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Abstract

Camera shake is a common source of degradation in pho-

tographs. Restoring blurred pictures is challenging because

both the blur kernel and the sharp image are unknown,

which makes this problem severely underconstrained. In

this work, we estimate camera shake by analyzing edges in

the image, effectively constructing the Radon transform of

the kernel. Building upon this result, we describe two al-

gorithms for estimating spatially invariant blur kernels. In

the first method, we directly invert the transform, which is

computationally efficient since it is not necessary to also es-

timate the latent sharp image. This approach is well suited

for scenes with a diversity of edges, such as man-made envi-

ronments. In the second method, we incorporate the Radon

transform within the MAP estimation framework to jointly

estimate the kernel and the image. While more expensive,

this algorithm performs well on a broader variety of scenes,

even when fewer edges can be observed. Our experiments

show that our algorithms achieve comparable results to the

state of the art in general and produce superior outputs on

man-made scenes and photos degraded by a small kernel.

1. Introduction

Hand-held photos with a slow shutter speed are often
blurry because the photographer moves during the exposure.
Tripods solve this issue but are cumbersome to transport.
The mechanical stabilization of the lens or of the sensor pro-
vided in modern cameras also greatly help reducing shake
but longer exposures remain challenging. Recently, Fergus
et al. [4] have proposed an algorithm to restore blurry pho-
tos. The difficulty is that many pairs of images and blur
kernels can explain the captured blurry photos, and most of
them are not acceptable because of noise and ringing arti-
facts. Nonetheless, Fergus’s algorithm recovers a satisfying
sharp image thanks to a variational inference scheme and a

priori knowledge about natural images. Since then, several
other approaches have been proposed. However, in these
methods, the problem remains severely unconstrained. Al-
though we require that the convolution of the recovered im-
age and kernel together reproduce the captured photo and
that the kernel is compact and non-negative, there are still

numerous possible solutions to the problem. Because of
that, these methods resort to complex optimization tech-
niques that are slow and that do not always succeed.

In this paper, we show that edges in the scene reveal addi-
tional cues about the kernel and that this information helps
constrain the deblurring problem and makes it easier to
solve. Intuitively, different orientations are affected differ-
ently by blur, and the set of different edge profiles can be
seen as a “signature” of the kernel. Formally, we show that
we can recover the Radon transform of the kernel from the
blurred edges. We complement this result with heuristics
to detect edges in blurred photos. In scenes with numer-
ous edges such as a man-made environment, this approach
is sufficient to directly estimate the kernel. Further, this pro-
cess does not involve repeated deconvolutions, which sig-
nificantly speeds up the process. In scenarios with fewer
edges, we integrate our cues in a maximum a priori formula-
tion (MAP) and define a likelihood term that constrains the
estimated kernel. Our tests show that this approach allows
for high-quality deblurring on a broad variety of scenes. We
also analyze the performance of several algorithms includ-
ing ours on different categories of scenes and with various
kernels. This experiment reveals that blur kernel estimation
is a rich problem with different best solutions for different
regions of the problem space. In particular, it shows that
our methods perform well on photographs that are poorly
restored by other existing techniques.

Contributions The main contribution of this work is the
construction of the Radon transform of the blur kernel by
analyzing the edges in the image. Using this result, we de-
scribe two practical algorithms for removing spatially invari-
ant blur, one based on the inverse Radon transform and one
based on MAP estimation. Finally, we show that our method
is successful on images that are challenging for other tech-
niques.

1.1. Related work

In this paper, we focus on removing spatially invariant blur.
To resolve the inherent ambiguity in blind deconvoluton,
different assumptions on blur kernels and natural images
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have been incorporated. Fergus et al. [4] exploit the knowl-
edge that the gradient histogram of natural images exhibits
a heavy-tailed profile and that blur kernels due to camera
shake have a sparse support. Shan et al. [12] introduce a lo-
cal prior to detect and smooth surfaces. Cai et al. [1] assume
that a blur kernel is sparse in the curvelet domain and the
sharp image is sparse in the framelet domain. These tech-
niques solve a large system of equations to find the sharp
image and/or the blur kernel that reproduce the observation
while conforming to a prior knowledge about blur and natu-
ral images, something which is time consuming and do not
always succeed.

A few methods explicitly exploit blurred edges to estimate
blur. Rosenfeld and Kak introduced the idea in their semi-
nal book [11]. Jia [6] estimates an alpha matte from user-
selected edges, and subsequently recovers the blur kernel
from the matte. Joshi et al. [7] assume that the blur ker-
nel is unimodal to predict the location of sharp edges in a
blurry photo and estimate the blur kernel accordingly. Cho
and Lee [2] extend Joshi et al. [7] in a multi-scale manner
to handle multimodal kernels. Cho and Lee [2] reduce the
computation by working in the gradient domain.

The Radon transform has been used to estimate 1D kernels
that explain motion blur, i.e. the camera is assumed to move
along a straight line [5, 14].

In comparison to these methods, we introduce a new like-
lihood term that describes 2D blur kernels by their Radon
transform. This term is valid for arbitrary kernels and does
not require a multiscale approach. We build an efficient al-
gorithm upon this result and show that it can restore images
that are challenging for other methods.

2. Kernel estimation from edges

In this section, we introduce our image formation model and
give a brief introduction to the Radon transform. Then, we
build upon these concepts to estimate the blur kernel using
the edges in the blurred image.

2.1. Blur model

We model the formation of the blurred image B as a convo-
lution of a blur kernel k and a sharp latent image I:

B = k ⊗ I + ν (1)

where ν is the observation noise. Our goal is to reconstruct
the sharp image I from the observed blurry photo B.

2.2. Background on the Radon transform

We briefly review the Radon transform and its inverse for
2D signals. For an in-depth presentation, we refer to [3,15].
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Figure 1: The Radon transform φf
θ (ρ) of a signal f is an

integral of the signal along the line ρ = x cos(θ) + y sin(θ)
(i.e the dashed line).

The Radon transform of a signal f(x, y) is the collection of
integrals of f(x, y) along straight lines, where the straight
lines can be conveniently parameterized using the offset ρ
and the orientation θ as shown in Figure 1.

φf
θ (ρ) =

∫∫
f(x, y) δ

(
ρ−x cos(θ)− y sin(θ)

)
dxdy (2)

The function φf
θ , for fixed θ, can be viewed as a projec-

tion of the signal f along the direction orthogonal to ori-
entation θ. With enough projections of f along different
orientations θ, the original signal f can be recovered. This
is known as the inverse Radon transform and is computa-
tionally inexpensive. For instance, the commonly used fil-

tered backprojection method consists of a “ramp filter” (1-D
convolutions) applied to each projection, followed by back-
projection. One way to implement this method is to use 1-
D Fourier transforms to convert the 1-D convolutions into
products, and then use a 2-D inverse Fourier transform [15,
§ 7.2]. We further discuss this issue in Section 2.4.

2.3. Radon transform of the blur kernel

In this section, we show how to compute a Radon projection
from a color step edge. For now, we assume that we have
detected edges. We explain how to do so in Section 2.5.
The intuition behind our approach is that a line integral of
the kernel can be formulated as the convolution of the ker-
nel with the image of an ideal line. We implement this idea
in three phases. First, we fit an ideal binary edge to a color
edge. Then, we take the derivative in the direction orthog-
onal to the edge to obtain an estimate of the response to
an ideal line. Finally, we show that the response equals a
projection of the kernel. Or in other words, the collection
of such responses for edges in different orientations yields
samples of the Radon transform of the kernel. Without loss
of generality, we will illustrate the approach using a vertical
edge, that is the case θ = 0. The situation for other orienta-
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tions can be derived simply by rotating the axes. The steps
are as follows:

(i) Remove the colors We consider a binary step edge
H(x, y) equal to 1 if x ≥ 0 and 0 otherwise. Given two
colors c1 and c2, we define an ideal color step edge as
E = Hc1 + (1 − H)c2. The blurred version BE of this
edge is: k ⊗ E = c1(k ⊗ H) + c2(1 − k ⊗ H). In this sec-
tion, we assume that c1 and c2 are known, we will describe
how to estimate them later, and seek to retrieveBH = k⊗H
that describes the blurred edge independent of its colors. At
each pixel, we have three equations, one for each RGB chan-
nel, of the form BE = BHc1 + (1 − BH)c2. Since BH is
the only unknown, this is an overconstrained linear system
that can be solved with a least-squares formulation, which in
practice is a simple average of the solutions from each RGB
channel.

(ii) Convert an edge response into a line response We
now have a scalar description of the blurred edge: BH =
k ⊗ H and we seek to derive the blurred line response
from the blurred edge response. To do so, we remark that
H(x, y) =

∫ x

−∞ δ(t) dt and that ∂H
∂x (x, y) = δ(x), i.e.

taking the derivative of the ideal step edge along the di-
rection orthogonal to it produces a line. We compute the
derivative of k ⊗ H in the x direction and obtain BL =
∂BH/∂x = k ⊗ δx which is the image of a blurred line
(here δx(x, y) = δ(x)).

(iii) Sample the profile Finally, we show that sampling
BL horizontally produces a vertical Radon projection of
the kernel. Expanding k ⊗ δx, we get BL(x, y) =∫∫

k(u, v)δ(x − u) du dv. Since the formula does not de-
pend on y, we can omit it. Comparing with Equation (2) in
the case θ = 0, one can recognize that BL(x) is equal to the
vertical Radon projection φk

0(x) of k.

(iv) Align the projections To reconstruct an accurate blur
kernel, the projections must be consistently aligned with
each other. For this, we exploit the fact that the center of
mass of the kernel projects onto the center of mass of each
projection. In practice, we compute a first estimate of each
projection and then shift it to align its center of mass on the
origin of the coordinate system.

Practical construction of a Radon projection

In practice, we are given a blurry image B. We first run
heuristics to detect color step edges. For each edge, we
consider a local region BE and estimate the c1 and c2 col-
ors. Then, we sample the pixels along the direction orthog-
onal to the edge. For each of these pixels, we compute
BH = 1

3

∑
{r,g,b}

BE−c1

c2−c1
. This produces a 1D set of pix-

els with values in [0, 1]. The first derivative of this signal is
the Radon projection φk

θ(x) of the kernel along the direction

θ orthogonal to the edge. We compute its center of mass and
shift it accordingly. The next section describes how to use
these projections to recover the kernel.

2.4. Recovering the blur kernel from its projections

In this section, we seek to recover the kernel k from a set of
Radon projections {φ̃i} along the directions {θi} estimated
using edges in the input blurry image (§ 2.3). A standard
approach is to use filtered backprojection that convolves the
1-D projections with a ramp filter and then backproject them
in 2-D to build k (see [15, § 7.2] for details). Although the
produced estimate (Fig. 2b) captures the overall structure
of the kernel, it is too “thick” and it exhibits “streaks” that
would degrade the deblurred image. We address this issue
by adding a priori knowledge about blur kernels. Since they
correspond to the camera trajectory during the exposure,
they are sparse and smooth. We use a Bayesian formulation
to express this assumption, that is, we seek to maximize the
posterior probability p(k|B) of the blur kernel k given the
observed image B. We use a classical decomposition into
a likelihood term and a prior: p(k|B) ∝ p(B|k) p(k). To
model the likelihood term p(B|k), we define the linear op-
erator Rθ that computes a line integral in the direction θ and
seek to satisfy the constraint that the actual projections Rθi

k

of the blur kernel should match our measured projections φ̃i:

p(B|k) ∝ exp
(
− 1

2η2

obs

∑N
i=1

‖φ̃i − Rθi
k‖2

)
(3)

where N is the number of Radon projection φ̃ that we have
extracted from the image and η2

obs is the variance of observa-
tion noise that comes from the imaging noise with variance
η2
img and from the inaccuracies in the estimation of the ori-

entation θ. Since we estimate the projections φ̃i with finite
differences for the first derivative (§ 2.3), the impact of the
imaging noise is doubled. The orientation noise adds a fac-

(a) Ground truth (b) Filtered
back projection

(c) Sparse prior

Figure 2: We compare the performance of different inverse
Radon transform algorithms on a synthetic example. We

blur the test pattern (shown in the supplemental material)

with the kernel (a), and estimate 120 projections in 12 reg-

ularly spaced orientations. The kernel recovered using fil-

tered backprojection (b) is too big and exhibits faint streaks

(this may be better seen on the electronic version). In com-

parison, our approach based on the sparse prior (Eq. 4)

yields a more accurate result (c).
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tor α. This gives η2
obs = (2 + α) η2

img. We set α to 1 using
cross-validation.

For the kernel prior, we incorporate the knowledge that in-
tensity profiles of blur kernels, as well as gradient profiles of
blur kernels, are sparse:

p(k) ∝ exp (−λ1‖k‖
γ1 − λ2‖∇k‖γ2) (4)

We use the same parameters for all experiments, determined
through cross-validation: λ1 = 1.5, γ1 = 0.9, λ2 = 0.1,
and γ2 = 0.5. In practice, we minimize the negative log-
posterior − log

(
p(B|k) p(k)

)
with an iterative reweighted

least-squares method [8, 13].

Robustness to noise We found that our approach behaves
well with a level of Gaussian noise up to σ ≈ 1%. Our ex-
periments show similar results for other methods, e.g. [2,4].
Noise may also affect the orientation θ since we use image
gradients to estimate it. Figure 3 shows that our method be-
haves well up for a Gaussian noise on θ up to σ ≈ 5◦, which
is largely sufficient in practice.

(a) Ground truth (c) σ = 5o (d) σ = 10o

(e) σ = 0o
(f ) σ = 5o (g) σ = 10o

(b) σ = 0o

12 orientations, 5 projections per orientation

6 orientations, 10 projections per orientation

Figure 3: We analyze the robustness of our inverse Radon

transform algorithm with respect to edge orientation estima-

tion error. We use the same test pattern as in Figure 2 and

add Gaussian noise of variance σ2 to the orientation θ. We
show the reconstructed kernels in each case.

Speeding up the computation When the number N of
projections is large, the optimization becomes slow. We
observe, however, that having many projections in similar
orientations is beneficial mostly in terms of reducing noise
of the projection along that orientation. We exploit this by
averaging out the noise first and then solving the optimiza-
tion problem. We do so by binning projections with simi-

lar orientations. We define a small set of n orientations θ̂j

with n ( N and group the measured values θi accord-

ing to their nearest θ̂j . This forms sets Pj of i indexes.
For each non-empty set, we compute the average projection

φ̂j = 1

wj

∑
i∈Pj

φ̃i where wj is the size of Pj . We then

reformulate the likelihood as:

exp
(
− 1

2η2

obs

∑n
j=1

wj‖φ̂j − Rbθj
k‖2

)
(5)

In practice, we define a θ̂j value every degree and less than
half of them are non-empty.

2.5. Detecting step edges in blurry images

To build the Radon projections φi, we need to find isolated
step edges. We introduce a set of image analysis heuris-
tics that detect edges in blurry images (Fig. 4). We initiate
the process with a map E of candidate edges by running a
simple edge detector that thresholds the gradients to keep
the top 2.5% strongest edges. Then, we select edges using
simple rules. First, we discard edges with a low contrast be-
cause the ratio between the edge profile and noise would be
too low. We measure the edge colors c1 and c2 (§ 2.3) and
if ‖c1 − c2‖ < 0.03 in the RGB space, we discard the edge.
Then, we select isolated edges where we can observe a sin-
gle edge at a time. Assuming that we know the maximum
size s of the kernel, in practice given by the user, we discard
edges that have one or more other edges at a distance less
than s in their orthogonal direction. Third, we check that
the colors along the edge are a mixture of c1 and c2. If one
the edge sample is farther than 0.03 of the [c1, c2] segment
in RGB space, we discard the edge. Last, we select straight
edges. We consider the orientations θ% ∈ [0,π[ of the can-
didate edges within a disc D of radius s. We apply the cri-
terion proposed by Watson [16] to estimate their alignment.

We compute 1

L

√(∑
% cos(2θ%)

)2
+

(∑
% sin(2θ%)

)2
where

L is the number of candidate edges in D. We keep only the
edge for which this quantity is larger than 0.97. The edge
detection works sufficiently well in practice but its accuracy
degrades with large blur kernels. We further discuss this is-
sue in the result section.

(a) blurry image (b) detected edges

Figure 4: Example of edges detected in a blurry image using
our heuristics.

2.6. Experimental results

We compare our algorithm’s performance to three other
methods: Fergus et al. [4], Shan et al. [12], and Cho and
Lee [2]. We use the same deconvolution algorithm [8] for
everyone so that only the kernel estimation algorithm differ-
entiates the results. Our tests are based on images in raw
format (14 bits per pixel) to ensure that the data are linear
and that no degradation is introduced by JPEG compression.
Figure 5 shows results on photos of man-made environments
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on which our method typically performs well. In these cases,
our approach produces better results than previous work, e.g.
with less ringing and/or sharper details. It is also efficient
with running times on the order of a minute with our un-
optimized Matlab implementation. Our algorithm does not
perform as well when there are not enough edges in differ-
ent orientations (Fig. 6a) or when we do not detect enough
edges (Fig. 6b). In these cases, we are not able to retrieve
Radon projections with enough precision and/or with a suf-
ficient diversity of orientations. Improving our heuristics to
detect edges must help in these cases. In the following sec-
tion, we propose a second algorithm in which we incorporate
the Radon projections into a MAP estimation process. In the
result section (§ 4), we compare these two approaches and
further analyze their performance.

3. The RadonMAP algorithm

To handle images with fewer edges, we develop a method
that incorporates kernel projection constraints within a MAP
estimation. We maximize the posterior probability with re-
spect to the blur k and the image I jointly [2, 12]:

arg maxk,I p(k, I|B) (6)

which we decompose into likelihood and prior terms:
p(k, I|B) ∝ p(B|k, I) p(k) p(I). We use an image prior
p(I) ∝ exp (−λ‖∇I‖γ) that favors a piecewise-smooth la-
tent image and the same kernel prior p(k) as earlier (Eq. 4).

One could model the likelihood p(B|k, I) using the obser-
vation model (Eq. 1) only:

p(B|k, I) ∝ exp
(
− 1

2η2

img

‖B − k ⊗ I‖2

)
(7)

However, with such a likelihood and priors, Levin et al. [9]
show that the joint estimation of the kernel k and the sharp
image I does not produce a satisfying result because the
joint probability (Eq. 6) is maximized when k is an impulse
and I the input blurry image B. To resolve this issue, we
augment the likelihood term p(B|k, I) with the Radon pro-
jections (Eq. 5):

exp



−
‖B − k ⊗ I‖2

2η2
img

−

∑n
j=1

wj‖φ̂j − Rbθj
k‖2

2η2
obs



 (8)

The Radon transform term relies on a strong assumption that
natural images consist of step edges and that every detected
edge should be an ideal step edge. It essentially penalizes the
no-blur solution, and steers the joint distribution p(k, I|B)
to favor the correct solution.

Practical algorithm Algorithm 1 shows the pseudocode
for the joint estimation algorithm which we name Radon-

MAP. We resort to an alternating optimization to find k and I

Algorithm 1 The RadonMAP blur estimation algorithm

% Initial kernel estimation

kout ← arg mink Eq. 5
for - = 1 to maxIteration do

Iest ← arg maxI p(kout, I|B) % Estimate latent image

Ibf ← bilateralFilter(Iest)
kout ← arg maxk p(k, Ibf|B) % Estimate kernel

end for
Iout ← arg maxI p(kout, I|B)

(Eq. 6): we first maximize the joint distribution p(k, I|B)
with respect to the kernel k while keeping the image I
fixed, then we maximize it with respect to I while holding
k fixed. We iterate the two steps until convergence (typi-
cally 5 times). Inspired by Cho and Lee [2], we filter the
latent image estimate Iest using a bilateral filter [10] before
re-estimating the kernel. This step significantly improves
the kernel estimation by removing ringing and noise artifacts
due to the inaccuracy of the initial guess of the kernel.

Experimental results Figure 6(a,b) illustrates how the
RadonMAP algorithm improves the results of the photos
that are challenging for the direct inverse transform. In these
cases, the RadonMAP outputs are crisper and have less ring-
ing. In general, RadonMAP yields cleaner kernels without
the disconnected components that may sometimes appear
with the direct inverse transform when only a few edges
are available. Our unoptimized Matlab implementation of
RadonMAP runs in about 30 minutes.

4. Quantitative evaluation

We compare the performance of blur estimation algorithms
quantitatively using the error metric introduced by Levin et
al. [9]. This metric assumes that the ground-truth sharp im-
age Igt and kernel kgt are known. It computes the accuracy
of a deblurred image Iout while accounting for possible inac-
curacies due to deconvolution by comparing it to the accu-
racy of an image Ikgt

deblurred with the ground-truth kernel.
The error ratio is defined as ‖Iout − Igt‖2/‖Ikgt

− Igt‖2. An
error ratio of 1 is ideal, that is, the estimated kernel yields
a result as good as the ground-truth kernel. Lower quality
results correspond to higher ratios. We use this metric as
suggested by Levin et al.: we plot the cumulative error ratio
(CER). The higher the curve, the better. We use the 8 kernels
extracted from real-world blurry photos by Levin et al. [9].
The same authors also provide a set of 255× 255 gray-scale
test images but we believe that such low-resolution black-
and-white images are not representative of real-world pho-
tos. Further, image analysis such as edge detection is nearly
impossible on these small images, which makes it difficult
to evaluate methods like Cho and Lee’s [2] and ours. We ad-
dress this point with a set of 6 one-megapixel color images
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(a)

(c)

Blurry image Fergus et al. Shan et al. Cho and Lee
Our result 

(direct inversion)

(b)

Figure 5: We compare our algorithm to the methods of Fergus et al. [4], Shan et al. [12], and Cho and Lee [2]. On this

man-made environments, our algorithm compares favorably to prior art. These results may be better seen on the electronic

version.

that are closer to a practical scenario. Half of the images
are rich in edges while the other half has fewer of them so
that we can test our methods in a favorable case and on more
challenging data. We combine the 8 kernels and the 6 im-
ages and add Gaussian noise with σ = 0.5% to generate 48
test images.

Figure 7 compares the algorithms of Fergus et al. [4], Shan

et al. [12], Cho and Lee [2], and our two approaches: the di-
rect inverse transform (§ 2.4) and RadonMAP (§ 3). From a
global point of view, Cho and Lee’s method and RadonMAP
perform better than others (Fig. 7a), with a slight advantage
for Cho and Lee’s algorithm. We further investigated the re-
sults by observing subsets of our 48 test images. First, we
looked at the influence of the image content. As expected,
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Blurry image Fergus et al. Shan et al. Cho and Lee
Our result

(direct inversion)
Our result 

(RadonMAP)

(a)

(b)

(c)

Figure 6: By integrating kernel projection constraints to a MAP process, we improve the kernel estimation performance. In

particular, we can restore blurry images, even when there are few edges detected (a-b). These results may be better seen on

the electronic version.

our methods yield more accurate results when a lot of edges
are available (Fig. 7b,c). More surprisingly, the performance
of Cho and Lee’s technique decreases in the many-edges
case, which may be due to the lower amount of texture in
the images. We also analyzed the influence of the kernel
size and found that our approach performs significantly bet-
ter with small kernels than with larger ones (Fig. 7d,e). This
comes from the higher performance of our edge detection
routine when the images are less blurred. This result sug-
gests that the heuristics to find image edges is currently the
limiting factor of our method. From a more general point

of view, these plots unveil cases that are challenging for ex-
isting techniques: images with many edges and low texture,
and small blur kernels. The plots also show that our ap-
proach based on Radon projections brings a satisfying solu-
tion to these hard cases.
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Shan et al.

Our result (direct inverse transform)

Our result (RadonMAP)

(c) Images with many edges, all kernels
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(d) All images, large kernels
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(b) Images with few edges, all kernels
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(a) All images, all kernels

Legend:

Figure 7: Cumulative error ratios for the following algorithms: Fergus et al. [4], Shan et al. [12], Cho and Lee [2], our

method based on directly inverting the Radon transform (§ 2.4), and our RadonMAP algorithm (§ 3). On average (a), Cho

and Lee’s algorithm performs best, closely followed by our RadonMAP method. A fine-grain analysis reveals that Cho and

Lee’s technique yields good results on images with few edges (b) and when the blur kernel is large (d). In comparison, our

methods perform best on images with many edges (c) and with small kernels (e), thereby producing good results on cases that

were poorly addressed so far.
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