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Abstract
We describe a set of image editing and viewing tools that
explicitly take into account the resolution of the display on
which the image is viewed. Our approach is twofold. First,
we design editing tools that process only the visible data,
which is useful for images larger than the display. This en-
compasses cases such as multi-image panoramas and high-
resolution medical data. Second, we propose an adaptive
way to set viewing parameters such brightness and contrast.
Because we deal with very large images, different locations
and scales often require different viewing parameters. We
let users set these parameters at a few places and interpo-
late satisfying values everywhere else. We demonstrate the
efficiency of our approach on different display and image
sizes. Since the computational complexity to render a view
depends on the display resolution and not the actual input
image resolution, we achieve interactive image editing even
on a 16 gigapixel image.

1. Introduction

Gigapixel images are now commonplace with dedicated de-
vices to automate the image capture [1, 2, 24, 37] and im-
age stitching software [5, 11]. These large pictures have
a unique appeal compared to normal-sized images. Fully
zoomed out, they convey a global sense of the scene, while
zooming in lets one dive in, revealing the smallest details,
as if one were there. In addition, modern scientific instru-
ments such as electron microscopes or sky-surveying tele-
scopes are able to generate very high-resolution images for
scientific discovery at the nano- as well as at the cosmo-
logical scale. We are interested in two problems related to
these large images: editing them and viewing them. Edit-
ing such large pictures remains a painstaking task. Al-
though after-exposure retouching plays a major role in the
rendition of a photo [3], and enhancing scientific images is
critical to their interpretation [8], these operations are still
mostly out of reach for images above 100 megapixels. Stan-
dard editing techniques are designed to process images that
have at most a few megapixels. While significant speed
ups have been obtained at these intermediate resolutions,

e.g. [14, 16, 17, 28], major hurdles remain to interactively
edit larger images. For instance, optimization tools such
as least-squares systems and graph cuts become unpractical
when the number of unknowns approaches or exceeds a bil-
lion. Furthermore, even simple editing operations become
costly when repeated for hundreds of millions of pixels. The
basic insight of our approach is that the image is viewed on
a display with a limited resolution, and only a subset of the
image is visible at any given time. We describe a series
of image editing operators that produce results only for the
visible portion of the image and at the displayed resolution.
A simple and efficient multi-resolution data representation
(§ 2) allows each image operator to quickly access the cur-
rently visible pixels. Because the displayed view is com-
puted on demand, our operators are based on efficient im-
age pyramid manipulations and designed to be highly data
parallel (§ 3). When the user changes the view location or
resolution we simply recompute the result on the fly.

Further, editing tools do not support the fact that very large
images can be seen at multiple scales. For instance, a high-
resolution scan as shown in the companion video reveals
both the overall structure of the brain as well as the fine
entanglement between neurons. In existing software, set-
tings such as brightness and contrast are the same, whether
one looks at the whole image or at a small region. In com-
parison, we let the user specify several viewing settings for
different locations and scales. This is useful for emphasiz-
ing different structures, e.g. on a brain scan, or expressing
different artistic intents, e.g. on a photo. We describe an in-
terpolation scheme motivated by a user study to infer the
viewing parameters where the user has not specified any
settings (§ 4). This adaptive approach enables the user to
obtain a pleasing rendition at all zoom levels and locations
while setting viewing parameters only at a few places.

The novel contributions of this work are twofold. First,
we describe editing operators such as image stitching and
seamless cloning that are output-sensitive, i.e., the associ-
ated computational effort depends only on the display res-
olution. Our algorithms are based on Laplacian pyramids,

1



which we motivate by a theoretical study of the constraints
required to be display-aware. Second, we propose an inter-
polation scheme motivated by a user study to infer viewing
parameters where the user has not specified any settings.
We illustrate our approach with a prototype implemented
on the GPU and show that we can interactively edit very
large images as large as 16 gigapixels.

1.1. Related Work

The traditional strategy with large images is to process them
at full resolution and then rescale and crop according to the
current display. As far as we know, this is commonly used
in commercial software. However, this simple approach
becomes quickly unpractical with large images, especially
with optimization such as graph cuts and Poisson solvers.

Fast image filters have been proposed to speed up oper-
ations such as edge-aware smoothing [4, 14, 15, 17, 32],
seamless compositing [5, 16, 22], inpainting [9], and selec-
tion [28]. Although these algorithms reduce the computa-
tion times, they have been designed for standard-size im-
ages and the entire picture at full resolution is eventually
processed. In comparison, we propose display-aware algo-
rithms that work locally in space and scale such that only
the visible portion of the data is processed.

Berman et al. [10] and Velho and Perlin [36] describe multi-
scale painting systems for large images based on wavelets.
From an application perspective, our work is complemen-
tary as we do not investigate methods for painting but rather
for adaptive viewing and more advanced editing such as
seamless cloning. Technically speaking, our methods op-
erate in a display-aware fashion, and not in a multi-scale
fashion. That is, we apply our edits on-the-fly to the current
view and never actually propagate the results to all scales.
Further, it is unclear how to extend the proposed approach
from painting to algorithms such as seamless cloning.

Pinheiro and Velho [34] and Kopf et al. [24] propose
a multi-resolution tiled memory management system for
viewing large data. Our data management follows similar
design principles, but supports multiple input images that
can be aligned to form a local image pyramid on-the-fly
without managing a pre-built global multiresolution image
pyramid. It also naturally supports out-of-core computa-
tions on graphics hardware with limited memory. Jeong et
al. [21] proposed an interactive gigapixel viewer suitable for
multi-layer microscopy image stacks, which shares a simi-
lar idea to our data management scheme. In comparison, we
focus on single-layer images and also tackle editing issues.

Kopf et al. [24] applies a histogram-based tone-mapper to
automatically adjust the current view of large HDR images.
Our work can also be automatic but also let the user to over-
ride the default settings as many times as desired. This al-

lows users to make adjustments that adapt to the current
view and may reflect subjective intents. Furthermore, we
propose more complex output-sensitive algorithms for tasks
such as seamless cloning.

Shantzis [35] describes a method to limit the amount of
computation by only processing the data within the bound-
ing box of each operator. We extend this approach is several
ways. Unlike Shantzis, we deal with changes of zoom level
and ignore the high-frequency data when they are not visi-
ble. This property is nontrivial as we shall see (§ 3.1). We
also design new algorithms that enable display-aware pro-
cessing such as our stitching method based on local compu-
tation only. In comparison, the standard method based on
graph cut is global, i.e. the bounding box would cover the
entire image. Further, we also deal with viewing parame-
ters, which is not in the scope of Shantzis’ work.

2. Data Representation

A major aspect of our approach is that the view presented to
the user is always computed on the fly. From a data struc-
ture point of view, this implies that the displayed pixel data
have to be readily available and that we can rapidly deter-
mine how to process them. To achieve this, we use several
mechanisms detailed in the rest of this section.

Global Space and Image Tiles Our approach is orga-
nized around a coordinate system in which points are lo-
cated by their (x, y) spatial location and the scale s at which
they are observed. A unit scale s = 1 corresponds to the
full-resolution data, while s = 1

n corresponds to the image
downsampled by a factor of n. We use this coordinate sys-
tem to define global space in which we locate data with re-
spect to the displayed image that the user observes (Fig. 1).
Typically, we have several input images that make up, e.g.,
a panorama. For each image Ii, we first compute a geo-
metric transformation gi that aligns it with the others by
specifying its location in global space. If we have only one
input image, then g is the identity function. The geomet-
ric alignment can either be pre-computed before the editing
session, or each image can be aligned on the fly when it is
displayed. In the former case, we use feature point detec-
tion and homography alignment, e.g. [11]. In the latter case,
the user interactively aligns the images in an approximate
manner. We then automatically register them in a display-
aware fashion by maximizing the cross-correlation between
visible overlapping areas. This is useful for images that are
being produced on-line by automated scientific instruments.
We decompose all input images into tiles. For each tile, we
pre-compute a Gaussian pyramid to enable access to any
portion of the input images at arbitrary resolutions. For res-
olutions that we have not pre-computed we fetch the pyra-
mid level with a resolution just higher than the requested
one and downsample it on the fly. The resampling step is



essentially free on graphics hardware, and although we load
more data than needed, the overhead is small compared to
loading the full-resolution tile or the entire input image. We
further discuss the computational complexity of this opera-
tion in Section 5.

Operator Representation We distinguish two types of
operators. Local operators, such as copy-and-paste or im-
age cloning, affect only a subset of the image. We store
their bounding box in global space as well as an index that
indicates in which order the user has performed the edits.
We did not include scale s in this representation because
we could not conceive of any realistic scenarios in which
a local operator would apply only at certain scales, but in-
cluding it would be straightforward if needed. When the
user moves the display to a new position, the viewport de-
fines a display rectangle at a given scale in global space.
We test each operator and keep only the ones whose bound-
ing box intersect with the viewport. In our current imple-
mentation operators are stored in a list and we test them
all since bounding box intersections are efficient. Once we
have identified the relevant operators, we apply them in or-
der to the visible pixels at the current resolution. The global
operators brightness, contrast, and saturation, affect all the
pixels. We apply these transformations after the local op-
erators and always in the same order: brightness, contrast,
saturation. If the user modifies a setting twice, we keep only
the last one. We found that it is beneficial to let users spec-
ify different values at different positions and scales. In this
case, we store one setting at each (x, y, s) location where
the user makes an adjustment and interpolate these values
to other locations (§ 4).

3. Local Operators
In this section, we describe local editing operators. The al-
gorithms are designed to be display-aware, that is, we pro-
cess only the visible portion of the image at the current res-
olution and perform only a fixed amount of computation
per pixel. We first study these operators from a theoretical
standpoint and then illustrate our strategy on two specific

tasks: seamless cloning and panorama stitching.

3.1. Theoretical Study

We study the requirements that an operator f must satisfy to
be display-aware. The function f takes an image I as input
and creates an image O as output, that is, O = f(I). To be
display-aware, f must be able to compute the visible por-
tion of the output using only the corresponding input data.
First, we characterize how the visible portion of an image
relates to the full-resolution data. We consider an image X .
To be displayed,X is resampled at the screen resolution and
cropped. We only consider the case where the screen reso-
lution is lower than the image resolution. The opposite case
is only about interpolating pixel values and does not need a
special treatment. Downsampling the imageX is done with
a low-pass filter ` followed by a comb filter. Assuming a
perfect low-pass filter, ` is a multiplication by a box filter
in the Fourier domain. After this, the comb filter does not
remove any information and we can ignore it. The other ef-
fect of displaying the image on a screen is that only part of
it is visible. This is a cropping operation c that is a multi-
plication by a box function in the image domain. We define
the operator s(X) = c(`(X)) that displays X on a screen.

To be display-aware, f must satisfy s(f(I)) = f(s(I)),
that is, we must be able to compute the visible portion of
the output s(f(I)) using only the visible portion of the in-
put s(I). A sufficient condition is that f commutes with `
and c. ` can be any arbitrary box centered in the Fourier
domain. To commute with it, f must be such that the con-
tent of f(X) at a frequency (u0, v0) depends only on the
content of X at frequencies |u| ≤ |u0| and |v| ≤ |v0|. The
rationale is that these frequencies are preserved by ` even
if its cut-off is (u0, v0). The crop function c applies an ar-
bitrary box in image space. For f to commute with it, it
must be a point-wise operator since there is no guarantee
that adjacent pixels are available. However, these two con-
ditions are too strict to allow for any useful filter. We relax
the latter one by considering an “extended screen”. For in-
stance, for an operator based on 5 × 5 windows, we add a

y

x

scale

low res.

aligned image
domains

local operator 2
(out of view)

local operator 1
(active) viewport

tile
pyramidtiles

input images

editing operators

cached data global space

local 1: cut-and-paste
local 2: texture enhancement
... 
global 1: contrast
global 2: brightness
...

global 
operator 1

global operator 2

high res.

Figure 1. Our approach is based on a caching scheme that ensures that the pixel data are readily available to the editing algorithms. We
decompose each input image into tiles and compute a multi-resolution pyramid for each tile. We register the tiles into a common coordinate
system, the global space. We determine the visible tiles by intersecting them with the viewport rectangle. To the display pixels we either
apply local operators with a bounding box that intersects the viewport or interpolated global operators such as brightness and contrast.



2-pixel margin. We apply a similar relaxation in the Fourier
domain by adding a “frequency margin”, i.e., the input im-
age is resampled at a slightly higher resolution, typically the
closest power-of-two resolution. In both cases, the number
of processed pixels remain on the same order as the display
resolution. A strategy to satisfy these requirements is to de-
compose the image I into a Laplacian pyramid and process
each level independently and locally. If a process gener-
ates out-of-band content, we could post-process the levels
to remove it but we did not find it useful in the examples
shown in this paper. This approach yields data-parallel al-
gorithms since constructing a pyramid involves purely local
operations and so do our display-aware filters.

3.2. On-the-fly Image Alignment and Stitching

Existing large-scale image viewers require a globally
aligned and stitched full-resolution panorama to build a
multiresolution image pyramid [24, 34]. Poisson composit-
ing is commonly used to stitch multiple images into a
panorama [5, 25], but for very large images even optimized
methods become costly. Further, recent automated image
scanners [20] can produce large images at a speed of up
to 11 GB/s. In such a scenario, it is useful to get a quick
overview of the entire image with coarse alignment, and to
refine the alignment on-the-fly as the user zooms in. Our
on-the-fly alignment assumes that the input images are ap-
proximately in the right position in global space. This is the
case for automated panorama acquisition systems and sci-
entific instruments. Otherwise, the user can manually align
them or run an feature detection algorithm such as [11]. We
first adjust the images to have the same exposure and white
balance. The affine transformation between images is then
automatically refined by maximizing cross-correlation be-
tween overlapping regions. We implemented this using gra-
dient descent on the GPU. The alignment is computed for
the current zoom level and automatically refined when the
user zooms further (see the video, note that in video, re-
finement is not automatic so that its effect is visible). We
stitch the images using the pyramid-based scheme of Burt
and Adelson [13]. At each pixel with an overlap, we select
the image which border is the farthest, yielding a binary
mask for each input Ii. We compute Gaussian pyramids Gi
from these masks and Laplacian pyramids Li from the input
images Ii. We linearly blend each level n independently to
form a new Laplacian pyramid L̂n =

∑
iG

n
i L

n
i /

∑
iG

n
i .

Finally, we collapse the pyramid L̂ to obtain the result.

3.3. Push-Pull Image Cloning

Seamless copy-pasting is a standard tool in editing pack-
ages [19, 33]. Most implementations rely on solving the
Poisson equation and even if optimized algorithms ex-
ist [5, 22, 30], this strategy requires to access every pixel
at the finest resolution, which does not suit our objec-

(a) Output of Farbman et al. (b) Our result
Figure 2. Although our result and the output of Farbman et al. [16]
are not the same, both are satisfying. The input images and Farb-
man’s result come from [16].

tives. Farbman et al. [16] exploit that seamless cloning
boils down to smoothly interpolating the color differences
at the foreground-background boundary and propose an
optimization-free method based on a triangulation of the
pasted region. Although it might be possible to adapt Farb-
man’s triangulation to our needs, we propose a pyramid-
based method that naturally fits our display-aware context
thanks to its multi-scale formulation, and that does not in-
cur the triangulation cost.

We perform a push-pull operation [12] on the color dif-
ferences at the boundary. We consider a background im-
age B and a foreground image F with a binary mask M .
We compute the color offset O = B − F for each pixel
on the boundary of M . During the pull phase, we build
a Gaussian pyramid from the O values. Since O is only
defined at the mask boundary, we ignore all the undefined
values during this computation and obtain a sparse pyra-
mid where only some pixels have defined values (and most
are empty). Then we collapse the pyramid starting from
the coarsest level. In particular, we push pixels with a de-
fined value down to pixels at finer levels that are empty.
To avoid blockiness, we employ a bicubic filter during the
push phase. This process smoothly fills in the hole [12]
and generates an offset map that we add to the foreground
pixels before copying them on top of the background. We
apply this process in a display-aware fashion by consider-
ing only the visible portion of the boundary. When the user
moves the view, appearing and disappearing boundary con-
straints can induce flickering. Since the offset membrane O
is smooth, flickering is only visible near the mask boundary.
Thus, we run our process on a slightly extended viewport so
that flickering occurs outside the visible region. In practice,
we found that extending it by 20 pixels in each direction is
enough. Zooming in and out can also cause flickering be-
cause the alignment between the boundary and the pyramid
pixel grid varies. We address this issue by scaling the data
to the next power-of-two, which ensures that the alignment
remains consistent.

4. Global Operator Interpolation
For global operators, we have implemented the traditional
brightness, contrast, and saturation adjustments. These op-



erators raise specific issues in the context of large images.
Figure 3 shows the difference between an image that is fully
zoomed out and fully zoomed in on a shadow region. The
same viewing settings cannot be applied to both images.
Our solution is adapt the parameters to the location and
zoom level. Our approach is inspired by the automatic tone-
mapping described by Kopf et al. [24]. Similarly to this
technique, our approach can be fully automatic but we also
extend it let the user control the settings and offer the pos-
sibility to specify different parameters at different locations
in the image. We conducted a user study to gain intuition
on how to adapt parameters to the current view.

4.1. User Study

We ran a study on Amazon Mechanical Turk where we
asked users to adjust the brightness, contrast and saturation
of a set of 25 images. We repeated the experiment with
new users and another set of 25 images so that we collected
more data while preventing fatigue and boredom. The set
consisted of 5 crops at various locations and zoom levels
from each of 10 different panoramas, for a total of 50 im-
ages. We asked the users to adjust the images to obtain a
pleasing rendition that was “like a postcard: balanced and
vibrant, but not unnatural.” Users adjusted brightness, con-
trast, and saturation, and the initial positions of the sliders
were randomized. In total, 27 unique users participated in
our study. However, some users made random adjustments
to collect the fee. We pruned these results through an in-
dependent study, where different users chose between the
original and edited images to select which image in the pair
was more like a postcard. We kept the results of a given user
if his images received at least 65% positive votes. After this,
20 unique users remained.

To analyze a user’s edits, we converted the input and output
images into the CIE LCH colorspace. As an initial analy-
sis, and inspired by the work on photographic style of Bae
et al. [7], we compare the space of lightness histograms be-
fore and after editing. We estimate the size of each space by
summing the Earth Mover’s Distance (EMD) [27] between
all pairs of lightness histograms. If the histogram actually
characterizes a user’s preference, we expect the size of this
space to be smaller after the edits. On average, a user’s edits
reduced the size of the histogram space by 46% compared to
the randomized inputs that the user saw, and by 14% com-
pared to the original non-randomized images (not seen by
the users), which confirms that the histogram characterizes
users’ preference. We also analyzed the variance in the dis-
tance measurements. We found that all users decreased the
variance in histogram distances as compared to the original
images. These findings suggest that an interpolation scheme
that decreases histogram distances is a good model of user
preferences when editing images.

4.2. Propagation of Edits

The goal of edit propagation is to determine a set of param-
eters for the current view based on other edits in the image.
In the user study, we observed that users tend to make the
histograms of images more similar. Accordingly, our ap-
proach seeks parameters that make the current histogram
close to the histograms of nearby edited regions. The fully
zoomed out view always counts as an edited region even
if the user keeps the default settings. If the user does not
specify any edit, our method is fully automatic akin to the
Kopf’s viewer [24] and uses the zoomed out view as ref-
erence. However, the user can specify edits at any time
and out method starts interpolating the user’s edits. Let
(xv, yv, sv) be the spatial and scale coordinates of the cur-
rent view. We combine the histograms of the k closest ed-
its into a target histogram. We use the Earth Mover’s Dis-
tance on the image histograms to find these nearest neigh-
bors. This metric can be interpreted as a simple scene sim-
ilarity that can be computed efficiently unlike more com-
plex methods [31]. Drawing from work on texture synthe-
sis [29], we interpolate the inverse cumulative distribution
functions (CDF): C−1t =

∑k
i=1 wi C

−1
i /

∑k
i=1 wi, where

Ct is the target CDF created by linearly combining nearby
CDFs Ci with weights wi. We use inverse distances in his-
togram space as weights: wi = 1/d(Hv, Hi)

2 where Hv is
the histogram of the current view, Hi is the unedited his-
togram of the i-th neighboring edit, and d(·) is the EMD
function. Once we have the target inverse CDF, we fit a lin-
ear model of brightness and contrast change to best match
the inverse CDF of the current view C−1v to the target. That
is, we seek α and β so that αC−1v + β is close to C−1t . We
found that a least-squares solution overly emphasizes large
differences in the inverse CDFs and does not account for
clipping. We use an iteratively reweighted least-squares al-
gorithm with weights γj that are low outisde [0; 1] and that

zoomed out image
(437 Mpixels)

edited view edited view

new unedited view
without any adjustment

new unedited view
with our adjustment

inv.
CDF

inv.
CDF

linear blend

interpolated
inv. CDF

L1 fit

inv.
CDF

Figure 3. We infer viewing parameters from nearby edits per-
formed by the user. Our scheme linearly interpolates the inverse
CDFs of the nearby views and fits brightness and contrast param-
eters to approximate the interpolated inverse CDF in the L1 sense.



decrease the influence of large differences,

γj =

{
ε if αC−1v (j) + β 6∈ [0; 1]

1
|αC−1

v (j)+β−C−1
t (j)| otherwise

(1)
where ε = 0.001. If we ignore the weights outside [0; 1],
this scheme approximates a L1 minimization [18]. Figure 3
and the companion video illustrate our approach.

5. Results

The companion video shows a sample editing session with
our display-aware editing prototype. The main advantage
of our approach is that editing is interactive. In comparison,
seamless cloning using Adobe Photoshop can take several
minutes for large copied region. Because of its slowness,
retouching with a tool such as Photoshop is limited to the
most critical points and overall, the image is left untouched,
as it has been captured. Our approach addresses this issue
and makes it easier to explore creative edits and variations
since feedback is instantaneous.

5.1. Complexity Analysis

We analyze the computational complexity of our editing ap-
proach by first looking at the cost of fetching the visible data
from our data structure and then at the editing algorithms.

Preparing the Visible Data For a wdis × hdis display and
wtile × htile tiles, the number of tiles that we load is less
than (wdis/wtile + 1)× (hdis/htile + 1). When we apply ge-
ometric transformations to the tiles, these introduce limited
deformations and can be taken into account with a small
increase of wtile and htile. Since we have pre-computed the
tiles at all 1

2n scales, we load at most four times as many pix-
els as needed. Last, we may have several input images but
we do not load any data for the images outside the current
view. Put together, this ensures that we handle an amount of
data on the order of O(kdis ℵdis) where kdis is the number of
visible input images and ℵdis = wdis × hdis is the resolution
of the display. With our scheme, loading the visible image
data has a cost linear with respect to the display size. This
is important in applications where images are transmitted,
e.g., from a photo sharing website to a mobile device.

Editing Operators The per-pixel processes such as the
viewing adjustments are in O(ℵdis) since they do a fixed
amount of computation for each pixel. Pyramid-based op-
erators run the same process for each pyramid coefficient.
Since a pyramid has 4/3 times as many pixels as the image,
these operators are also linear with respect to the display
resolution ℵdis. The stitching operator processes all the kdis
visible images, which introduces a factor kdis. This ensures
a O(kdis ℵdis) complexity, and since loading the data is also

linear, our entire pipeline has a linear complexity with re-
spect to the display size.

5.2. Accurate Results from Low Resolution Only

We verify that our operators commute with the screen op-
erator (§ 3.1) by comparing their results computed at full
resolution rescaled to the screen resolution with the result
computed directly from the data at screen resolution. Fig-
ure 4 shows that our push-pull compositing produces indis-
tinguishable results in both cases, that is, we can compute
the exact result directly at screen resolution without resort-
ing to the full-resolution data. In comparison, the scheme
used in Photoshop [19] produces significantly different out-
puts. We performed the same test for image stitching us-
ing Photoshop and our scheme (§ 3.2). Both produce visu-
ally indistinguishable results, however Photoshop is signifi-
cantly slower because even its optimized solver [5] becomes
slow on large images, e.g. a minute or more for several
high-resolution images. In comparison, our scheme runs
interactively and is grounded on a theoretical study (§ 3.1).

5.3. Running Times

We tested our prototype editing system on a Windows PC
equipped with an Intel Xeon 3.0 GHz CPU with 16 GB
of system memory and an NVIDIA Quadro FX 5800 GPU
with 4 GB of graphics memory. Figure 5 provides the per-
formance result of our system. We measured the average
frame rate of the system while applying the global operators
to the image at arbitrary locations. We gradually change the
viewpoint and zoom level during the test to reduce cache
memory effect in a realistic setup. Our timings include
data transfers so that we measure the time that a user ac-
tually perceives when working with our prototype. Note
that I/O operations are often excluded from the measures of
other methods, e.g. [16]. We tested the operators on five
different screen sizes, from 512 × 384 (0.2 megapixels) to
2048×1536 (3 megapixels), and three different size of input
images, from 0.3 to 16 gigapixels. The result shows the ben-

composite then
downsample

downsample then
composite

(a) Photoshop (24dB)

composite then
downsample

downsample then
composite

(b) our method (45dB)

Figure 4. For Photoshop and our approach, we compute a com-
posite and then downsample it (shown on the left halves of the im-
ages) and compare the output to the composite computed directly
on downsampled data (the right halves). Unlike Photoshop (a), our
method generates visually indistinguishable images (b).
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Figure 5. Timings of the global operators running on various
screen and input sizes. The performance of our display-aware al-
gorithms depends on the screen size and not on the size of the data.

efit of display-aware editing: the frame rate is not affected
by the input image size (three plots are almost identical in
Figure 5) but is highly correlated with the screen size (frame
rates drop as the screen size increases in Figure 5). Note that
the 16-gigapixel brain image is much larger than the size of
graphics memory we used, but the frame rate is similar to
a 0.3-gigapixel image. In addition, the construction of the
Gaussian and Laplacian pyramids for a 1024 × 768 screen
resolution took only 11 ms, which enables the execution
pyramid-based image operators on-the-fly without using a
pre-built global image pyramid. Our on-the-fly image reg-
istration runs on a fixed-size grid and is highly paralleliz-
able, and takes 50 to 100 ms in our prototype implemen-
tation. The numbers in Figure 5 show that our algorithms
are fast and that our data management strategy successfully
prevents data starvation.

5.4. Validation of our Interpolation Scheme

We validate our algorithm for propagating viewing param-
eters on the user study data described in Section 4.1. The
data consists of edits from 20 users on 5 views from each
of 10 different panoramas (a total of 50 images). Using a
leave-one-out strategy for each panorama, we predict one
view using the user edits from the 4 other views. We use
the Earth Mover’s Distance between the histograms of our
predicted edit and the user’s actual edit to quantify the ac-
curacy of our prediction. On average, the difference is 3.0
with a standard deviation of 1.9. We compared our interpo-
lation scheme to simply interpolating the users’ brightness
and contrast adjustments between views (i.e., interpolating
the slider positions instead of the histograms). Compared to
the users’ actual edits, this interpolation scheme produced
an average error of 3.7 with a standard deviation of 2.1.
A two-sample t-test confirms that our histogram interpola-
tion sheme has a lower error than interpolating the adjust-
ments with a p-value below 10−8. To put these errors into
perspective, we conducted an second study in which users
edited 20 images comprising 5 images appearing twice and
10 distractors. The image order was randomized such that
repeated images were not back to back. We collected 250
repeated measurements and on average, the difference was
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Figure 6. Distribution of the differences between users’ edits and
our predictions, and between users’ edits on repeated images (see
text for details). The similarity between these distributions indi-
cates that our edit propagation reproduces users’ adjustments.

2.8 with a standard deviation of 2.3. This result shows that
our scheme reproduces users’ adjustments within a margin
comparable to their own repeatability. Figure 6 illustrates
this point.

6. Conclusions and Future Work
Our display-aware editing approach effectively handles im-
ages that otherwise would be difficult and slow to process.
A large part of the benefits comes from the fact that we pro-
cess only the visible data. When one needs the whole im-
age at full resolution, for instance to print a poster, we will
have to touch every single pixel and the running times are
slower. Even in those cases our method remains fast since
our editing algorithms are data parallel. In addition, all our
algorithms use the same scale-space data structure and ap-
ply similar operations to it, which makes data management
and out-of-core processing easier. We envision a workflow
in which the user would first edit the image on screen, en-
joying the speed of our display-aware approach, and run a
final rendering at the end, just before sending the result to
an output device such as a printer.

Although we have shown that we can support a variety of
tasks with our display-aware approach, there are a few cases
that are difficult. Optimization-based techniques require to
access every pixel which makes them overly slow on large
images. This prevents the use of some algorithms such as
error-tolerant and highly discriminative selections [6, 26].
Related to this issue, algorithms akin to histogram equal-
ization manipulate every pixel and become unpractical on
large images. A solution is to apply them at lower resolu-
tion and to upsample their results [23]. Nonetheless, de-
veloping a display-aware version of these algorithms is an
interesting avenue for future work. We also imagine that
other novel display-aware algorithms will be developed in
the future. In this paper we applied operators simply in spa-
tial and temporal orders, but we will investigate further for
more complicated editing scenarios and ordering optimiza-
tion schemes. Ultimately, processing and data storage are
getting cheaper, making the need for on-the-fly computa-



tion of large images more pressing. In addition, we envision
that our framework could be efficiently implemented to edit
high-resolution photographs, e.g., from a digital SLR, on
commodity mobile devices.
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