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(a) BRDF A
(anisotropic angle = 0◦)

(b) BRDF B
(anisotropic angle = 45◦)

(c) naive linear interpolation
(unrealistic double highlight)

(d) ground truth
(single highlight at 22.5◦)

(e) our interpolation

Figure 1: Examples of interpolation between two anisotropic sampled BRDFs (a,b). Naive linear interpolation generates an unrealistic
double highlight (c). Since we used a parametric BRDF model, we can compute the ground-truth in-between BRDF by interpolating the
parameters (d). Our approach has no knowledge of the parametric BRDF representation but is nonetheless able to produce a similar output
(e).

Abstract

Interpolation between pairs of values, typically vectors, is a funda-
mental operation in many computer graphics applications. In some
cases simple linear interpolation yields meaningful results without
requiring domain knowledge. However, interpolation between pairs
of distributions or pairs of functions often demands more care be-
cause features may exhibit translational motion between exemplars.
This property is not captured by linear interpolation. This paper de-
velops the use of displacement interpolation for this class of prob-
lem, which provides a generic method for interpolating between
distributions or functions based on advection instead of blending.
The functions can be non-uniformly sampled, high-dimensional,
and defined on non-Euclidean manifolds, e.g., spheres and tori.
Our method decomposes distributions or functions into sums of ra-
dial basis functions (RBFs). We solve a mass transport problem
to pair the RBFs and apply partial transport to obtain the interpo-
lated function. We describe practical methods for computing the
RBF decomposition and solving the transport problem. We demon-
strate the interpolation approach on synthetic examples, BRDFs,
color distributions, environment maps, stipple patterns, and value
functions.
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1 Introduction

Interpolation is a fundamental operation in many mathematical
models and algorithms. Linear interpolation between a pair of val-
ues is particularly simple. However, linear interpolation does not al-
ways achieve meaningful results. In particular, this is often the case
for probability distributions. Consider two Gaussian distributions,
NA(µA, σA) and NB(µB , σB), that model height in two differ-
ent populations of humans, group A with mostly short people and
group B with mostly tall people. There are two plausible answers
as to what an intermediate interpolated distribution might look like,
as shown in Figure 2. A first answer is to assume an equal mix
of people from both groups, which therefore results in the bimodal
height distribution shown in Fig.2 (b). This mixture model interpre-
tation is the answer that arises from linear interpolation of the two

initial distributions at every point in their domain. An alternative
answer can be obtained by interpolating the underlying parameters
of the distributions, yielding the distribution NC(µC , σC), where
µC = 0.5µA + 0.5µB and σ2

C = 0.5σ2
A + 0.5σ2

B . Intuitively, this
interpretation says that interpolating between the height distribution
of a group of tall people and that of a group of short people should
result in a distribution of medium-height people.

The need for something other than the mixture model interpretation
is in fact rather common. For example, the mean of two bidirec-
tional reflectance distribution functions (BRDFs), which each have
a single large reflectance lobe but each pointing in a different di-
rection is, subjectively speaking, better defined as having a single
large reflectance lobe in a halfway direction, rather than two half-
sized lobes in the original directions. The difference between these
two interpretations is shown in Figure 1 for a BRDF example where
we also know the underlying parameterization.

The displacement interpolation methods developed in this paper
provide an efficient way to achieve the type of advection-based or
motion-based interpolation that characterizes the above examples
and a wide range of applications. Importantly, it does this in a
generic way without requiring access to a domain-specific under-
lying parameterization. Displacement interpolation casts interpola-
tion as a mass transport problem, wherein each unit of ‘mass’ of
one distribution needs to move to the second distribution. The goal
is find a minimal total cost solution, where the cost for each unit of
mass is a function of the distance traveled, known as the ground dis-
tance. The solution defines a one-to-one correspondence between
each unit of mass in the source and target distributions, which in
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Figure 2: Interpolating distributions A and B: (a) original dis-
tributions; (b) linear interpolation; (c) displacement interpolation.
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turn can be used to specify a path that each unit of mass needs to
travel in moving to the target distribution. All such paths can be
parameterized over a time interval t ∈ [0, 1] and an interpolated
distribution is then created by stopping the mass transport at a de-
sired intermediate value of t.

Challenges: A number of difficulties need to be overcome in order
to develop practical displacement interpolation methods. First, the
most common mass transport formulations work with discretized
models, which allows the problem to be cast in terms of bipartite
graph matching or min cost flow on a graph [Hillier and Lieberman
1990]. Our interest is in developing methods that can be applied to
continuous domains. We wish to generate continuous interpolated
distributions from a pair of continuous input distributions. While
there exists limited work on Eulerian approaches for displacement
interpolation in continuous domains, these methods require dense
grids that rapidly become impractical in higher dimensions, and are
to the best of our knowledge limited to quadratic ground distances
in a Euclidean space [Rehman et al. 2009]. Second, even in the
discrete setting, it is unclear which mass transport solvers are best
suited to the task at hand. The problem can be solved using a trans-
portation simplex algorithm with various choices for initialization
and implementation, or solved within a network flow framework.
We wish to know which of these algorithms and implementations
performs best in practice. Third, we wish to extend advection-style
interpolation so that it can be applied to functions over a given fi-
nite domain, rather than being restricted to interpolation between
distributions. These produce unintuitive artifacts if simply treated
as a distribution.

Method overview: Our approach proceeds in several steps: we first
decompose the functions into basis elements, in practice a multi-
scale representation in terms of non-negative Gaussian RBFs. We
then solve the mass transport problem to find a pairing between
these elements. The interpolation step consists of applying a partial
transport by advecting the elements only part of the way from their
source locations to their target locations. Finally we reconstruct the
interpolated function by summing the advected RBFs. The bulk of
the computation lies in the function decomposition, which is posed
as a non-negative least squares problem, and in solving the trans-
port problem, which is posed using the Monge-Kantorovich formu-
lation. We also demonstrate that the transport can be precomputed
and cached for use in interactive applications.

This paper makes the following contributions:

• We develop a novel Lagrangian method for displacement in-
terpolation of continuous functions and distributions. The
method uses non-negative radial-basis function approxima-
tions and kernel advection.

• We extend the displacement interpolation framework so that
it can be applied to functions using a multi-scale decomposi-
tion. We interpolate different frequency bands independently
so that features of different frequencies are properly advected.

• We evaluate several discrete mass transport solvers for the dis-
crete problem that underlies our continuous transport method.
We show that a fixed-point network flow implementation is
significantly faster than currently available libraries dedicated
to solving earth-mover’s distance problems.

• We demonstrate the application of displacement interpolation
to a range of problems including synthetic data, BRDFs, color
distributions, environment maps, stipple patterns, and value
functions.

• We show that CDF-based methods for interpolating 1D distri-
butions are a special case of displacement interpolation.

2 Related Work

We first briefly review a number of existing interpolation tech-
niques used in the context of computer graphics. We then pro-
vide background on the problem of mass transport and the Monge-
Kantorovich formulation that we use to solve it.

2.1 Function interpolation in computer graphics

Interpolation of 1D probability distribution functions (PDFs) is of-
ten achieved by means of the inverse cumulative distribution func-
tions (CDFs) [Read 1999; Matusik et al. 2005]. This approach ex-
hibits the behavior that we seek in this paper because it tends to
advects features instead of cross-fading them. In this paper (§3.5),
we show that this is in fact a special case of displacement interpola-
tion. Unfortunately, the CDF approach has no direct equivalence in
higher dimensions, and therefore cannot be applied to the more gen-
eral settings we are interested in. Pitié et al. [2005] describe how to
perform histogram transfer between multi-dimensional PDFs but it
is unclear if there would be a way to adapt their method to achieve
interpolated distributions. Bursal [1996] proposes a PDF interpo-
lation method for arbitrary dimension, but it is fundamentally re-
stricted by its use of a single affine transform to align two distri-
butions. Matusik et al. [2003] build a nonlinear embedding of the
space of BRDFs and perform interpolation in it. While success-
ful for BRDFs, this technique requires many BRDFs to learn the
embedding manifold and does not apply if only two samples are
available. In the animation domain, da Silva et al. [2009] exploit
the structure of a specific class of problem, to derive a non-linear
transform for the interpolation of value functions.

Mass transport methods have been proposed to establish distance
metrics between images. For example, Rubner et al. [2000] use
the earth movers distance between color histograms as a metric for
image retrieval [Rubner et al. 2000].

We propose a method that applies to a variety of interpolation prob-
lems with only minor adjustments and that comes with a number of
guaranteed properties. We believe that a generic method for the in-
terpolation of multi-dimensional functions is a useful addition to the
set of mathematical tools available in the computer graphics tool-
box. For the scenarios where a dedicated solution already exists,
our approach offers a complementary solution with an alternative
behavior as will be seen in the results section.

2.2 Background on displacement interpolation

Displacement interpolation has first been introduced by Mc-
Cann [1997] in the context of gases in Euclidean spaces and refined
later on. It consists of the partial advection of a source measure
(or a continuous function) to a target measure in a mass preserving
manner. This interpolation is based on a mass transport problem
known as Monge-Kantorovich mass transport. In the remainder of
this section, we present the principal aspects of this problem that
are relevant to our work. We refer the reader to related books for a
more extensive review, e.g. [Villani 2003; Villani 2008].

Mass transport The Monge-Kantorovich problem reshapes a
heap of matter f to match a target function g, while minimizing
the cost function, or ground distance c(x, y), which describes the
expense of moving a particle from x to y. Kantorovich proposed
a linear formulation of the problem. In its most general form, his
approach is based on measure theory, which we consider beyond
the scope of this paper. We provide further elaboration on a mea-
sure theory view of displacement interpolation in a short document
included as supplemental material. Intuitively, Kantorovich treats
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the mass moved between all pairs of points x and y as an unknown,
and seeks to minimize the transport cost over all possible movement
patterns. In our work, we assume that f and g comes from contin-
uous density functions which have been discretely sampled. In this
context and under reasonable assumptions on the cost function and
the topology of the space, the mass transport problem is known to
have a unique solution [Ahmad et al. 2010]. This result holds for
Euclidean and Riemannian manifolds, e.g. Rn and spheres, using
a geodesic distance with a power p > 1 as a cost function. This
covers all the applications demonstrated in this paper.

In the special case where the cost function is quadratic and the space
is Euclidean, the Kantorovich formulation can be solved with linear
partial differential equations [Benamou and Brenier 2000; Haker
et al. 2004; Rehman et al. 2009]. However, this Euclidean ap-
proach has been demonstrated only on Euclidean spaces and re-
quire storing a dense grid, which rapidly becomes impractical for
multi-dimensional functions.

In this paper, we take a Lagrangian approach as advocated by Vil-
lani [2003, § 5.4]. We follow a discrete set of moving particles and
use the Hitchcock-Koopman formulation [Flood 1953] that allows
for more general ground distances, dimension, topology and non-
uniform sampling.

Given a set of supplies fi, a set of demands gj , and a shipping cost
ci,j to move one unit from fi to gj , we minimize the following
energy:

min
x

∑
i

∑
j

ci,j xi→j (1a)

such that: xi→j ≥ 0 (1b)∑
i xi→j = gj (1c)∑
j xi→j = fi (1d)

over all xi→j , which represent the (unknown) amount of goods to
be moved from fi to gj .

The above formulation is generally used to compute the Earth
Mover’s distance (EMD), also sometimes referred to as the Wasser-
stein, Mallows, or Kantorovich-Rubinstein distance. This formula-
tion can be represented by a weighted bipartite graph where each
source node i provides a mass fi, and each target node j requests
a mass gj . The flow from source to target nodes is modeled using
a set of arcs from each source i to one or more targets j, with each
arc transporting a fraction of each mass. This is illustrated in Fig-
ure 4. Minimizing Equation 1 is a special case of the min cost flow
problem. The number of arcs describing the optimal flow is known

to be at most nf + ng − 1 where nf and ng are the numbers of
source and target nodes [Flood 1953]. The number of these arcs
matters because our interpolated result maintains a particle for each
arc. The given upper bound guarantees that the representation of
the interpolated distribution is similar in complexity to that of the
source and target functions. We will discuss possible algorithms to
minimize Equation 1 in Section 4.

Distribution A Distribution B

Interpolated 
Distribution

Figure 4: The EMD sees the distribution as bins that need to be
matched as in a graph matching problem, independently of the un-
derlying dimension. We find an interpolant by advecting the mass
of each bin, possibly split into many. Using a geodesic ground
distance at the power p, the resulting distribution interpolates the
EMD at the power 1/p.

Displacement interpolation along geodesic curves. Our ap-
proach works on a Riemannian manifold such as Rn, a sphere, or
a torus. The cost function c controls how we match the source
function to the target function (Eq. 1a). In this paper, we follow
Villani [2008] and define c in terms of a particle moving from x
to y along a path γ(t) such that γ(0) = x and γ(1) = y. We
characterize γ with a Lagrangian function, i.e., a function whose
integral is minimized along the path. Using the speed of the parti-
cle raised to a power p > 1, i.e., |∂γ/∂t|p, as the Lagrangian leads
to c(x, y) = d(x, y)p where d(x, y) is the geodesic distance be-
tween x and y on the manifold. The advantage of this approach is
that it relies on the actual geodesic curve γ(t) that links x to y on
the manifold. Solving Equation 1 pairs the source and target parti-
cles and for each such pair it gives us a geodesic path γ. Moving
the particles along these paths is the core of displacement interpo-
lation. For example, a function half-way in between the source and
target is obtained by moving the particles to t = 1

2
on their respec-

tive paths. Further, it is known that for p = 1, paths do not cross.
With p > 1, paths can cross but at any time t, particles are never

 Multiscale 
decomposition

Non-negative gaussian RBFs
         and normalization

f

g

for each scale : for each scale :

positive parts :

negative parts :

Network Simplex

for each scale :

positive parts :

negative parts :

Advection

∑

Reconstruction
    and scaling

Figure 3: Overview of our pipeline.
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collocated. These properties are useful in practice – for example,
they ensure that stipples do not collide when interpolating between
two stipple patterns.

3 Displacement Interpolation of Continuous
Distributions

Our interpolation follows a three-step process. First, the source and
target distributions are decomposed into a sum of Gaussians. Each
Gaussian in the source distribution is then paired to one or more
Gaussians of the target distributions by solving a mass transport
problem. In the last step, an interpolated distribution is constructed
by summing the Gaussians after a partial advection to the target lo-
cations. When appropriate, this whole procedure is repeated inde-
pendently at different scales to achieve a multiscale decomposition
and reconstruction. Figure 3 summarizes the complete pipeline.

3.1 RBF decomposition

We assume that the source and target functions f and g are given
as a set of samples at locations xi and yj , that is, we know a set
of values f(xi) and g(yj). We do not require that the xi and yj
points be the same or that they be regularly spaced. These samples
could be used directly as particles for mass transport, but this yields
highly discontinuous interpolated results that are not desirable for
most applications. We address this issue by associating a smooth
kernel with each sample point. We choose Gaussian radial basis
functions (RBFs) as our kernel. They will also serve as the parti-
cles for the formulation of the mass transport problem. Each parti-
cle is represented by wGσ , where w is the mass associated with
the particle, and Gσ is a normalized Gaussian kernel with vari-
ance σ2 and centered at the sample point. This representation is
different from Gaussian Mixture Models used for density estima-
tion with Expectation-Maximization techniques [Tan et al. 2005] :
while Expectation-Maximization give higher values where the den-
sity of samples is higher, our RBF decomposition interpolates val-
ues stored at arbitrarily scattered sample points.

In order to represent a non-negative function f as an ap-
propriate sum-of-Gaussians, we seek to approximate f(x) by∑
i wiGσi(d(xi, x)), where d(xi, x) is the geodesic distance be-

tween point x and the center of a particle xi, and wi and σi are
the unknowns to be determined. The kernel width σi controls the
smoothness of particle representations. Kernels that are too nar-
row will yield poor interpolation of f in between sample points,
while kernels that are too wide will fail to capture fine-scale details.
In practice, we use σi = dNi , where dNi is the distance between
xi and its N th nearest neighbor. This produces good results for
1 ≤ N ≤ 10 depending on the application (§5). Given σi, we can
then estimate thewi weights using a non-negative least-squares for-
mulation:

min
wi

∑
k

[
f(xk)−

∑
i wiGσi(d(xi, xk))

]2 with wi ≥ 0 (2)

The non-negativity constraint is important when dealing with dis-
tributions or physically constrained properties such as BRDFs. In
our experiments, the residual of Equation 2 is usually on the order
of 1% of the L2 norm of f .

The above method assumes a non-negative function. For a func-
tion with positive and negative values, we decompose it into its
positive and negative components, f+ = max(0, f) and f− =
max(0,−f) (the same applies to g), interpolate each component
separately, and recombine the result h = h+ − h−.

Matrices used in RBF fitting are often ill-conditioned. We there-
fore use a dense non-negative least-squares solver based on QR
factorization [Lawson and Hanson 1995] which is more robust and
faster than solvers based on sparse matrices and the normal equa-
tions [Cantarella and Piatek 2004].

3.2 Mass transport

The core of the algorithm resides in the mass transport scheme
[Flood 1953]. The goal is to pair each particle of the source dis-
tribution f to one or more Gaussian particles of the target distribu-
tion g. First, we ensure that the source and target functions have
the same unit mass by normalizing their weights wi and wj by
sf =

∑
i wi and sg =

∑
j wj respectively, yielding normalized

weights, w̄. Since the Gaussian kernels G are normalized, the mass
of a particle w̄ G is simply w̄. To compute the transportation cost,
we multiply the mass w̄ of a particle by the cost function, which
is based on the distance traveled by its center, allowing us to ap-
ply Equation 1 without modification. This assumes that the mass
of particle is concentrated at its center, which further motivates our
use of small kernels (§ 3.1).

The transport problem, i.e., the minimization posed by Equation 1,
is solved using a network simplex method. This choice is motivated
in detail in Section 4. The output of this algorithm is a pairing be-
tween the source and target particles. A particle may be associated
to several particles in the other distribution. In this case, it is split
into as many particles as pairs in which it is involved, each with
an associated weight that meets the mass transported requirement
along the links and summing up to the mass of the original particle.
As a result, we have new source and target particles, denoted by ı̂
and ̂. The notation ̂(̂ı) is used for the index of the target particle
paired with the source particle ı̂. The new set of particles is such
that there are equal numbers of source and target particles, and that
the paired particles have the same weight, i.e. w̄ı̂ = w̄̂(ı̂).

3.3 Advecting the particles

To build the interpolated function h corresponding to the parameter
t ∈ [0, 1], we advect the particles to the position γ(t) along the
geodesic path γ that links their source location to their target desti-
nation. We use z` to denote the new position of each particle. We
linearly interpolate the size of each particle: σ2

` = (1−t)σ2
ı̂+t σ2

̂(ı̂)

and the total mass of the function sh = (1− t)sf + t sg . Since the
weight is constant in a pair, it remains the same, i.e., w̄` = w̄ı̂ =
w̄̂(ı̂). With these values, we construct the interpolated function h:

h(x) = sh
∑
`

w̄`Gσ`(d(z`, x)) (3)

3.4 Multiresolution interpolation

The Lagrangian mass transport method described thus far results
in intuitive advection-like behavior in many settings. For exam-
ple, interpolating between two bumps generates a translating bump.
However, the intuitive behavior is lost when a constant offset or
low frequency is added. In the example shown in Figure 5, the dis-
placement interpolation solution (top two rows) does not establish
correspondences between the peaks of the two distributions, nor for
the valleys. Instead, the solution resembles a linear blending solu-
tion because of particles representing the peaks and valleys finding
correspondences with particles that represent the constant offset as-
sociated with the function.

To remedy this problem, we propose a multi-resolution scheme that
interpolates different band-passed versions of the functions sepa-
rately. The lowest frequency bands are constant functions that are
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blended linearly. The other frequency bands are interpolated using
the displacement interpolation method as describes previously. We
typically use 3 frequency bands. The bottom two rows of Figure 5
illustrate the resulting more intuitive interpolation. We further dis-
cuss this point when describing the individual application (§ 5).
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Figure 5: Left to right: 1D interpolation of a constant plus a differ-
ence of two gaussians. Top to bottom: inverse CDF formula (failure
case, due to the constant); displacement interpolation with 1 band
(same as inverse CDF); 2 bands; 3 bands. More bands can yield
undesirable artifacts in this case.

3.5 Relationship to CDF-based interpolation

As noted in prior art, e.g., [Read 1999; Matusik et al. 2005], inter-
polation between 1D PDFs can be achieved by linearly interpolat-
ing the inverse of the cumulative density function (CDF) of the two
1D distributions:

F−1
α (x) = (1− α)F−1

0 (x) + αF−1
1 (x),

where F (x) is the CDF of the distribution f(x). To relate this to
mass transport, it can be shown that for continuous 1D functions,
the transformation

T1 = F−1
1 ◦ F0 (4)

gives an optimal change of variable from f0 to f1, for any cost func-
tion of the form c(x, y) = k(x − y), where k(x) is a symmetric
convex function [Villani 2003]. In addition, for quadratic costs, one
can express the displacement interpolation as a linear interpolation
of this change of variable and the identity: Tα = (1−α)Id+αT1,
with α ∈ [0, 1] [Villani 2003]. By composing with F−1

0 , we can
see that the displacement interpolation on the real line is obtained
as Tα ◦ F−1

0 = (1 − α)F−1
0 + αF1. This operation is equiv-

alent to the inverse CDF interpolation method since it transforms
the function f0 to fα using Eq.4. In addition, the displacement
interpolation interpolates in the sense of the quadratic Wasserstein
distance, defined as the square root of the EMD with a quadratic
cost [Villani 2003, § 2.2]. For more general convex costs, one can
easily compute the EMD on the real line by using the relationship
EMD(f0, f1) =

∫ 1

0
c(F−1

0 (x), F−1
1 (x))dx, [Villani 2003, § 2.2].

3.6 Linearly interpolated integral

Another property of interest is that the interpolant preserves the in-
tegral of the source and target functions. Since the sh coefficients
are linearly interpolated from the sf and sg coefficients (§ 3.2), we
have:

∫
h = (1− t)

∫
f + t

∫
g (5)

That is, the integral of our interpolated result is a linear combina-
tion of the source and target integrals. This property is useful for
instance when dealing with BRDFs because it guarantees that the
interpolated BRDF reflects an amount of energy that varies linearly
between that of the source and target BRDFs.

4 Mass Transport Solver

Several algorithms exist for solving the mass transport problem on
graphs. We analyze two main categories. First, we investigate
methods based on the transportation simplex that are dedicated to
the computation of Earth Mover’s Distance [Hillier and Lieberman
1990]. We test Rubner’s code [1998] and the faster and more re-
cent implementation [MacDonald 2006]. These are commonly used
to solve computer vision problems with EMD, e.g. [Rubner et al.
2000]. We keep only the latter for our analysis because the original
code by Rubner is limited to 350 samples, which is sufficient for
tasks based on image histograms but is insufficient for applications
that require a larger number of samples, i.e., upwards of several
thousand. MacDonald’s code [2006] uses floating-point precision.
We also experiment with the generic graph library LEMON [2010]
that provides several algorithms to solve the general min cost flow
problems. In our context, preliminary testing showed that the net-
work simplex algorithm with a block search pivoting strategy [Kelly
and O’Neill 1991] performs best with a clear margin among the op-
tions offered in LEMON. We thus use this in the subsequent anal-
ysis. This code supports floating-point and fixed precisions and we
test both. We also modify the code to exploit the fact that the graphs
for solving the mass transport problem are fully connected, which
allows us to avoid storing the graph connectivity explicitly. This
enables us to process up to 32,000 particles compared to 15,000 for
the same memory usage with the original implementation.

The transportation simplex has a worst-case exponential complex-
ity but it has been observed to have a polynomial average case
complexity under various distributions. The network simplex has
a known complexity in O(n3) [Ahuja et al. 1993]. To determine
how these algorithms behave in practice in our context, we gener-
ate 20 random mass transport problems to evaluate the two classes
of algorithm. Figure 6 plots the resulting performance. The tests
reproduce the O(n3) complexity of the transportation simplex but
also reveal that the network simplex behaves in O(n2) in our con-
text, which is a major gain at the scale at which we typical work,
i.e. thousands of particles. This finding is also useful for applica-
tions that use EMD, where using the network simplex instead of
the transport simplex can bring a significant performance increase.
Our experiments also show that fixed-point precision further speeds
up the computation. We observed that the value of the final trans-
port cost is less accurate because of the limited precision, but the
particle pairing that actual matters for our interpolation scheme re-
mains unchanged. We used the fixed point method to generate the
results presented in this paper. The results of the performance study
are also of broader interest, as current EMD image retrieval or color
transfer techniques rely on slower solvers [Rubner et al. 2000; Kan-
ters et al. 2003; Morovic and Sun 2003].

5 Results

In this section, we discuss specific applications and their associated
details such as the choice of ground distance. We first present appli-
cations that handle continuous data, BRDFs and value functions of
animation controllers. We then apply our method to discrete prob-
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Figure 6: Log-log plot of the running times of different solvers.
The network simplex behaves as a O(n2) algorithm in practice
whereas the transport simplex runs in O(n3).

lems such as stipple rendering. Further results are also shown in the
video that accompanies this paper.

5.1 Synthetic Data

Synthetic 1D examples are shown in Figure 5 as well as in the
video that accompanies the paper. The synthetic 2D datasets shown
in Figure 7 illustrate the general intuitive nature of the results ob-
tained via Lagrangian-based displacement interpolation. In partic-
ular, they demonstrate interpolation between anisotropic distribu-
tions, isotropic distributions, distributions that require a split, and
sharp-edged distributions that change shape. These examples are
constructed using a grid of 140×140 samples, using a kernel width
set according to the 10th nearest neighbor, except for the shape ex-
ample which uses the first nearest neighbor. We use the 1-band
interpolation solution.

Figure 7: Synthetic 2D examples.

5.2 BRDF interpolation

We demonstrate our method for interpolating BRDFs. Since the
BRDF model does not include fluorescence, we can treat wave-
lengths independently, as there is no energy transfer across wave-
lengths. We use cosine-weighted BRDFs to ensure proper energy
conservation, and work in the log domain. Logarithmic values give
more importance to low intensities, which yields perceptually more

meaningful results [Rusinkiewicz 1998]. In practice, we apply
log(1+x) to remap the values so that the function remains positive.
A negative side effect of this choice is that interpolating between
BRDFs of equal energy conserves their log energy (§ 3.6) instead
of their energy. However, because we apply a concave remapping,
the interpolated value is guaranteed to be always lower, which en-
sures that our result does not break the energy preservation rule.
That is, our interpolated BRDFs never reflect more light than they
receive as long as the source and target BRDFs have the same prop-
erty. Further, in our experiments, we measured only limited energy
losses between 0.1% and 2%. Also, since energy preservation ap-
plies to the 2D slices representing the outgoing directions associ-
ated to a given incoming direction, we perform interpolation slice
by slice. Reciprocity is not guaranteed in this process, but could
be enforced in a postprocessing step. We use the squared geodesic
distance on the sphere as the ground distance, which corresponds
to using spherical linear interpolation (a.k.a. slerp) on the paired
particles. We render the results with PBRT [Pharr and Humphreys
2010].

Discussion Previous work on BRDF interpolation relies either
on linear blending [Lensch et al. 2001] or on manifold learn-
ing [Matusik et al. 2003; Dong et al. 2010]. While simple, lin-
ear blending can exhibit significant visual artifacts (Fig. 1 and 8,
and [Matusik et al. 2003]). Manifold-based interpolation addresses
this shortcoming with a nonlinear space within which interpolation
is performed. Building this space requires a large number of exam-
ple BRDFs that may not be always available. Our approach pro-
vides an alternative that works with only two BRDFs. The “speed”
of interpolation from the source to the target BRDF is uniform ac-
cording to the geodesic metric on the sphere. However the per-
ceived change is known to be related to properties of the material
such as the frequency content of the BRDF [Pellacini et al. 2000;
Wills et al. 2009]. This could be incorporated in our method by
reparameterizing the interpolation parameter t according to a per-
ceptual metric akin to the work of Ngan et al. [2006]. For very
specular BRDFs, we observed RBF reconstruction errors of up to
15% thus slightly degrading their visual appearance. A method
adaptively adjusting the variance of each Gaussian according to the
local frequency content could improve the quality in this specific
case.

Validation and Experiments We test our method with a para-
metric BRDF model so that we can render reference images by in-
terpolating the model parameters. We use the Ashikhmin-Shirley
model of anisotropic material [2000] and generate two instances of
brushed metal by varying only the anisotropic angle. The results are
shown in Figure 1 and Figure 8. The expected result in this case is
a BRDF with an anisotropic angle in between the source and target
angles, which is what our approach achieves although it has access
only to a set of samples and does not know about the parametric
model. In comparison, linear blending produces implausible dou-
ble highlights. We also test our method with measured BRDFs [Ma-
tusik et al. 2003]. We select a specular and a matte material and in-
terpolated between them. Figure 9 shows a result close to the matte
BRDF (t = 0.8). With linear interpolation, the material remains
shiny and only the amplitude of the specular lobe is reduced: the
linear interpolation does not model the change in roughness of the
surface that an artist might want to control. In contrast, at t = 0.8
our approach results in almost as diffuse as the input matte mate-
rial. We also experimented with the number of frequency bands in
our representation (§ 3.4) and found that there is little gain in using
more than one band because BRDFs are relatively low frequency
except for highly specular materials. In these examples, the kernel
width is set according to the 5th nearest neighbor.
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Figure 8: Validation on an anisotropic Ashikhmin-Shirley synthetic BRDF. Naive interpolation (a) and our method (b) do not know about the
underlying parametric model and are given only a sampled representation of the BRDFs. Naive linear interpolation (a) cross-fades the two
BRDFs, which produces unrealistic double highlights. In comparison, our approach (b) rotates the highlights in a realistic way similar to
interpolating the parameters of the model (c).

(a) BRDF A (b) BRDF B (c) Linear interpolation (d) Displacement interpola-
tion - 1 band

(e) Displacement interpolation
- 3 bands

Figure 9: 80% interpolation between two measured BRDFs. Even at 80%, the linear interpolation remains specular, while the 1 band
displacement interpolation increased the roughness of the surface: linear blending cannot control the roughness of the underlying microge-
ometry, as could be desired. The target BRDF does not contain high frequencies to be matched: the multi-scale approach does not perform
much better than linear blending in this case.

5.3 Value function interpolation

In character animation and reinforcement learning, value functions
are a convenient way to compute and store optimal control policies.
A value function stores the optimal discounted cost-to-go across a
state space that is defined by the state of the character with respect
to a goal. Meaningful interpolation interpolation of value functions
would allow for existing control policies to be reused for new sita-
tions. In the example we shall demonstrate, this takes the form of
an obstacle whose position is not known until run-time. We wish
to be able to interpolate between two reference solutions for the
value function that are computed for two particular locations of the
obstacle.

We perform interpolation experiments where the value function is
computed on the 4D state space of an oriented particle. The 4D state
space represents the particle position, angular velocity and sagital
acceleration. Particle trajectories can be seen in Fig.10. Initial curls
at the start of the trajectories are due to the particle initial velocities
and their initial angular velocities. As shown in Figures 10 and 11,
the value function computed using displacement interpolation does

significantly better at preserving the desired intent than the linearly
interpolated value function.

5.4 Color distribution interpolation

We apply our method to transfer and interpolate color histograms.
Given a source and target image, we use clustering and solve the
mass transport on the resulting discrete problem. The pairing be-
tween source and target particles define a remapping of the source
colors onto the target colors, or any distribution interpolated using
this pairing.

Discussion and Experiments In this particular context, our
color transfer algorithm is similar to the method of Morovic and
Sun [Morovic and Sun 2003]. However, their implementation re-
lies on a transport simplex solver which cannot handle more than
3072 particles which results in a limited representation of the color
space. With our network simplex solver, we can use 16 000 par-
ticles and remove the artifacts stemming from the coarse sampling
imposed by the transport simplex (Fig. 12). We also compared our
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Figure 10: Interpolation between two 4D value functions. The red
square is an obstacle and the green square is a target. From left
to right, top to bottom: particles trajectories for reward A; for re-
ward B; using our interpolated value function (α = 0.5); using a
linear reward interpolation as in [da Silva et al. 2009]. The parti-
cle can be used to drive a 3D physically-based character (see also
the accompanying video). Although our method does not result in
optimal trajectories, most of the particles achieved the expected in-
terpolated goal location while avoiding the interpolated obstacle.
Linear Bellman combination [da Silva et al. 2009] results in an
optimal behavior, but yields two different targets and obstacles.

approach to the method by Pitié et al. [2005]. Among all the pos-
sible transfers, this method does not guarantee to minimize a given
transport cost and thus cannot control the cost, unlike ours. How-
ever we found that the results produced by both approaches look
similar in practice when using a quadratic transport cost.

5.5 Animated Stipples

Our method can also be applied to discrete functions. We illustrate
this with stippling, an NPR method that generates images made of
small primitives such as dots or small lines. We use our approach to
warp one stippled image into another one by moving its primitives.
The advantage of our approach is that it guarantees collision-free
transformations (§ 2.2). We use the method of Secord et al. [2002]
to generate particles on the source and target images. We set the
method such that the number of source and target particles is the
same. We solve the transport problem by assigning a unit mass to
each particle. In this case, using the same number of particles with
unit mass, mass transport reduces to an assignment problem and its
solution does not require splitting or merging particles [Hillier and
Lieberman 1990]. In our context, it ensures that a source stipple is
associated to single target particle and reciprocally. For the ground
distance, we use the standard L2 distance that generates straight
lines as geodesics. For small lines, their source and target orienta-
tions are computed using the input images, and linearly interpolated
between these values at intermediate frames. Our method extends
the original work of Secord et al. [2002] that applies to still images
and videos by enabling it to achieve warping between unrelated im-
ages. The results are shown in Figure 13, with additional results
shown in the video.

5.6 Environment map interpolation

We interpolate environment maps that are represented by a sum
of directional light sources [Ostromoukhov et al. 2004]. We pro-

cess each color channel separately and use the channel intensity as
weight. We use the squared L2 norm on the sphere for the ground
distance, similarly to the BRDF scenario, which makes the particle
moves along sphere geodesics.

Validation and Experiments We used the LightGen plug-in of
HDRShop [HDRShop] to decompose the environment maps into
300 light sources. We first test our approach using the parametric
sky model of Preetham et al. [1999] to generate two different times
of the day. We used linear blending and our method on the two
environment maps to render images at intermediate times of the
day (Fig. 14). Linear blending does not capture the motion of the
sun and renders fixed shadows with only changing intensities. In
the displacement interpolation result, shadows rotate similarly to
the reference image obtained with the parametric model. However,
because the sky color evolves non-monotonically during the day,
both interpolation techniques render results that are too warm.

6 Discussion

The current implementation of the method cannot achieve real time
interpolation for histograms larger than a few hundred bins. An in-
teresting direction to alleviate this problem is the use of GPU as has
been used for the Earth Mover’s Distance computation [Rehman
et al. 2009], although currently limited to voxels using a multigrid
approach. While simplex computations have been performed on
the GPU [Bieling et al. 2010], their performance is still much lower
than efficient CPU implementations. Storing a full cost matrix be-
tween the two histograms remain a problem for current generation
of GPUs. However, GPU memory has grown substantially in re-
cent years. GPUs have also recently been used for non negative
least square problems using QR factorization [Luo and Duraiswami
2010], which remain in O(n3) complexity. We did not test this
method since our matrices do not fit in current GPU memory and
that their problem size are much smaller than ours. Sparse QR ap-
proaches may also result in faster computation. Note that while
the preprocessing can be slow, the interpolation itself is fast, and
is trivially parallelized as it merely consists in computing a sum of
Gaussian for each sample. Detailed timings are provided in table 6.

While our method currently only provides interpolation between
any two distributions, it would be interesting to study the interpo-
lation between N different distributions. It should also be possible
to create smoothly interpolated sequences of distributions using a
method analogous to subdivision methods for modeling a curve.

In the context of Value Function interpolation, we explored the dis-
placement interpolation as a way to extrapolate. We believe this is
a promising direction for further investigations.

7 Conclusion

Displacement interpolation offers a generic method of interpolating
functions and distributions that in many situations provides more
meaningful results than linear interpolation, while not requiring
any domain knowledge. We have presented a practical Lagrangian
method for displacement interpolation of continuous distributions.
We have also shown how meaningful feature advection can often
be achieved in the case of continuous functions using a multiscale
approach. We show that a network simplex algorithm is in many
cases preferable to the transportation simplex algorithm that is cur-
rently the most popular choice in EMD-applications. We have also
shown that the 1D CDF interpolation arises as a special case of dis-
placement interpolation. Lastly, we have demonstrated the utility
of displacement interpolation in multiple applications.

8



University of British Columbia. Technical Report TR-2011-02

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

interpolation −10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

extrapolation

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 11: Value function interpolation and extrapolation. Both the target and the wall are moving. Top to bottom: Reference; Interpolated;
Blended, similar to [da Silva et al. 2009]. Note that the linear blending does not allow extrapolation since the wall becomes a target.

Application Data # Bands RBFs (Preprocessing) EMD (Preprocessing) Interpolation
Synthetic BRDF 500 slices x 1200 samples, 1 color channel 1 16 s 4 min 40s 25 s
Measured BRDF 500 slices x 1200 samples, 3 color channels 1 8 min 2h 6 min
Value function 10830 samples in 4D 3 43 min 15 s 13 s

Stippling 8000 stipples - - 49 s <1 s
Color Histograms 16000 bins - - 4 min 14s <1 s

Table 1: Timings for different applications

Figure 12: Our method can be used for histogram transfer as in
[Morovic and Sun 2003]. Top row: source and target images. Bot-
tom row: results. The use of an efficient network simplex allows the
use of 16000 colors (bottom right) while the transportation simplex
used in [Morovic and Sun 2003] only achieves up to 3072 colors
(bottom left - artifacts due to color reduction are highlighted).

Figure 13: Stipple interpolation using displacement interpolation
(left) and greedy nearest neighbor interpolation (right).
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intensity and color of the sky across the day are not predicted from an interpolation scheme. We selected largely different skies for our test
to make differences more visible. In a practical scenario, one would record environment maps more often during the day to capture these
variations, and use our approach to smoothly interpolate them. These results are best seen in the accompanying video.
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