
Adobe Technical Report, March 2009

A Perceptually Motivated Method to Control Reconstruction Errors in
Gradient-based Image Compositing

Sylvain Paris

Abstract

We propose a simple algorithm to control the spatial lo-
cation of reconstruction errors inherent in gradient-based
image compositing. We build upon the classical Poisson
equation and add a weighting term that controls where re-
construction errors can occur. We define this term in such
a way that residuals are mainly located in textured regions
where they are less visible. Our approach is independent of
how the composited gradient field has been built and is com-
plementary to the methods that focus on this aspect. Our
approach retains the simplicity of the traditional Poisson
equation while producing more pleasing composites.

1. Introduction

Gradient compositing is a popular technique for stitch-
ing images together, either for local edits [2, 10, 12, 17] or
panorama stitching [1,14]. These methods first delineate the
composited regions, then compute a target gradientfield and
boundary conditions from these regions, and finally solve
the Poisson equation to reconstruct an image. A major is-
sue with gradient-based compositing is that the combined
gradient field may not be integrable, that is, there may not
exist an image which gradients match the target field and the
specified boundary conditions. Existing work mitigates this
aspect by carefully selecting and combining the merged re-
gions. However, when the combined images are widely dif-
ferent, this strategy may not be sufficient. Generated target
gradient fields may be far from integrable, yielding color
leaks and halos typical of Poisson-based methods. In this
paper, we focus on these artifacts and propose a method to
control their location so that they are less conspicuous. In
other words, errors are still present our results, but they are
less objectionable than the errors generated by the standard
method.
Our approach also aims for numerical simplicity because

the available computational budget to reconstruct the image
from the gradients is often limited. For instance, panorama

stitching generates problems on the order of several tens of
megapixels [1] and the Photoshop Healing Brush runs at
interactive rates [10]. Our method relies on a sparse linear
system that can be solved without introducing a significant
overhead compared to the standard technique.
To summarize, our approach is best suited for interac-

tive tools and for miscalibrated panoramas where errors are
often large and inevitable and for which performance and
scalability are crucial issues. In these scenarios, our method
yields more satisfying outputs than the classical Poisson
equation without sacrificing computational efficiency.

1.1. Related Work

Our approach is complementary and orthogonal to the
methods that determine the target gradient field by deter-
mining the regions boundaries and combining the data from
both regions [2, 10, 12, 14, 17]. We focus on reconstructing
the final image from the target gradient field and specified
boundaries. The most often used option is to seek for an im-
age I that approximates the target field v in a least-squares
sense (with∇ the gradient operator):

argminI

∫
||∇I − v||2 (1)

which can be minimized by solving the Poisson equation:

ΔI − div(v) = 0 (2)

where Δ is the Laplacian operator ∂2/∂x2 + ∂2/∂y2 and
div is the divergence operator ∂/∂x + ∂/∂y. To solve this
equation, one also needs boundary conditions that depend
on the application. For instance, for cutting-and-pasting,
the values of the boundary pixels provide these conditions.
The equation is named after Poisson who introduced it in
Physics to describe potentials in uniform regions [16]. Our
contribution is to adapt it to nonuniform image content.

Variants of the Poisson Equation Our work shares simi-
larities with the method of Lalonde et al. [13] who propose
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to take the image gradient magnitude into account during
the reconstruction process. However, Lalonde’s scheme is
nonlinear and is presented as a heuristic in the context of
a larger problem; it is neither studied nor validated inde-
pendently of the boundary selection process. Our work fills
in this gap and proposes a linear variant that can be solved
with any linear solver. Our work is also related to the un-
published work by Bhat et al. [6] who follow an approach
related to ours but use it for image stylization whereas we
study compositing artifacts and rely on visual masking to
minimize them.

Shape from Shading Beside image compositing, the
Poisson equation has been largely used and adapted to solve
the shape-from-shading problem. We refer to the recent
work of Agrawal et al. [3] and Harker and O’Leary [11]
and the references therein for detail. In particular, the form
of our equations are similar to the anisotropic scheme pro-
posed by Agrawal. Yet, there are fundamental differences
between images and depth maps. Most importantly for our
work, the L2 norm classically used on depth maps poorly
reflects the human perception of images [5,7]. Shape-from-
shading techniques applied directly to images would not ac-
count for our perception of images. Our contribution is to
propose a scheme relying on domain-specific knowledge on
image compositing and human perception.

Perceptual Rendering Our strategy is inspired by recent
work on perceptual rendering that simplifies 3D scenes in
ways that have a minor impact on the viewer’s percep-
tion [8, 18–20] (and references therein). Our approach fol-
lows a similar strategy but applied to images. The fun-
damental difference between perceptual rendering and our
work is that these rendering techniques can produce error-
free images given sufficient time – introducing errors in
non salient regions speeds up the computation but could be
avoided. In comparison, we are given a target gradient field
that cannot be integrated, that is, we must introduce errors
in order to reconstruct the final image. Yet, as perceptual
rendering, we put these errors in non salient regions.

1.2. Contributions

Compared to existing work, our main contribution is a
method driven by perceptual criteria to control the location
of integration residuals in gradient-based compositing. We
argue that locating residuals in textured areas reduces their
visual impact because it leverages visual masking and re-
spects the image structure. We demonstrate our approach
with a weighted version of the Poisson equation. Our al-
gorithm is computationally lightweight so that it is widely
usable. Furthermore, it achieves visually pleasing results.

2. Controlling the Location of the Residuals

Given a target gradient field v with boundary conditions,
we aim for producing an image with a gradient field ∇I as
close as possible to v. We are interested in the case where
we cannot exactly fulfill our objective and must introduce
errors. Our strategy is to locate the residuals as much as
possible in regions where they will be the least objection-
able. Intuitively, we want to avoid errors in smooth regions
such as the sky where they produce color leaks and halos,
and put them in textured areas where visual masking will
“hide” them. Figures 1 and 2 illustrate this effect.

(a) dots on a gray background (b) same dots on a photograph

black

black

blue
(sky)

green
(foliage)

Figure 2. Visual masking on a photograph. We show the same dots
on a uniform background (a) and on a photograph (b). Only the
dots on the sky are visible in the photo, the two dots on the foliage
are not visible although they are identical to the ones shown on the
left. The color of the blue and green dots have been picked from
the sky and the foliage to make the configuration symmetric with
respect to color. We informally showed the right image to a few
people ignoring how it had been edited. No one saw the dots in
the foliage, even after close observation.

(a) no texture (b) low contrast texture (c) high contrast texture

Figure 1. Example of visual masking. When the CVPR characters are overlaid with texture, they become difficult to read although the
contrast of the characters themselves is the same. With the most contrasted texture on the right, the characters are almost invisible. Our
approach leverages this perceptual effect to hide integration residuals in textured areas where they are the least visible.



2.1. Adapting the Poisson Equation

Let’s assume that we have a scalar mapM with high val-
ues in regions where errors would be visible and low values
otherwise. We discuss later how to compute such a func-
tion. Given M , we modulate the least-squares strength so
that we penalize less the regions where we prefer the resid-
uals to be, that is, regions with lowM values:

argminI

∫
M ||∇I − v||2 (3)

Since we want to reduce the difference between ∇I and v,
M has to be strictly positive everywhere.

A Linear Solution To obtain a formula similar to the
Poisson equation (2), we apply the Euler-Lagrange for-
mula [4]. Recall that we aim at a simple solution. Thus,
we make the choice of using a mapM that is not a function
of I nor∇I so that we obtain the following linear system:

div
(
M (∇I − v)

)
= 0 (4)

In the following section, we show that, although this equa-
tion is simple, it has good properties. Later, we demonstrate
that it produces visually pleasing results. We also discuss
nonlinear alternatives in Section 3.

2.2. Analysis of the Residual Structure

Independently of the actual definition of M , we can al-
ready show that the residuals produced by our approach has
a structure aligned with the image content. Wang et al. [21]
have demonstrated that such structural similarity produces
more acceptable results.

Influence of the Location Map To better understand the
role ofM , we distribute the divergence in Equation 4:

M div(∇I − v) + ∇M · (∇I − v) = 0 (5)

With M �= 0, the relation: div(∇I) = ΔI , and the loga-
rithmic gradient: ∇M/M = ∇ log M , we obtain:

ΔI − div(v)︸ ︷︷ ︸
Poisson term

+ ∇ log M · (∇I − v)︸ ︷︷ ︸
new term

= 0 (6)

The left term is the same as the standard Poisson equa-
tion (2) while the right term is new. Remarkably, this new
term is driven by∇ log M , we build the following study on
this point.
In regions whereM is constant, the right term is null be-

cause ∇ log M = 0. Our scheme behaves similarly to the
Poisson equation: it uniformly spreads the residuals. In the
other regions where∇ log M · (∇I −v) �= 0, our results do
not satisfy the Poisson equation (2), that isΔI−div(v) �= 0.

It allows for larger variations in the residual field. This can
occur only where ∇ log M �= 0, that is large residual vari-
ations are aligned with edges of M . Importantly, this rela-
tionship is not reciprocal and M edges do not necessarily
generate residual edges since the dot product can be null
even if ∇ log M �= 0. For instance, this prevents spurious
residual edges in regions where I has the desired gradient
v, that is, ∇I − v = 0.

Structure of the Integration Residuals We have shown
that the residuals are smooth where M is smooth and can
vary only atM edges. Furthermore, we assume thatM has
the same structure as the image, that is,M edges are aligned
with image contours. This hypothesis holds in practice be-
cause we compute M from v that is close to ∇I . Com-
bining these arguments, we can conclude that our method
creates a residual field with a structure similar to the im-
age which is known to be less objectionable [21]. This re-
sult can be seen in Figure 3. Our method produces almost
constant residuals in the sky and on the foliage where the
amount of texture does not vary. Changes mostly happen at
the silhouette of the tree and are not noticeable. In compar-
ison, the Poisson residual varies everywhere. Although the
variations are smooth, they cause visible leaks and halos in
the sky because of the absence of texture.

2.3. Computing the Location Map

In this section, we explain how to actually compute the
scalar map M . We provide a function that fulfills our ob-
jectives and keep the exploration of the space of all possible
options as future work.
As previously discussed,M should be positive and have

high values where artifacts would be the most visible and
low values where they would less conspicuous. To preserve
the linearity of the solution,M should not be a function of
I nor ∇I . We also impose M ≤ 1 so that the convergence
properties of the system (4) is similar to the Poisson equa-
tion (2). Finally, we seek a computationally inexpensive
solution so that our approach can be widely used.

Our Model We use a simple model of visual masking
based on image variations. We consider highly varying ar-
eas to be regions where the errors will have a lower visual
impact, thus we assign them lowerM values. Since we can-
not use I nor ∇I , we use the target gradient field v to esti-
mate the image variations. Although v described the target
image variations, not the actual variations, it provides a suf-
ficiently good estimate while keeping the equations linear.
We propose the following expression forM :

M = 1 − p min
(

1,
||v||n(||v||)
Gσ ⊗ ||v||

)
(7)



(a) input (the tree has been pasted)

(c) standard Poisson reconstruction and integration residual (higher is brighter)

(d) our reconstruction and integration residual (higher is brighter)

(b) scalar map M  (white = 1 and black = 0)

Figure 3. Pasted tree. The left side of the tree has been erroneously cut and the trunk has been pasted within the ground region. The
standard Poisson reconstruction introduces halos near the foliage and leaks near the trunk. Although these artifacts are not removed by
our approach, they are significantly reduced. In particular, the outer halo around the foliage has disappeared and the leak near the trunk
is mostly gone. Our approach relies on the scalar map M shown on the top right (cf. text for detail). Compared to a standard Poisson
equation that uniformly spreads the integration errors (middle right), our approach accounts to the image content (bottom right).



where Gσ ⊗ ||v|| is the convolution of the amplitudes of v
with a Gaussian kernel and represents the average local vari-
ations. In practice, we found that small neighborhoods per-
formed well and we use σ = 8 in all our examples. Loca-
tions with a ratio ||v|| /Gσ ⊗ ||v|| ≥ 1 have variations above
their local average and we consider them suitable locations
where to put integration residuals. We treat them equally as
indicated by the min. However, this method is sensitive to
noise in smooth regions becauseGσ ⊗ ||v|| is small. We ad-
dress this issue with the function n that is equal to 1 except
for small values of ||v|| for which n = 0. In practice, n is a
smooth-step function such that n = 0 for ||v|| less than 2%
of the intensity scale, n = 1 above 4%, and a smooth vari-
ation in between. The variable p is a global parameter that
indicates howmuch we control the residual location. For in-
stance, p = 0 corresponds to no control, that is, to the stan-
dard Poisson equation, whereas larger values impose more
control. p has to be strictly smaller than 1 to keep M > 0.
We found that values close to 1 performs better in practice.
We use p = 0.999 in all our examples. Finally, the 1 − . . .
ensures that M has low values in smooth regions and high
values in textured regions while remaining between 0 and 1.
Our experiments show that this function yields satisfying

results. Compared to the Poisson equation (2), the Gaussian
convolution by a small kernel is the only significant addi-
tional cost, which is an inexpensive operation. Nonetheless,
if one has a larger computational budget, nothing prevents
our approach to use more sophisticated models inspired for
instance by the work of Daly [7] and Aydin et al. [5]

3. Relationship with Existing Methods

For this section, we make explicit the variables used to
defineM , that is, Equation 3 becomes:

∫
M(v) ||∇I − v||2,

and Equation 4: div
(
M(v) (∇I − v)

)
= 0. We discuss the

relationships between our work and related methods inde-
pendently of the actual definition ofM .

The Poisson Equation and its Variants Rewriting the
Poisson equation (2) as: div(∇I − v) = 0, we see that
our linear system has the same complexity since we do
not introduce new unknowns nor new coefficients in the
system, we only reweight the coefficients. With our no-
tation, Lalonde’s reconstruction method [13] minimizes∫

M(∇I) ||∇I − v||2 plus an attachment term. This func-
tional takes the variations of the actual image into account
but it sacrifices the least-squares formulation for a more
complex, nonlinear one. Agrawal et al. [3] propose an-
other nonlinear alternative where the least-squares norm is
replaced by a robust norm. This formulation requires an it-
erative solver and would be nontrivial to adapt to large-scale
problems [1]. Agrawal et al. also describe an anisotropic
variant that is linear. However, this work focuses on shape-

from-shading while we address issues specific to image
compositing. In particular, the uniform norms used on depth
maps poorly model human perception. Our work specifi-
cally addresses this issue by locally estimating the visual
impact of integration residuals on the image quality.

Edge-preserving Filtering Our method is also related to
Farbman’s edge-preserving filter [9] that minimizes an at-
tachment term plus

∫
M(I0) ||∇I||2 where I0 is the input

image. Note that Farbman projects the formula on the x and
y axes but we believe that it does not have a major impact on
the results. More importantly, Farbman’s method and ours
share the same idea of using a modulationM that depends
on fixed quantities that preserve the least-squares nature of
the problem; Farbman uses the input image I0 and we use
the target gradient field v. Finally, our work has common
points with Perona and Malik’s nonlinear anisotropic diffu-
sion filter [15]: ∂I/∂t = div

(
M(∇I) ∇I

)
. The difference

is that our modulation term M is not a function of the im-
age I which makes our equation linear, and we have a term
∇I − v instead of ∇I , which can be interpreted as Perona
and Malik “diffuse gradients” whereas we “diffuse integra-
tion residuals”.

4. Results

We demonstrate our approach on a two typical scenarios:
hand-made compositing (Figures 3 and 6) and misaligned
panoramas (Figure 5). To better demonstrate our method,
we created large errors on purpose. Although in some cases,
automatic boundary refinement would be able to better ad-
just the boundary [2, 12], this is not always possible. For
instance in Figure 6, pasting the seagull behind the street
light would challenge most algorithms. Also, as previously
discussed, reconstruction residuals remain in our outputs,
that is, the produced images still contain limited halos and
leaks. Nonetheless, the visual impact of those is greatly re-
duced by our method. As an example, the leaks near the
trunk of the pasted tree are mostly gone and the halo around
its foliage is confined in a much smaller region (Figure 3).

Limitation If the image has no texture near the composit-
ing mismatches, there is nowhere to “hide” the integration
residuals. In that case, our method does not improve the
composite (Figure 4).

Conclusion We have exposed a method to control the lo-
cation of integration residuals inherent in gradient-based
methods. Our approach reduces the visual impact of these
residuals. In addition, it is simple and can be easily added
to existing software.



(a) Poisson reconstruction (b) our reconstruction

Figure 4. Pasted seagull. In absence of texture near compositing
mismatches, our method is not able to produce better results than
a standard Poisson reconstruction.
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shape on the perception of material reflectance. ACM Trans-
actions on Graphics, 26(3), 2007. Proceedings of the ACM
SIGGRAPH conference.

[21] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.
Image quality assessment: From error visibility to structural
similarity. IEEE Transactions on Image Processing, 13(4),
2004.



(a) input (misaligned panorama) (b) standard Poisson reconstruction (c) our reconstruction

Figure 5. Misaligned panorama. With a standard Poisson reconstruction, the error on the roof leaks in the sky and the transition on the
riverbank remains hard. Our approach removes the leaks and generates a softer, less objectionable transition.

(a) input

(the seagull has been pasted)

(b) standard Poisson reconstruction (c) our reconstruction

Figure 6. Pasted seagull. The boundary between the right wing of the seagull and the light is not accurate. A standard Poisson reconstruction
generates leaks in the sky whereas our method produces an acceptable result.


