained in a shorter time using a finer sampling of the S×R space. The results presented in this paper

use box downsampling and linear upsampling. We experimented with several sampling rates (ss, sr) for

S×R. The meaningful quantities to consider are the ratios
(

ss

σs
, sr

σr

)

that indicate the relative position

of the frequency cutoff due to downsampling with respect to the bandwidth of the filter we apply.

Small ratios correspond to limited approximations and high ratios to more aggressive downsamplings.

A consistent approximation is a sampling rate proportional to the Gaussian bandwidth (i.e. ss

σs
≈ sr

σr
)

to achieve similar accuracy on the whole S×R domain. The results plotted in Figure 4 show that

this remark is globally valid in practice. A closer look at the plots reveals that S can be slightly more

downsampled than R. This is probably due to the nonlinearities and the anisotropy of the signal.

14

0.40.20.10.050.025

64

32

16

8

4

intensity sampling [log scale]

sp
ac

e
sa

m
p

li
n

g
 [

lo
g
 s

ca
le

]

40s

20s

10s
5s

2s

1s

0.8s

0.6s

Fig. 5: Running times on the architectural picture with (σs = 16, σr = 0.1). The PSNR isolines are plotted in gray.
Exact computation takes several tens of minutes (varying with the actual implementation). This test uses the full-kernel
implementation of the 3D convolution based on FFT.

5.2 Running Times

Figure 5 shows the running times for the architectural picture with the same settings. In theory,

the gain from space downsampling should be twice the one from range downsampling since S is two-

dimensional and R one-dimensional. In practice, the nonlinearities and caching issues induce minor

deviations. Combining this plot with the PSNR plot (in gray under the running times) allows for

selecting the best sampling parameters for a given error tolerance or a given time budget. As a

simple guideline, using sampling steps equal to σs and σr produces results without visual difference

with the exact computation (see Figure 12). Our scheme achieves a dramatic speed-up since direct

computation of Equation (1) lasts several tens of minutes (varying with the actual implementation).

Our approximation requires one second.

Effect of the Kernel Size An important aspect of our approximation is visible on Figure 6 on the

following page-right. Our technique runs faster with larger kernels. Indeed, when σ increases, keeping

the level of approximation constant (the ratio s
σ

is fixed) allows for a more important downsampling,

that is, larger sampling steps s. The rationale of this behavior is that the more the image is smoothed,

the more the high frequencies of S×R are attenuated, and the more we can afford to discard them

without incurring visible differences.

Truncated Kernel versus Full Kernel Figure 6 on the next page also shows that, for a limited loss

of accuracy, the direct convolution with a truncated kernel yields running times significantly shorter

than the Fourier-domain convolution with a full kernel. We believe that the direct convolution with

the 53 kernel is a better choice for most applications.

High and Low Resolution Filtering To evaluate the usability of our technique in a professional

environment, we processed a 8 megapixel image and obtained a running time of 2.5s. This is in

the same order of magnitude as the iterated-box filter and orders of magnitude faster than currently

available professional software (see [Weiss, 2006] for details). We also experimented with an image at

DVD resolution, i.e. 576× 320 ≈ 0.2 megapixel, and we obtained a running time of about 57ms near

the 40ms required to achieve real-time performances, i.e. a 25Hz frame rate. This motivated us to run

our algorithm on our most recent machine, an AMD Opteron 252 at 2.6MHz with 1MB of cache, in

order to simulate a professional setup. With this machine, the running time is 38ms. This means that

15

 1

 10

 10 100

our approximation (53 kernel)

our approximation (full kernel)

 2

 0.5

30

 5
 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 1 10 100

P
S

N
R

 (
in

 d
B

)
our approximation

(full kernel)

0.4

time (in s) [log scale]

shown on Figure 7

our approximation

(53 kernel)

ti
m

e
(i

n
 s

)
[l

o
g
 s

ca
le

]

spatial radius σs of the kernel (in pixels) [log scale]

 fine sampling

co
ar

se
 s

am
p

lin
g

Fig. 6: Left: Accuracy-versus-time comparison. Our approximations are tested on the architectural picture (1600×1200)
using σs = 16 and σr = 0.1 as parameters. The full-kernel can achieve variable degrees of accuracy and speed-up by
varying the sampling rates of S×R. We tested it with the following sampling rates of S×R (from left to right): (4;0.025)
(8;0.05) (16;0.1) (32,0.2) (64,0.4). The result with the coarsest sampling (ss = 64, sr = 0.4) is shown on Figure 7. •

Right: Time-versus-radius comparison. Our approximations are tested on the architectural image using σr = 0.1. The
full- kernel technique uses a sampling rate equal to (σs; σr). Remember that an exact computation lasts at least several
tens of minutes (varying with the implementation). • The color dots in the left and right plots correspond to the same
measurements.

our algorithm achieves real-time video processing in software. Although this does not leave any time

to apply other effects as demonstrated by Winnemöller et al. [2006] using the GPU, we believe that

our technique paves the way toward interactive video applications that are purely software-based.

Bottlenecks Figures 6 and 7 show that when the sampling rate becomes too coarse, the accuracy

suffers dramatically but the running time does not improve. This is because slicing becomes the

bottleneck of the algorithm: The trilinear interpolation necessary at each output pixel becomes signif-

icantly more costly than the operations performed on the 3D data (see Table 2 on page 34). On the

other extreme, when the sampling rate becomes very fine, the running time grows significantly but the

plot shows little improvement because the errors become too small to be reliably measured after the

quantization on 8 bits.

(a) input (b) exact bilateral filter (c) full-kernel approximation

with extreme downsampling

(d) difference

Fig. 7: We filtered the architectural picture (a) and applied an extreme downsampling to the S×R domain, four times
the filter bandwidth, i.e. (σs, σr) = (16, 0.1) and (ss, sr) = (64, 0.4). The result (c) exhibits numerous visual artifacts:
the whole image is overly smoothed and the smoothing strength varies spatially (observe the roof railing for instance).
Compared to the exact computation (b), the achieved PSNR is 25dB. The difference image (with a 10× multiplier)
shows that large errors cover most of the image (d). We do not recommend such extreme downsampling since the speed
gain is limited while the accuracy loss is important as shown on Figure 6-left (this result corresponds to the lower-left
measured point on the dashed curve).

16

5.3 Effect of the Downsampling Grid

Our method uses a coarse 3D grid to downsample the data. The position of this grid is arbitrary and

can affect the produced results as pointed out by Weiss [2006]. To evaluate this effect, we filter 1000

times the same image and applied each time a different random offset to the grid. We average all

the outputs to get the mean result. For each grid position, we measured at each pixel the difference

between the intensity obtained for this offset and the mean value over all offsets. Figure 8-left shows

the distribution of these variations caused by the grid offsets. We can see that there are a few large

variations (under 40dB) but that most of them are small (≈ 50dB and more). These variations have to

be compared with the accuracy of the approximation: Figure 8-right shows that they are significantly

smaller than the error incurred by the approximation. In other words, the potential variations caused

by the position of the downsampling grid are mostly negligible in regards of the error stemming from

the approximation itself.

difference with exact computation (PSNR in dB)

d
if

fe
re

n
ce

 w
it

h
 m

ea
n
 r

es
u
lt

 (
P

S
N

R
 i

n
 d

B
)

per-pixel deviation due to grid offset (in dB)

n
u
m

b
er

 o
f

p
ix

el
s

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 30 40 50 60 70 80 90 100
 42

 44

 46

 48

 50

 52

 42 44 46 48 50 52

Fig. 8: Left: Per-pixel distance to the mean. We filter 1000 times the architectural picture using the 53 kernel with a
different offset of the downsampling grid. For each pixel p, we computed the mean value Mp. Then for each run, we
measured the distance between the result value Ib

↓↑(p) and the mean M(p). The histogram shows the distribution of

these distances across the 1000 runs. • Right: Comparison between the distance to the mean and the distance to the
exact result. For each run, we measured the PSNR between the approximated result Ib

↓↑ and the mean result M . We

also measured the PSNR between Ib

↓↑ and the exact result Ib. The plot shows these two measures for each run. The

approximated results are one order of magnitude closer to the mean M . This demonstrates that the position of the
downsampling grid a limited influence on the produced results. • These tests use the 53-kernel implementation.

Although these variations have never been a problem in our applications (cf. Section 8), they

might be an issue in other contexts. To better appreciate the potential defects that may appear,

we built a worst-case scenario with the statistics of the 1000 runs. We computed the minimum and

maximum results:

Ib
min(p) = min

all runs
Ib
↓↑(p) and Ib

max(p) = max
all runs

Ib
↓↑(p) (14)

These two images correspond to the worst-case hypotheses where all the negative (resp. positive) devi-

ations happened at the same time which is unlikely. Figure 9-left plots the histogram of the differences

between Ib
max and Ib

min: Even in this worst-case scenario, most variations remain above 40dB. Glob-

ally, the maximum and minimum results still achieve satisfying accuracies of 42dB and 43dB compared

to the exact computation. Figure 9-right reveals that the errors are larger on discontinuities (edges,

corners) and textured regions. As a consequence, the variation distribution (Figure 9-left) is bimodal

with a high-accuracy mode corresponding to the smooth sky and a lower-accuracy mode stemming

17

 0

 10,000

 20,000

 30,000

 40,000

 50,000

 60,000

 70,000

 80,000

 90,000

 100,000

 10 20 30 40 50 60 70 80 90 100

worst-case accuracy (in dB)

n
u
m

b
er

 o
f

p
ix

el
s

worst-case variations

Fig. 9: Left: Influence of the grid position in a worst-case scenario. The histogram shows the distances between the
maximum and minimum of all the runs (Equation 14). We used the architectural picture. The two modes of the
distribution correspond to the building area that contains many contrasted features likely to be affected by the grid
position, and to the smooth sky region with almost no such features. • Right: Variation map. The thin features are
the most affected by the downsampling grid position whereas the smooth areas are mostly unaltered. The variation
amplitudes are mapped to gray levels after a 10× multiplication. Depending on your printer, some details may not
appear properly in the figure. We recommend the electronic version for a better resolution.

from the building. Nonetheless, if higher accuracy is required, one can refine the downsampling grid

at the cost of longer running times as shown earlier (Figure 5).

6 Comparisons with Other Acceleration Techniques

We now compare our method to other fast approximations of the bilateral filter. To better understand

the common points and differences with our approach, we look into the details of these methods. We

selected the methods that explicitly aim for bilateral filtering [Durand and Dorsey, 2002; Pham and

van Vliet, 2005; Weiss, 2006]. We did not test the Gauss-Seidel scheme proposed by Elad [2002] since it

requires a large number of iterations whereas practical applications use non-iterative bilateral filtering.

As we shall see, our technique performs especially well on large kernels and has the advantage to be

general and simple to implement.

6.1 Comparison with the Piecewise-Linear Approximation

Durand and Dorsey [2002] describe a piecewise-linear approximation of the bilateral filter that is closely

related to our approach. Our framework provides better understanding their method: As we will see,

the main difference with our technique lies in the downsampling strategy.

18

Using evenly spaced intensity values ζ1..ζn that cover R, the piecewise-linear scheme can be sum-

marized as (for convenience, we also name Gσs the 2D Gaussian kernel):

ι↓ = downsample(I) [image downsampling] (15a)

∀k ∈ {1..n} ω↓k(p) = Gσr(|ι↓(p)− ζk|) [range weight evaluation] (15b)

∀k ∈ {1..n} ωι↓k(p) = ω↓k(p) ι↓(p) [intensity multiplication] (15c)

∀k ∈ {1..n} (ωιb↓k, ωb
↓k) = Gσs ⊗S

(ωι↓k, ω↓k) [spatial convolution on S] (15d)

∀k ∈ {1..n} ιb↓k = ωιb↓k / ωb
↓k [normalization] (15e)

∀k ∈ {1..n} ιb↓↑k = upsample(ιb↓k) [layer upsampling] (15f)

Ib
pl(p) = interpolation(ιb↓↑k)(p) [linear layer interpolation] (15g)

Without downsampling (i.e. {ζk} = R and Steps 15a,f ignored), the piecewise-linear scheme is

equivalent to ours because Steps 15b,c,d correspond to a convolution on S×R. Indeed, ι↓(p) = Ip,

Steps 15b and 15c can be rewritten in a vectorial form, and the value of the Gaussian can be expressed

as a convolution on R with a Kronecker symbol:

[Step 15c]

[Step 15b]

ωι↓k(p)

ω↓k(p)

 =

Ip

1

 Gσr(|Ip − ζk|) =

Ip

1

[

δI
p
⊗

R
Gσr

]

(

ζk

)

(16a)

with δI
p
(ζ ∈ R) = δ(Ip − ζ) (16b)

With Step 15d, the convolution on S, these three steps perform a 3D convolution using a separation

between R and S.

The main differences comes from the downsampling approach, where Durand and Dorsey downsam-

ple in 2D while we downsample in 3D. They also interleave linear and nonlinear operations differently

from us: Their division is done after the convolution 15d but before the upsampling 15f. There is

no simple theoretical ground to estimate the error. More importantly, the piecewise-linear strategy

is such that the intensity ι and the weight ω are functions defined on S only. A given spatial pixel

in the downsampled image has only one intensity and one weight. After downsampling, both sides

of a discontinuity may be represented by the same values of ι and ω. This is a poor representation

of discontinuities since they inherently involve several values. In comparison, we define functions on

S×R. For a given image point in S, we can handle several values on the R domain. The advantage

of working in S×R is that this characteristic is not altered by downsampling (cf. Figure 10). It is the

major reason why our scheme is more accurate than the piecewise-linear technique, especially around

discontinuities.

(a) downsampling of the piecewise-linear approximation (b) downsampling of our approximation

Fig. 10: (a) The piecewise-linear approximation is such that only a single value can representation at each position. After
downsampling discontinuities are represented by only one intensity value which poorly approximates the discontinuity.
(b) With our scheme, the discontinuities are represented by two distinct values in the downsampled S×R domain,
even after downsampling. The original function (in red) is the same as in Figure 1. The corresponding downsampled
representation of the intensity is shown below.

19

Numerical and Visual Comparisons We have implemented the piecewise-linear technique with

the same code base as our technique. Figures 11 show the precision and running time achieved by

both approaches. Both techniques exhibit similar profiles but our approach achieves significantly higher

accuracies for the same running times (except for extreme downsampling, but these results are not

satisfying as shown on Figure 7 on page 16). Figure 12 confirms visually this measure: Our method

approximates better the exact result. As a consequence, our technique can advantageously replace the

piecewise-linear approximation since it is both simpler and more precise.

 1

 10

 10 100

our approximation (53 kernel)
our approximation (full kernel)

separable-kernel approximation

 2

 0.5

30

 5
 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 1 10 100

P
S

N
R

 (
in

 d
B

)

piecewise-linear

approximation

our approximation (full kernel)

0.4

time (in s) [log scale]

our approximation

(53 kernel)

separable-kernel

approximation

ti
m

e
(i

n
 s

)
[l

o
g
 s

ca
le

]

spatial radius σs of the kernel (in pixels) [log scale]

piecewise-linear approximation{
 fine sampling

coarse sampling

Fig. 11: Left: Accuracy-versus-time comparison. The methods are tested on the architectural picture (1600 × 1200)
using σs = 16 and σr = 0.1 as parameters. The piecewise-linear approximation and our method using an untruncated
kernel can achieve variable degrees of accuracy and speed-up by varying the sampling rates of S×R. We tested them
with the same sampling rates of S×R (from left to right): (4;0.025) (8;0.05) (16;0.1) (32,0.2) (64,0.4). • Right: Time-
versus-radius comparison. The methods are tested on the architectural image using σr = 0.1. Our method using the full
kernel uses a sampling rate equal to (σs;σr). Its curve and the piecewise-linear curve are identical because we allow the
same computation budget to both methods. Remember that an exact computation lasts at least several tens of minutes
(varying with the implementation). • The color spots in the left and right plots correspond to the same measurements.

6.2 Comparison with the Separable-Kernel Approximation

Pham and van Vliet [2005] approximate the 2D bilateral filter with a separable kernel by first filtering

the image rows and then the columns. This dramatically shortens the processing times since the

number of pixels to process is proportional to the kernel radius instead of its area in the 2D case.

Pham [2006] also describes an extension to his work where the separation axes are oriented to follow

the image gradient. However, we did not learn of this extension in time to include it in our tests.

Our experiments focus on the axis-aligned version that has been shown to be extremely efficient by

Winnemöller et al. [2006]. We have implemented this technique in C++ using the same code base

as for our method. Our C++ code on 2.8GHz Intel Xeon achieves a 5× speed-up compared to the

experiment in Matlab on an 1.47GHz AMD reported in the original article.

As in the original paper, our tests confirm that the separable-kernel strategy is useful for small

kernels. Figure 11-right shows that this advantage applies to radii that do not exceed a few pixels

(σs ≈ 5 pixels with our implementation). Winnemöller et al. [2006] have shown that it is a suitable

choice to simplify the content of videos by applying several iterations of the bilateral filter using a

small kernel. This approximation is less suitable for larger kernels as shown by the running times on

Figure 11-right and because artifacts due to the approximation become visible (Figures 12 and 15f).

As the kernel becomes bigger, the pixel neighborhoods contain more and more complex features,

e.g. several edges and corners. These features are poorly handled by the separable kernel because

it considers the rows and columns separately. This results in axis-aligned artifacts which may be

undesirable in a number of cases. In comparison, our approach handles the complete neighborhoods.

20

in
p

u
t

approximation

artificial architectural natural

fu
ll

-k
er

n
el

5
3
-k

er
n

el
it

er
at

ed
-b

o
x

p
ie

ce
w

is
e

li
n

ea
r

se
p

ar
ab

le

difference

amplitude
approximation

difference

amplitude
approximation

difference

amplitude

exact

computation

exact

computation

exact

computation

Fig. 12: We have tested our approximated scheme on three images (first row): an artificial image (512×512) with different
types of edges and a white noise region, an architectural picture (1600 × 1200) with strong and oriented features, and
a natural photograph (800 × 600) with more stochastic textures. For clarity, we present representative close-ups. Full
resolution images are provided as supplemental material. Our approximations produces results visually similar to the
exact computation. Although we applied a 10× multiplier to the difference amplitudes, the image differences do not
show significant errors. In comparison, the piecewise-linear approximation introduces large visual discrepancies: small
yet contrasted features are washed out. Furthermore this defect depends the neighborhood. For instance, on the artificial
image, the noise region is less smoothed near the borders because of the adjacent white and black bands. Similar artifacts
are visible on the brick shadows of the architectural image. The separable kernel introduces axis-aligned streaks which
are visible on the bricks of the architectural picture. In comparison, the iterated-box kernel does not incur artifacts but
the filter does not actually approximate a Gaussian kernel (Section 6.3). This results in large differences. All the filters
are computed for σs = 16 and σr = 0.1. Our filter uses a sampling rate of (16,0.1). The piecewise-linear filter is allocated
the same time budget as our full-kernel approximation: its sampling rate is chosen in order to achieve the same (or
slightly superior) running time. The iterated-box method is set with 2 additional iterations as described by Weiss [2006]
and σr

′ = 0.1√
3
≈ 0.0577 (Section 6.3). Depending on your printer, some details may not appear properly in the figure.

We recommend the electronic version for a better resolution.

21

The incurred error is significantly lower and follows the image structure, yielding mostly imperceptible

differences (Figures 12 and 15g).

6.3 Comparison with the Iterated-Box Method

Weiss [2006] describes an algorithm that computes efficiently the exact bilateral filter using a square

box function to define the spatial influence. It is based on the maintenance of local intensity histograms,

and Section 9.5 relates this concept with our higher-dimensional interpretation. In this section, we

discuss performances and accuracy. The complexity of Weiss’s algorithm evolves as the logarithm of

the kernel radius, thereby achieving running times in the order of a few seconds even for large kernels

(100 pixels and above for an 8 megapixel image).

However, the box function is known to introduce visual artifacts because its Fourier transform is

not band-limited and it introduces Mach bands. To address this point, Weiss iterates the filter three

times while keeping the range weights constant, i.e. the range values are always computed according

to the input image. Weiss motivates this approach by the fact that, on regions with smooth intensity,

the range weights have little influence and the iteration corresponds to spatially convolving a box

function β0 with itself, i.e. β0 ⊗
S

β0 ⊗
S

β0. This results in a smooth quadratic B-spline β2 that

approximates a Gaussian function. This interpretation does not hold on non-uniform areas because

the spatial component interacts with the range function. Van de Weijer and van den Boomgaard [2001]

have shown that this iteration scheme that keeps the weights constant eventually leads to the nearest

local maximum of the local histogram. A downside of this sophisticated scheme is that the algorithm

is more difficult to adapt. For instance, extension to color images seems nontrivial.

6.3.1 Running Times

A performance comparison with our method is difficult because Weiss’ implementation relies on the

vector instructions of the CPU. Implementing this technique as efficiently as the original article could

not be done in a reasonable amount of time. And since the demonstration plug-in1 does not run on our

platform, we cannot make side-by-side timing comparisons. Nonetheless, we performed some tests on

a 8 megapixel image as Weiss uses in his article. For a small kernel (σs = 2 pixels), our software runs

in 18s whereas the iterated-box technique runs in ≈ 2s. Although the CPU and the implementation

are not the same, the difference is significant enough to conclude that the iterated-box method is

faster on small kernels. We also experimented with bigger kernels (recall that our running times

decrease): our running times are under 3s for radii over 10 pixels and stabilize at 2.5s for larger radii

(σs ≥ 30 pixels) because of the fixed time required by downsampling, upsampling, and nonlinearities.

These performances are in the same order as the iterated-box technique. In such situations, the

running times depend more on the implementation than on the actual algorithm. Our code can be

clearly improved to exploit the vector and multi-core capacities of modern architectures. Weiss also

describes avenues to speed up his implementation. We believe that both techniques are approximately

equivalent in terms of performance for intermediate and large kernels. The major difference is that

our running times decrease with big kernels whereas the ones of the iterated-box slowly increase.

6.3.2 Numerical and Visual Evaluation

Comparing the accuracy is not straightforward either since the iterated version of this filter approxi-

mates a Gaussian profile only on constant regions while the kernel has not been studied in other areas.

1http://www.shellandslate.com/fastmedian.html

22

To better understand this point, we conducted a series of tests to characterize the produced results.

Weiss [2006] points out that convolving a box function n times with itself produces a B-spline βn, and

as n increases, βn approximates a Gaussian profile. The iterated-box method is however more complex

since at each iteration, the spatial box function β0 is multiplied by the Gaussian range weight Gσr and

then normalized. This motivated us to investigate the link between the iterated-box scheme and the

non-iterative bilateral filter with a B-spline as spatial weight.

Test Setup We have coded a brute-force implementation of the iterated-box filter using classical

“for loops”. Although our piece of software is slow, it uses exactly the same space and range functions

as the iterated-box method. Thus we can perform visual and numerical comparisons safely as long as

we do not consider the running times.

We computed the iterated-box filter with increasing numbers of iterations and compared the results

with the exact computation of the bilateral filter using a Gaussian as spatial weight as well as with the

exact computation of the bilateral filter using a B-spline βn with n matching the number of iterations.

In both cases, the range weight remains a Gaussian as described by Weiss. We set the radius rbox of

the box function so as to achieve the same standard deviation σs for the all the tests. For a square box

function (i.e. no iteration), a classical variance computation gives σs
2 = 2

3 r2
box. For n iterations, we

use rbox = σs

√

3
2(n+1) .

Setting the range influence is equally important. A first solution is to use the same value σr

independently of the number of iterations. As a consequence, the smoothing strength varies with the

number of iterations (Figure 14). Our interpretation of the bilateral filter shows that the range domain

also undergoes a convolution. This suggests to set σr
′ = σr

√

1
n+1 when the filter is applied a total of

n + 1 times. It would result in a range Gaussian of size σr if the filter was purely a convolution. Let’s

use our framework to examine the effects of the iterations with fixed weights. Because the weights are

kept constant, the same 3D kernel and normalization factors are applied at each iteration. However,

the normalization factors vary spatially and slicing occurs after each pass. This corresponds to setting

to 0 all the S×R points (x, ζ) such that ζ 6= Ix. Hence, the process is not purely a succession of

convolutions. Nevertheless, we shall see that adapting σr to the total number of iterations has some

visual advantages over the fixed value.

Note that Weiss experimented with adapting both the space and range sigmas to the total number

of iterations although his article did not focus on approximating any kernel and showed only results

from three iterations.

Numerical Evaluation Figure 13 shows that the iterated-box scheme does not converge either

toward Gaussian bilateral filtering or toward spline bilateral filtering, at least with the parameters

that we used. It might not be a problem depending on the application, since it does not affect the

visual quality of the result. For instance, this scheme is well-suited for applications such as denoising

or smoothing [Weiss, 2006]. A formal characterization of the achieved kernel would nevertheless be a

valuable contribution since it would enable a better comparison with the other existing methods and

allows for motivated choices.

Visual Results Figure 14 illustrates the typical defect appearing with a square box function as

spatial weight and a single iteration: A faint band appears above the dark cornice. It is worth

mentioning that we tested several images and this defect was less common than we expected. As soon

as the contrast is large enough or when the picture is textured, no defect is visible. As an example, no

banding is visible around the dome contour and near the windows. However, when this defect appears,

23

 38

 40

 42

 44

 46

 48

 50

 1 2 3 4 5

iterated box kernel (fixed range sigma)

iterated box kernel (decreasing range sigma)

exact spline kernel

box

linear

tent

quadratic

bell cubic

bell

quartic

bell

 38

 40

 42

 44

 46

 48

 50

 0 1 2 3 4

iterated box kernel (fixed range sigma)

iterated box kernel (decreasing range sigma)

number of iterations / spline type

Accuracy compared to exact Gaussian spatial kernel Accuracy compared to exact spline spatial kernel

P
S

N
R

 (
in

 d
B

)

P
S

N
R

 (
in

 d
B

)

number of iterations / spline type

box

linear

tent

quadratic

bell

cubic

bell

quartic

bell

Fig. 13: Comparisons with exact bilateral filtering using a Gaussian spatial kernel (left) and using a B-spline spatial
kernel (right). As the number of iterations increases, the iterated-box filter becomes more different from the non-iterated
bilateral filters, for both spatial profiles (Gaussian and spline) and both range settings. On the left, the spline profile
converges toward a Gaussian kernel with higher spline order although numerical precision issues limit the convergence
speed. The spline shape is indicated on the curve. On the right, the iterated-box kernel does not converge towards a
spline kernel. The shape of the spline used for the comparison is indicated on the top axis.

it impacts the overall image quality. The solution is to apply a smoother kernel, either by using a

higher-order spline, or by iterating the filter. Our experiment shows that using a spline of order 1 (a

linear tent) solves the problem while a single additional iteration only attenuates the band without

completely removing it. As suggested by Weiss [2006], three iterations yield results without visible

artifacts. Furthermore, this figure shows that the results are progressively washed out if the range

setting is not adapted according to the number of iterations. Adapting σr as the square root of the

number of iterations prevents this effect and produces more stable results. The downside of iterating

can be seen on the wall corner at the bottom right end of the close-up: Stacking up the nonlinearities

results in an exaggerated contrast variation because the top part of the corner has been smoothed

at each iteration while the bottom part has been preserved. The non-iterated versions of the filter

(either with a spline or a Gaussian kernel) do not present such contrast variations. This effect may be

a concern depending on the application.

7 Extensions

An advantage of our approach is that it can be straightforwardly adapted to handle color images and

cross bilateral filtering. In the following sections, we describe the details of these extensions.

7.1 Color Images

For color images, the range domain R is typically a three-dimensional color space such as RGB or

CIE-Lab. We name C = (C1, C2, C3) the vector in R describing the color of a pixel. The bilateral

filter is then defined as:

Cb
p

=
1

W b
p

∑

q∈S

Gσs(||p− q||) Gσr(||Cp −Cq||) Cq (17a)

with W b
p

=
∑

q∈S

Gσs(||p− q||) Gσr(||Cp −Cq||) (17b)

24

(a) input

(b) potential defect location

(e) exact spline kernel

n
u
m

b
er

 o
f

ad
d
it

io
n
al

 i
te

ra
ti

o
n
s

/
sp

li
n
e

o
rd

er

0

1

2

3

4

(f) iterated box kernel

(fixed range sigma)

(g) iterated box kernel

(decreasing range sigma)

(c) exact computation (d) our 53 kernel approx.

dark band

blur

exaggerated
constrast

Fig. 14: Results from the spline and iterated-box bilateral filters. Several defects may appear depending on the chosen
scenario; their location is shown on the close-up (b). Using a square box function without iteration produces a faint band
above the cornice (first row (e,f,g)). Iterating the filter makes this band disappear. If the range Gaussian is not adapted
according to the number of iterations, the results become blurry (see the cross and the cornice in (f)). Decreasing σr
as the square root of the number of iterations prevents blurriness and produces more stable results (g). But iterating
the filter can introduce exaggerated contrast variations (see the edge of the wall). The contrast of the close-ups has
been increased for clarity purpose. Depending on your printer, some details may not appear properly in the figure. We
recommend the electronic version for a better resolution. Original images are available in supplemental material.

25

The definition is similar to Equation 1, except that we handle color vectors C instead of scalar intensi-

ties I. We derive formulae that isolate the nonlinearities similarly to Equation 11 by propagating this

change through all the equations. We give the main steps in the following paragraphs and the details

are identical to the gray-level case.

Akin to the homogeneous intensity defined in Section 3.1, we name homogeneous color the 4D

homogeneous vector (WC, W). This let us write Equation 17 in a vector form:

W b
p

Cb
p

W b
p

 =
∑

q∈S

Gσs(||p− q||) Gσr(||Cp −Cq||)

Wq Cq

Wq

 (18)

Then, we define the functions c and w on the joint domain S×R:

c : (x ∈ S, ζ ∈ R) 7→ Cx (19a)

w : (x ∈ S, ζ ∈ R) 7→ δ(||ζ −Cx||) Wx (19b)

We obtain formulae similar to Equation 11:

linear: (wb cb, wb) = gσs,σr ⊗ (wc, w) (20a)

nonlinear: Cb
p

=
wb(p,Cp) cb(p,Cp)

wb(p,Cp)
(20b)

7.1.1 Discussion

Dimensionality For color images, the S×R domain is 5D: 2 dimensions for the spatial position and 3

dimensions to describe the color. Each point of S×R is a 4D vector since C is 3D, thus the homogeneous

color (WC, W) is four-dimensional. This dimensionality increase becomes a problem when the S×R

domain is finely sampled because of the memory required to store the data. Nonetheless, in many

cases, the computation is still tractable. The validation section details this aspect.

Pre-multiplied Alpha Transparency is classically represented by an additional image channel

named alpha [Porter and Duff, 1984; Blinn, 1996; Willis, 2006]. Pixel values are then 4D vectors (C, α)

and it is well-known that most filtering operations such as blurring must be done on the pre-multiplied

alphas (αC, α) in order to obtain correct color and transparency values. Intuitively, transparent pixels

contribute less to the output. Although this representation “looks” similar to the homogeneous colors,

there are a few important differences. An α value has a physical meaning: the transparency of a pixel.

As a consequence, it lies in the [0; 1] interval. In contrast, a W value carries statistical information

since it corresponds to a pixel weight. It is non-negative and has no upper bound. A major differ-

ence between both representations is that W values can be scaled uniformly across the image without

changing their meaning. This is a known property of homogeneous quantities: they are defined up to

a scale factor. On the other side, a global scaling on α values alters the result since objects become

more or less transparent.

7.1.2 Validation

We tested several alternative strategies on a color image (Figure 15). First, we filtered an RGB image

as three independent channels and compared the output to the result of filtering colors as vectors.

26

(a) input (876x584)

(b) input (c) exact bilateral filter using CIE Lab

(d) our 53 kernel approximation using “per-channel RGB”

(0.48s, PSNRRGB = 38dB, PSNRLab = 34dB)

(e) our 55 kernel approximation using RGB

(8.9s, PSNRRGB = 41dB, PSNRLab = 39dB)

(f) separable-kernel approximation using CIE Lab

(5.8s, PSNRRGB = 42dB, PSNRLab = 42dB)

(g) our 55 kernel approximation using CIE Lab

(10.9s, PSNRRGB = 46dB, PSNRLab = 46dB)

Fig. 15: Comparison on a color image. We tested various strategies to filter a color image (a,b). Processing the red,
green, and blue channels independently results in color bleeding that makes the cross disappear in the sky (d). Dealing
with the RGB vector as described in Equation 20 improves this aspect but some bleeding still occurs (e). In contrast,
working in the CIE-Lab space achieves satisfying results (c,g). Comparing our method (g) to the separable-kernel
technique (f) shows our technique is slower but produces a result closer to the exact computation (c). Especially, the
separable kernel incurs axis-aligned streaks (f) that may undesirable in a number of applications. These remarks are
confirmed by the numerical precision evaluated with the PSNR computed the RGB and CIE-Lab color spaces. The
contrast of the close-ups has been increased for clarity purpose. Depending on your printer, some details may not appear
properly in the figure. We recommend the electronic version for a better resolution. Original images are available in
supplemental material.

27

We found that vector filtering yields better results but color inconsistencies remained. Thus, we

experimented with the CIE-Lab color space which is known to be perceptually meaningful.

Per-channel Filtering versus Vector Filtering Processing the RGB channels independently

induces inconsistencies when an edge has different amplitudes depending on the channel. In that case,

an edge may be smoothed in a channel while it is preserved in another, inducing incoherent results

between channels. Figure 15d shows our truncated-kernel approximation on an example where the

blue sky “leaks” over the brown cross. Considering the RGB channels altogether using Equation 20

significantly reduces this bleeding defect (Figure 15e). The downside is the longer computation times

required to process the 5D space (cf. Section 7.1.1 and Figure 16). It precluded our algorithm from

handling small kernels because of the fine sampling required. In that case, the memory usage was over

1GB for an image of 0.5 megapixel with sampling rates (ss, sr) = (8, 0.1). We did not measure the

running time because it was perturbed by disk swapping. This limitation makes our technique not

suitable for small kernels on color images. For these cases, one should prefer per-channel filtering and

since the kernel is small, the iterated-box method [Weiss, 2006] seems an appropriate choice. However,

even the RGB-vector filtering result exhibits some color leaking (observe the cross in Figure 15e).

This motivated us to experiment with the CIE-Lab color space which is known to provide better color

management [Margulis, 2005].

RGB versus CIE-Lab The CIE-Lab space solves the color-bleeding problem. Visual and numerical

comparisons show that our technique produces results close to the exact computation (Figure 15c,g).

In contrast, the separable-kernel technique [Pham and van Vliet, 2005] applied in the CIE-Lab space

yields results degraded by axis-aligned streaks (Figure 15f). The iterated-box method is described

only for per-channel processing, and the extension to vector filtering is unclear.

 1

 10

 10 100

our approximation (CIE Lab)

our approximation (RGB)

separable-kernel approx. (CIE Lab)

our approximation (per-channel RGB)

ti
m

e
(i

n
 s

)
[l

o
g

 s
ca

le
]

spatial radius σs of the kernel (in pixels) [log scale]
2

0.4

Fig. 16: Time-versus-radius comparison. We processed the image shown in Figure 15 with σr = 0.1 in RGB color space,
and σr = 10 in the CIE-Lab color space. Both settings correspond to 10% of the intensity range. The plots show the
running times of various options depending on the spatial extent of the kernel. Our approximation is not able to process
small kernels because of memory limitations (see the text for details). We used a truncated kernel for our method.

7.2 Cross Bilateral Filter

Another advantage of our approach is that it can be extended to cross bilateral filtering. The cross bilat-

eral filter has been simultaneously discovered by Eisemann and Durand [2004] and Petschnigg et al. [2004]

28

(who named it “joint bilateral filter”). It smoothes an image I while respecting the edges of another

image E:

Ic
p

=
1

W c
p

∑

q∈S

Gσs(||p− q||) Gσr(|Ep − Eq|) Iq (21a)

with W c
p

=
∑

q∈S

Gσs(||p− q||) Gσr(|Ep − Eq|) (21b)

The only difference with a classical bilateral filter is the range weight Gσr which uses E instead

of I. Applying this change to all the equations results in a new definition for the w function while the

function i remains unmodified (Equation 6):
i : (x ∈ S, ζ ∈ R) 7→ Ix (22a)

w : (x ∈ S, ζ ∈ R) 7→ δ(ζ − Ex) Wx (22b)

These new functions are used to obtain a set of equations that isolate the nonlinearities. Note that

the slicing has to be done at the points (p, Ep):

linear: (wc ic, wb) = gσs,σr ⊗ (wi, w) (23a)

nonlinear: Ic
p

=
wc(p, Ep) ic(p, Ep)

wc(p, Ep)
(23b)

Intuition Following the example of a pen whose ink varies (cf. Section 3.3), the function wi can be

interpreted as the plot of E using a pen with a brightness equal to I (cf. Equation 22). The brightness

of the plot depends on I and its shape is controlled by E.

Validation Figure 17 illustrates the effects of the bilateral filter on a flash / no-flash pair. The

flash picture has a low level of noise but an unpleasant illumination. The no-flash image has a better

illumination but is very noisy. We denoised it with the cross bilateral filter by using the flash image

to define the range influence. The achieved result exhibits crisper details than a direct bilateral filter

based on the no-flash image alone. Our approximation of the cross bilateral filter achieves the same

accuracy and performances as demonstrated for bilateral filtering. We refer the reader to the articles by

Petschnigg et al. [2004] and Eisemann and Durand [2004] for more advanced approaches to processing

flash / no-flash pairs. Bae et al. [2006] propose another use of the cross bilateral filter to estimate

the local amount of texture in a picture. All the results of this article have been computed with our

technique.

8 Applications

In this section, we illustrate the capacities of our technique to achieve quality results and meet high

standards. We reproduce several of results published previously by the authors.

Tone Mapping We used our technique to manipulate the tone distribution of pictures. First, we

implemented a simplified version of the tone-mapping operator described by Durand and Dorsey [2002].

Given a high dynamic range image H whose intensity values span a range too broad to be displayed

properly on a screen, the goal is to produce a low dynamic range image L that fits the display capacities.

The technique can be summarized as follows (see [Durand and Dorsey, 2002] for details):

29

(a) flash photograph

(d) exact cross bilateral filter (e) our approximation (f) absolute difference

(b) no-flash photograph

with increased constrast

(c) bilateral filtering

of the no-flash photograph

Fig. 17: Example of cross bilateral filtering with a flash / no-flash pair of photographs (a,b). Directly denoising the
no-flash picture is hard because of the high level of noise (c). Relying on the flash picture to define the edges to preserve
greatly improves the result quality (d,e). Our approximation scheme produces a result (e) visually similar to the exact
computation (d). The difference image (f) reveals subtle deviations (a 10× multiplication has been applied). The PSNR
is 41dB. We used σs = 6 for all the experiments, and σr = 0.25 for direct bilateral filtering and σr = 0.1 for cross bilateral
filtering. These values produce the most pleasing results from all our tests. Depending on your printer, some details
may not appear properly in the figure. We recommend the electronic version for a better resolution. The input images
are courtesy of Elmar Eisemann.

1. Compute the logarithmic image log(H) and apply the bilateral filter to split it into a large-

scale component (a.k.a. base) B = bf(log(H)) and a small-scale component (a.k.a. detail)

D = log(H)−B.

2. Compress the base: B′ = γB where γ = contrast/
(

max(B) −min(B)
)

. ‘contrast’ is set by the

user to achieve the desired rendition.

3. Compute the result L = exp(B′ + D).

Figure 18 shows a sample result that confirms the ability of our technique to achieve high-quality

outputs.

Tone Management We also used our method within a more complex pipeline to manipulate the

“look” of digital photographs. This technique starts from the same idea as the tone-mapping operator

by splitting the image into two layers but then the two layers undergo much stronger transformations

in order to adjust both the global contrast and the local amount of the texture of the picture. The

bilateral filter is used early in the pipeline to separate the picture into a large-scale layer and a small-

scale layer. Cross bilateral filtering is applied later to compute a map that quantifies the local amount

30

(a) HDR input (b) tone-mapped result

Fig. 18: Example of tone mapping. The input has a dynamic range too large to be displayed correctly, either the sky is
over-exposed or the city is under-exposed. Tone-mapping computes a new image that contains all the details in the sky
and in the city and that can viewed on a standard display. We implemented a simplified version of the tone-mapping
operator described by Durand and Dorsey [2002]. Our approximation does not incur any artifact in the result. The
input image is courtesy of Paul Debevec.

of texture at each pixel. Our fast scheme allows this application to be interactive since the result is

computed in a few seconds. The details of the algorithm are given in a dedicated paper [Bae et al.,

2006]. A sample result is shown in Figure 19. Notice how the result is free form artifacts although an

extreme increase of contrast has been applied.

(a) input (b) our result

Fig. 19: Example of tone management. Our approximation of the bilateral filter and of the cross bilateral filter has been
used to enhance digital photographs. See the original article for details [Bae et al., 2006].

9 Discussion

9.1 Dimensionality

Our approach may seem counterintuitive at first since to speed up the computation, we increase the

dimensionality of the problem. Our separation into linear and nonlinear parts comes at the cost of

additional range dimensions (one for gray-level images, three for color images). One has to be careful

before increasing the dimensionality of a problem since the incurred performance overhead may exceed

31

the gains, restricting our study to a theoretical discussion. The key of our performances is the possibility

to perform an important downsampling of the S×R domain without incurring significant errors. Our

tests have shown that the dimensionality is a limiting factor only with color images when using small

kernels. In that case, the 5D S×R space is finely sampled and the required amount of memory becomes

prohibitive (Section 7.1). Adapting the narrow band technique [Adalsteinsson and Sethian, 1995] to

bilateral filtering would certainly help on this aspect. Nevertheless, in all the other scenarios (color

images with bigger kernels, and single-channel images with kernel of any size), we have demonstrated

that our formalism allows for a computation scheme that is several orders of magnitude faster than a

straightforward application of the bilateral filter. This advocates performing the computation in the

S×R space instead of the image plane. This strategy is reminiscent of level sets [Osher and Sethian,

1988] which alleviate topology management by representing surfaces in a higher-dimensional space. In

comparison, we introduce a higher-dimensional image representation that enables dramatic speed-ups

through signal downsampling.

Note that using the homogeneous intensities and colors does not increase the dimensionality since

Equation 1 and 17 compute the W b function in addition to Ib or Cb.

9.2 Comparison with Channel Smoothing

Felsberg et al. [2006] describe an edge-preserving filter that represents an image as a set of channels

corresponding to regularly spaced intensity values. For each pixel, the three closest channels are

assigned a value corresponding to a second-order B-spline centered on the pixel intensity. Then, the

channels are smoothed independently. The output values are computed by reconstructing a B-spline

from three channel values. In our bilateral filter framework, this technique can be interpreted as the

replacement of the Gaussian by a B-spline to define the range influence. The channels are similar to

our downsampling strategy applied only to the range domain except that we use a box function and a

Gaussian instead of a B-spline. This suggests that further speed-up can be obtained by downsampling

the channels as well, akin to our space downsampling. The strength of this approach is that aspects

such as the influence function [Huber, 1981; Hampel et al., 1986; Black et al., 1998; Durand and

Dorsey, 2002] can be analytically derived and studied. The downside is the computational complexity

introduced to deal with splines. In particular, a relatively complex process is run at each pixel during

the final reconstruction to avoid aliasing. In comparison, we cast our approach as an approximation

problem and characterize the achieved accuracy with signal processing arguments. Thus, we do not

define a new filter and focus on bilateral filtering to improve dramatically its computational efficiency.

For instance, we prevent aliasing with a simple linear interpolation and downsample both the range

and space domains. Further study of both approaches would be a valuable research contribution.

9.3 Comparison with Image Manifolds

Sochen et al. [1998] describe the geometric framework that handles images as manifolds in the S×R

space. For instance, a gray-level image I is seen as a 2D surface embedded in a 3D space, i.e.

z = I(x, y). This representation leads to techniques that define functions on the manifold itself instead

of the xy plane, and that can be interpreted as deformations of the image manifold. In this context,

the bilateral filter is shown to be related to the short-time kernel of the heat equation defined directly

on the image manifold: Sochen et al. [2001] demonstrate that bilateral filtering using a small window

and blurring using a Gaussian kernel embedded in the image manifold yield results close to bilateral

filtering. This interpretation based on small neighborhoods is related to other results linking bilateral

filtering to anisotropic diffusion using partial differential equations [Durand and Dorsey, 2002; Elad,

32

2002; Buades et al., 2005] since these filters involve only the eight neighbors of a given pixel. In a similar

spirit, Barash [2002] uses points in the S×R domain to interpret the bilateral filter. He handles S×R

to compute distances and express the difference between adaptive smoothing and bilateral filtering as

a difference of distance definitions.

The main difference between these techniques and our interpretation stems from the image rep-

resentation: in image manifolds, images remain fundamentally two-dimensional – but embedded in a

3D space, while our representation stores values in the whole 3D space. In the geometric framework,

each pixel is mapped to a point in S×R. Given a point in S×R, either it belongs to the manifold

and its S and R coordinates directly indicate its position and intensity, or it is not on the manifold

and is ignored by the algorithm. These methods also use the intrinsic metric of the image manifold.

In contrast, we deal with the entire S×R domain, we use its Euclidean metric, we define functions

on it, resample it, perform convolutions, and so on. Another major difference is that we define the

intensity through a function (i or ib), and that in general, the intensity of a point (x, ζ) is not its

range coordinate ζ, e.g. ib(x, ζ) 6= ζ. To our knowledge, this use of the S×R domain has not been

described before and opens new avenues to deal with images. We have shown that it enables the use

signal-processing techniques and theory to better compute and understand the bilateral filter. Our

approach is complementary to existing frameworks and has potential to inspire new image processing

techniques.

9.4 Frequency Content

Our interpretation shows that the bilateral filter output is obtained from smooth low-frequency data

which may seem incompatible with the feature-preserving aspect of bilateral filtering. The convolution

step of our algorithm indeed smoothes the functions defined on the S×R domain. Nevertheless, the

final result exhibits edges and corners because during the slicing nonlinearity, two adjacent pixels, i.e.

two adjacent points in the spatial domain, can sample this smooth signal at points distant in the range

domain, thereby generating discontinuities in the output.

9.5 Comparison with Local-Histogram Approaches

Local histograms are classical intensity histograms where each pixel contributes only a fraction defined

by a spatial influence function. Koenderink and Van Doorn [1999] have shown that local histograms are

a useful tool to study image structure and content. Van de Weijer and van den Boomgaard [2001] and

Weiss [2006] demonstrated that the result of the bilateral filter at a given pixel is the average intensity

of its local histogram with each bin weighted by the range function. This average is normalized by

the sum of the weights. Our technique can be interpreted in this framework by remarking that the

ζ axis represents histograms. When we first build the S×R domain, the homogeneous coordinate of

the w function is a trivial histogram at each pixel p: w(p, ζ) = 1 at ζ = Ip and 0 at ζ 6= Ip. The

bins are point-wise, i.e. there is a single intensity value per bin. Then when we downsample the R

domain by a factor sr, the bins become wider and cover an intensity interval of size sr. At this stage,

each pixel has still its own histogram. After downsampling the S domain with a box function of size

ss, each group of ss × ss pixels shares the same histogram, and in general, several bins are occupied,

i.e. w↓(p, ζ) > 0 for several ζ values. Then applying the spatial Gaussian approximates a Gaussian

window for the histograms, and the range Gaussian is equivalent to weighting the histogram bins.

Let’s have a look at a few specifics of our approach. First, although groups of pixels share the

same histogram, there are no blocks in the results since the linear interpolation applied at the end

of the algorithm assigns to each pixel its own histogram. In addition, we compute the wi function

33

that stores the mean intensity of each bin. Using this value, we adapt the intensity associated to each

bin to the data it contains instead of using a generic value. For instance, if we put a single sample

into a bin, this bin is represented by the sample value and not by its midpoint, thereby preventing

any error. If several samples are stored together, the bin is assigned their mean. Coupled with the

linear interpolation on the range domain, this ensures that our technique does not suffer from intensity

aliasing. Figure 20 shows a simple example that confirms that our approximated schemes do not

introduce blocks (the diagonal edge is preserved) and that there is no intensity aliasing (constant

intensity regions are unaltered).

Fig. 20: A simple edge picture. Our approximations produce the exact result. Although we downsample both the space
and range domains, there are no spatial blocking artifacts nor intensity aliasing defects. See the text for details.

9.6 Complexity

Our algorithm operates on two types of data: the original 2D full-resolution image of size |S| and the

low-resolution 3D representation of size |S|
s2
s

× |R|
sr

where | · | indicates the cardinality of a set, and ss

and sr are the sampling rates of the space and range domains. The complexity of the method depends

on operations performed on both types. The complexity of the convolution is:

• O
(

|S|
s2
s

|R|
sr

log
(

|S|
s2
s

|R|
sr

))

for the full-kernel option computed with fast Fourier transform and

multiplication in the frequency domain.

• O
(

|S|
s2
s

|R|
sr

)

for the 53-kernel option computed explicitly in the spatial domain. Since in this case,

we have (ss, sr) = (σs, σr), the complexity can be expressed as O
(

|S|
σ2
s

|R|
σr

)

.

Downsampling, upsampling, slicing, and dividing are done pixel by pixel and are linear in the image

size i.e. O (|S|). The total algorithm complexity is thus O
(

|S|+ |S|
s2
s

|R|
sr

log
(

|S|
s2
s

|R|
sr

))

with the full-

kernel convolution and O
(

|S|+ |S|
s2
s

|R|
sr

)

using a truncated kernel. Hence, depending on the sampling

rates, the algorithm’s order of growth is dominated either by the convolution or by the downsampling,

upsampling, and nonlinearities. Table 2 illustrates the impact of the sampling rates on the running

times: Convolution takes most of the time with small sampling values whereas it becomes negligible for

large values. This complexity also characterizes the effects of large kernels when the sampling rates are

equal to the Gaussian sigmas: The per-pixel operations are not affected but the convolution becomes

sampling (ss,sr) (4,0.025) (8,0.05) (16,0.1) (32,0.2) (64,0.4)

downsampling 1.3s 0.23s 0.09s 0.07s 0.06s

convolution 63s 2.8s 0.38s 0.02s 0.01s
slicing, upsampling, division 0.48s 0.47s 0.46s 0.47s 0.46s

Table 2: Time used by each step at different sampling rates of the architectural image. Upsampling is reported with
the nonlinearities because our implementation computes ib↓↑ only at the (x, Ix) points rather than upsampling the whole

S×R space (cf. Section 4.2). We use the full-kernel implementation with σs = 16 and σr = 0.1.

34

“cheaper”. This is confirmed in practice on the running times shown in Figure 16 on page 28, and

Figure 11 on page 20. Finally, photography applications set the kernel spatial radius as a portion of

the image size [Durand and Dorsey, 2002; Eisemann and Durand, 2004] and the range parameter can

also be proportional to the intensity range [Petschnigg et al., 2004; Bae et al., 2006]. In the latter case,

the ratios |S|
σ2
s

and |R|
σr

are fixed. This leads to a constant-cost convolution and a global complexity

linear in the image size O (|S|). For these applications, the running time variations are purely due to

the per-pixel operations (downsampling, upsampling, and division).

9.7 Practical Use

Our experiments have highlighted the differences between a number of accelerations of the bilateral

filter. In practice, the choice of a method will depend on the specific application, and in particular

on the spatial kernel size, the need for accuracy vs. performance, the need for extensions such as

cross-bilateral filtering and color filtering, as well as ease of implementation constraints.

Brute-force Bilateral Filter The brute-force bilateral filter is a practical choice only for small

kernels (in the 5 × 5 range) and when accuracy is paramount. It is trivial to implement but can be

extremely slow (minutes per megapixel).

Separable Kernel The separable kernel approximation should be used only with small spatial

kernels (no more than 10 pixels). It is simple to implement and can be adapted to graphics hardware.

However, processing time and accuracy suffer dramatically with bigger kernels. This technique is thus

well adapted to noise-removal tasks that typically use small spatial and range sigmas.

Iterated Box Weiss’s iterated box method is very efficient for kernels of all sizes. It is only an

approximation of the Gaussian bilateral filter, but for most applications such as computational pho-

tography, this is probably not an issue. The speed of Weiss’s implementation draws heavily from the

vector instruction set of modern CPUs and the algorithm implementation might be more complex

than the one in this paper. The main drawbacks of Weiss’s method are the restriction to box spatial

weights, to single-channel images, and the difficulty in extending it to cross bilateral filtering.

Our Method Our method is most efficient for large kernels such as the ones used in computational

photography to extract a large-scale component of an image, e.g. [Durand and Dorsey, 2002; Eisemann

and Durand, 2004; Petschnigg et al., 2004; Bae et al., 2006]. It is very easy to implement and to extend

to color images and cross bilateral filtering. The main weakness of our technique is for small kernels

where the size of the higher-dimensional representation becomes prohibitive. Our method subsumes

Durand and Dorsey’s fast bilateral filter [Durand and Dorsey, 2002] and, in our opinion, there is

no compelling reason to use that older method since the new version is conceptually simpler and

implementation-wise, and has better accuracy-performance tradeoffs.

The above discussion is summarized in Table 3.

35

complexity pros cons

brute force |S|
2

accurate very slow with kernels
larger than 5× 5

separable

kernel

|S|σs fast with small kernels,
easy to implement and
adapt

axis-aligned artefacts

iterated box |S| log(σs) always fast gray-level images only,
hard to implement and
adapt

our method |S| + |S|
s2
s

|R|
sr

log
(

|S|
s2
s

|R|
sr

)

or

|S|+ |S|
s2
s

|R|
sr

visually similar to brute
force, fast with large ker-
nels, easy to implement
and adapt

slow with small kernels,
large memory requirement
for color images

Table 3: Summary of the properties of the various implementations of the bilateral filter.

10 Conclusions

We have presented a fast approximation of the bilateral filter based on a signal processing interpreta-

tion. From a theoretical point of view, we have introduced the notion of homogeneous intensity and

demonstrated a new approach of the space-intensity domain: We define intensities through functions

that are resampled and convolved in this space whereas existing frameworks use it to represent images

as manifolds. Although smooth functions are at the core of our approach, the results exhibit sharp

features because of the slicing nonlinearity. We believe that these concepts can be applied beyond bi-

lateral filtering, and we hope that these contributions will inspire new studies. From a practical point

of view, our approximation technique yields results visually similar to the exact computation with

interactive running times. We have demonstrated that this technique enables interactive applications

relying on quality image smoothing. Our experiments characterize the strengths and limitations of

our technique compared to existing approaches. Our study casts a new light on these other methods,

leading for instance to a consistent strategy to set the parameters of the iterated-box technique. It

also points out its lack of convergence toward Gaussian and B-spline kernels. We have listed a few

guidelines stemming from these tests to select an appropriate bilateral filter implementation depend-

ing on the targeted application. Our technique is best at dealing with big kernels. Furthermore, our

method is extremely simple to implement and can be easily extended to cross bilateral filtering and

color images.

Acknowledgement We are grateful to Ben Weiss, Tuan Pham, and Lucas van Vliet for their remarks

and feedback about our experiments, and to Michael Cohen, Todor Georgiev, Pierre Kornprobst, Bruno

Lévy, Sing Bing Kang, Richard Szeliski, and Matthew Uyttendaele for their insightful discussions and

suggestions to extend our conference paper. We thank Tilke Judd, Paul Green, and Sara Su for their

help with the article.

This work was supported by a National Science Foundation CAREER award 0447561 “Transient

Signal Processing for Realistic Imagery,” an NSF Grant No. 0429739 “Parametric Analysis and Trans-

fer of Pictorial Style,” a grant from Royal Dutch/Shell Group, and the Oxygen consortium. Frédo

Durand acknowledges a Microsoft Research New Faculty Fellowship and a Sloan Fellowship. Syl-

vain Paris was partially supported by a Lavoisier Fellowship from the French “Ministère des Affaires

Étrangères.”

36

References

D. Adalsteinsson and J. A. Sethian. A fast level set method for propagating interfaces. Journal of

Computational Physics, 118:269–277, 1995.

V. Aurich and J. Weule. Non-linear gaussian filters performing edge preserving diffusion. In Proceedings

of the DAGM Symposium, 1995.

S. Bae, S. Paris, and F. Durand. Two-scale tone management for photographic look. ACM Transactions

on Graphics, 25(3):637 – 645, 2006. Proceedings of the ACM SIGGRAPH conference.

D. Barash. A fundamental relationship between bilateral filtering, adaptive smoothing and the non-

linear diffusion equation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(6):

844, 2002.

D. Barash, T. Schlick, M. Israeli, and R. Kimmel. Multiplicative operator splittings in non-linear

diffusion: from spatial splitting to multiplicative timesteps. Journal of Mathematical Imaging and

Vision, 19:33–48, 2003.

E. P. Bennett and L. McMillan. Video enhancement using per-pixel virtual exposures. ACM Trans-

actions on Graphics, 24(3):845 – 852, July 2005. Proceedings of the ACM SIGGRAPH conference.

M. J. Black, G. Sapiro, D. H. Marimont, and D. Heeger. Robust anisotropic diffusion. IEEE Trans-

actions on Image Processing, 7(3):421–432, March 1998.

J. F. Blinn. Fun with premultiplied alpha. IEEE Computer Graphics and Applications, 16(5):86–89,

1996.

A. Buades, B. Coll, and J.-M. Morel. Neighborhood filters and PDE’s. Technical Report 2005-04,

CMLA, 2005.

J. Chen, S. Paris, and F. Durand. Real-time edge-aware image processing with the bilateral grid. ACM

Transactions on Graphics, 26(3), 2007. Proceedings of the ACM SIGGRAPH conference.

P. Choudhury and J. E. Tumblin. The trilateral filter for high contrast images and meshes. In

Proceedings of the Eurographics Symposium on Rendering, 2003.

F. Durand and J. Dorsey. Fast bilateral filtering for the display of high-dynamic-range images. ACM

Transactions on Graphics, 21(3), 2002. Proceedings of the ACM SIGGRAPH conference.

E. Eisemann and F. Durand. Flash photography enhancement via intrinsic relighting. ACM Transac-

tions on Graphics, 23(3), July 2004. Proceedings of the ACM SIGGRAPH conference.

M. Elad. On the bilateral filter and ways to improve it. IEEE Transactions On Image Processing, 11

(10):1141–1151, October 2002.

M. Elad. Retinex by two bilateral filters. In Proceedings of the Scale-Space conference, 2005.

M. Felsberg, P.-E. Forssén, and H. Scharr. Channel smoothing: Efficient robust smoothing of low-level

signal features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(2):209–222,

February 2006.

S. Fleishman, I. Drori, and D. Cohen-Or. Bilateral mesh denoising. ACM Transactions on Graphics,

22(3), July 2003. Proceedings of the ACM SIGGRAPH conference.

37

F. R. Hampel, E. M. Ronchetti, P. M. Rousseeuw, and W. A. Stahel. Robust Statistics – The Approach

Based on Influence Functions. Wiley Interscience, 1986. ISBN 0-471-73577-9.

P. J. Huber. Robust Statistics. Probability and Statistics. Wiley-Interscience, February 1981.

T. R. Jones, F. Durand, and M. Desbrun. Non-iterative, feature-preserving mesh smoothing. ACM

Transactions on Graphics, 22(3), July 2003. Proceedings of the ACM SIGGRAPH conference.

J. J. Koenderink and A. J. van Doorn. The structure of locally orderless images. International Journal

of Computer Vision, 31(2/3):159–168, 1999.

C. Liu, W. T. Freeman, R. Szeliski, and S. Kang. Noise estimation from a single image. In Proceedings

of the Computer Vision and Pattern Recognition Conference. IEEE, 2006.

D. Margulis. Photoshop LAB Color: The Canyon Conundrum and Other Adventures in the Most

Powerful Colorspace. Peachpit Press, 2005. ISBN: 0321356780.

P. Mrázek, J. Weickert, and A. Bruhn. Geometric Properties from Incomplete Data, chapter On Robust

Estimation and Smoothing with Spatial and Tonal Kernels. Springer, 2006.

B. M. Oh, M. Chen, J. Dorsey, and F. Durand. Image-based modeling and photo editing. In Proceedings

of the ACM SIGGRAPH conference. ACM, 2001.

S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based

on Hamilton-Jacobi formulations. Journal of Computational Physics, 79:12–49, 1988.

S. Paris and F. Durand. A fast approximation of the bilateral filter using a signal processing approach.

In Proceedings of the European Conference on Computer Vision, 2006.

S. Paris, H. Briceño, and F. Sillion. Capture of hair geometry from multiple images. ACM Transactions

on Graphics, 23(3), July 2004. Proceedings of the ACM SIGGRAPH conference.

G. Petschnigg, M. Agrawala, H. Hoppe, R. Szeliski, M. Cohen, and K. Toyama. Digital photography

with flash and no-flash image pairs. ACM Transactions on Graphics, 23(3), July 2004. Proceedings

of the ACM SIGGRAPH conference.

T. Q. Pham. Spatiotonal adaptivity in Super-Resolution of Undersampled Image Sequences. PhD

thesis, Delft University of Technology, 2006.

T. Q. Pham and L. J. van Vliet. Separable bilateral filtering for fast video preprocessing. In Interna-

tional Conference on Multimedia and Expo. IEEE, 2005.

T. Porter and T. Duff. Compositing digital images. Computer Graphics, 18(3):253–259, 1984.

P. Sand and S. Teller. Particle video: Long-range motion estimation using point trajectories. In

Proceedings of the Computer Vision and Pattern Recognition Conference, 2006.

C. E. Shannon. Communication in the presence of noise. Proceedings of the Institute of Radio Engineers,

37(1), 1949.

S. Smith. Digital Signal Processing. Newnes, 2002. ISBN: 075067444X.

S. M. Smith and J. M. Brady. SUSAN – a new approach to low level image processing. International

Journal of Computer Vision, 23(1):45–78, May 1997.

38

N. Sochen, R. Kimmel, and R. Malladi. A general framework for low level vision. IEEE Transactions

in Image Processing, 7:310–318, 1998.

N. Sochen, R. Kimmel, and A. M. Bruckstein. Diffusions and confusions in signal and image processing.

Journal of Mathematical Imaging and Vision, 14(3):237–244, 2001.

C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In Proceedings of the

International Conference on Computer Vision, pages 839–846. IEEE, 1998.

J. van de Weijer and R. van den Boomgaard. Local mode filtering. In Proceedings of the conference

on Computer Vision and Pattern Recognition, 2001.

J. Weickert, B. M. ter Haar Romeny, and M. A. Viergever. Efficient and reliable schemes for nonlinear

diffusion filtering. IEEE Transactions on Image Processing, 7:398–410, 1998.

B. Weiss. Fast median and bilateral filtering. ACM Transactions on Graphics, 25(3):519 – 526, 2006.

Proceedings of the ACM SIGGRAPH conference.

P. J. Willis. Projective alpha colour. Computer Graphics Forum, 25(3):557–566, 2006. Proceedings of

the Eurographics conference.

H. Winnemöller, S. C. Olsen, and B. Gooch. Real-time video abstraction. ACM Transactions on

Graphics, 25(3):1221 – 1226, 2006. Proceedings of the ACM SIGGRAPH conference.

W. C. K. Wong, A. C. S. Chung, and S. C. H. Yu. Trilateral filtering for biomedical images. In

Proceedings of the International Symposium on Biomedical Imaging. IEEE, 2004.

J. Xiao, H. Cheng, H. Sawhney, C. Rao, and M. Isnardi. Bilateral filtering-based optical flow estimation

with occlusion detection. In Proceedings of the European Conference on Computer Vision, 2006.

L. P. Yaroslavsky. Digital Picture Processing. An Introduction. Springer Verlag, 1985.

39

