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(a) Input images of a large indoor scene under dif-
ferent lighting (showing 16 of 112 images).

(b) Average image (c) Lighting design by a novice user, exploring our
system for 5 minutes

Figure 1: Cafe: (a) A large indoor scene lit with a light in various positions. Photographers usually spend hours selecting and blending
desirable parts from different images to produce a final image. Possible solutions, like an average image (b) produce unappealing results. We
propose a set of basis lights and modifiers based on common photography goals that allow users to produce final results in a few minutes (c).

Abstract

Good lighting is crucial in photography and can make the difference
between a great picture and a discarded image. Traditionally, profes-
sional photographers work in a studio with many light sources care-
fully set up, with the goal of getting a near-final image at exposure
time, with post-processing mostly focusing on aspects orthogonal
to lighting. Recently, a new workflow has emerged for architectural
and commercial photography, where photographers capture several
photos from a fixed viewpoint with a moving light source. The
objective is not to produce the final result immediately, but rather
to capture useful data that are later processed, often significantly, in
photo editing software to create the final well-lit image.

This new workflow is flexible, requires less manual setup, and works
well for time-constrained shots. But dealing with several tens of
unorganized layers is painstaking, requiring hours to days of manual
effort, as well as advanced photo editing skills. Our objective in
this paper is to make the compositing step easier. We describe a set
of optimizations to assemble the input images to create a few basis
lights that correspond to common goals pursued by photographers,
e.g., accentuating edges and curved regions. We also introduce
modifiers that capture standard photographic tasks, e.g., to alter the
lights to soften highlights and shadows, akin to umbrellas and soft
boxes. Our experiments with novice and professional users show
that our approach allows them to quickly create satisfying results,
whereas working with unorganized images requires considerably
more time. Casual users particularly benefit from our approach
since coping with a large number of layers is daunting for them and
requires significant experience.
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1 Introduction

Lighting is a key component of photography, on an equal footing
with other aspects such as composition and content. In many cases,
photographers actively illuminate their subject with a variety of
lights to obtain a desired look. Lighting a scene is a challenging task
that is the topic of many courses and books, e.g. [Hunter et al. 2011].
Not only the notion of “good” lighting is elusive and heavily relies
on one’s subjectivity, but the traditional way to set up the lights itself
is complex. Positioning and setting the power of each flash is a
nontrivial and tedious task; further, most lights are accompanied by
modifiers that also need to be adjusted, e.g., a snoot to restrict the lit
area, or a diffuser to soften the shadows.

While post-processing the result in photo editing software is com-
mon, this step has almost no effect on the lighting which essentially
remains the same as what was captured at exposure time. Recently,
a few photographers have introduced a new workflow to control
lighting that relies a lot more on the editing stage. Instead of a
single photo with many light sources, they take many photos with
a single light located at different locations each time. Then, they
load all the images as layers in photo editing software and carefully
composite the images to produce the final image. There are several
advantages to this workflow accounting for its increasing popularity.
First, capture sessions are shorter, easier to set up, and require less
equipment. Second, this workflow permits considerable control by
enabling arbitrary layering and post-exposure adjustment over all
the lights, allowing room for experimentation. For instance, one can
easily control the region affected by a light source with a mask and
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set its intensity with a brightness adjustment. This new process is
fundamentally different from the traditional one because the capture
session is not concerned with directly producing a visually pleas-
ing image, it only seeks to record useful data for the later editing
step. From this perspective, it is related to recent work in computa-
tional photography such as coded apertures, e.g., [Levin et al. 2007;
Bishop and Favaro 2011], and lightfield cameras, e.g., [Ng et al.
2005; Adelson and Bergen 1991], in which computation is an inte-
gral part of the image formation process. This motivates us to name
this modern approach computational lighting design. See [Kelley
2011; Guanzon and Blake 2011] for examples of this workflow from
professional photographers that inspired us (unaffiliated with the
project). These examples demonstrate the use of this workflow in
architectural photography, and product photography.

However, one major disadvantage of this workflow is that it is quite
cumbersome even for experienced photographers. When the number
of images grows to several tens, or even above a hundred, navigating
the corresponding layer stack becomes impractical. Further, with
large scenes, most images show the main subject mostly in the dark
with only a small part lit (see Figure 1a). Finding the useful images
in the stack, setting their relative intensities, and blending them
together to get visually pleasing results are highly challenging tasks
that require advanced photography and image editing skills.

Contributions. In this paper we introduce a new approach to assist
photographers in this workflow. Our contributions are:

•We create basis lights that achieve specific effects like accentuating
edges, enhancing the material color of an object, or adding fill light.
• We introduce modifiers that affect the basis lights, and achieve
effects similar to standard lighting equipment, such as soft boxes to
soften highlights and shadows, and snoots to restrict the light extent.
• We design these lights and modifiers by reasoning entirely in
image space, thereby avoiding a computationally expensive, and
potentially brittle 3D reconstruction of the scene. This follows the
trend set by Fattal et al. [2007] for detail enhancement and extends
it to a larger set of photographic operations.
•We implement an interactive interface and demonstrate that casual
photographers can benefit greatly from this interface.

1.1 Related Work

We discuss related work in terms of computational lighting design,
single-image editing, and 3D lighting design.

Computational Lighting Design. Debevec et al. [2000], Akers
et al. [2003] and Agarwala et al. [2004] provide user interfaces to
combine several images taken from the same viewpoint but under
different lighting, thereby introducing the idea of computational
lighting design. In Debevec et al. a scene can be realistically relit
under novel illumination conditions, by treating the input images as
a basis and fitting a lighting model per image pixel. However, their
method needs to know the position of the light source in each image,
which requires specialized acquisition equipment. For comparison,
our technique is based on simple, widely available equipment, such
as a single flash, and we do not need to know the light positions.
Further, their custom device has been designed for medium scale
scenes, such as human faces, whereas we are interested in large
scale architectural scenes. In Akers et al. and Agarwala et al. users
mark the regions of interest in the input images and the algorithm
is in charge of producing a satisfying composite. While this is a
reasonable approach when there are only a few input photos, it
becomes intractable when there are a hundred of them. With such
datasets, deciding which images to use, and which parts in them to
combine, is a major challenge that is as difficult as producing the
actual combination. In our work, we introduce basis light sources to

organize the many input photos into a smaller, more manageable set
of images that correspond to standard photography goals.

Raskar et al. [2004], Cohen et al. [2003], Fattal et al. [2007] and
Mertens et al. [2007] combine several photos taken under different
lighting to generate a better picture. Raskar et al. generate non-
photorealistic results, whereas we seek to retain a photorealistic
look. Cohen et al. and Fattal et al. focus on a single object and aim at
revealing the object’s details and removing shadows, while ignoring
other effects such as shadows projected onto other objects. As we
shall see, this becomes an issue in larger scenes, that are of interest in
our work. Further, their approaches are mostly automatic, with a few
presets offered to users, whereas we give more control so that users
can make artistic choices. Mertens et al. target high-dynamic range
scenes as their main applications, and they show that their technique
can also apply to simple multi-light configurations. But this tech-
nique does not handle the more diverse lighting configurations of
the computational lighting workflow well.

Single-Image Lighting Editing. Several techniques exist to ma-
nipulate the lighting in a single image. For instance, Carroll et
al. [2011] describe how to alter the interreflections in a picture after
the user makes some annotations to describe the lighting configura-
tion. Bousseau et al. [2009] and Boyadhziev et al. [2012] use similar
annotations to perform white balance. Mallick et al. [2006] control
the intensity of specularities. Tone-mapping operators remap intensi-
ties to fit the dynamic range to a given display [Reinhard et al. 2012].
Photo editing software follows a similar approach to define adjust-
ments that brighten shadows and decrease highlights. From our
perspective, all these methods have in common that they are limited
to a specific effect such as white balance or shadow brightening, but
keep the spatial configuration unchanged, e.g., shadows cannot be
altered. In comparison, we seek to produce a wider range of effects
to enable more control over the achieved lighting configuration.

3D Lighting Design. Several techniques exist to edit lighting en-
vironments in the context of 3D rendering, e.g., [Schoeneman et al.
1993; Pellacini 2010; Bousseau et al. 2011]. Compared to our ap-
proach, these methods tackle the problem from a fundamentally
different direction since they have access to a full geometric descrip-
tion of the scene and have total control over the light sources. In
comparison, we have no a priori knowledge about the photographed
scene and have access to only a limited number of observations of it.
One could try to solve an inverse problem to infer a 3D description of
the scene and its materials, but current 3D reconstruction techniques
are often fragile, and cannot handle such large problems, especially
with a fixed viewpoint.

2 Motivation and Approach

Our objective is to assist photographers with creating a compelling
lighting environment for a scene. In this section, we first describe
how photographers work with lighting. This motivates our approach
to designing lighting in this workflow.

2.1 Computational Lighting Design

With the traditional approach to lighting, photographers set up lights
so that they fire simultaneously to produce the desired lighting. Then,
illumination is essentially left untouched during post-processing. In
comparison, for the computational workflow in which we are inter-
ested, photographers capture many images under different illumina-
tions. The setup is often as simple as a single flash light moved to a
different location between each shot. This has numerous advantages
in terms of cost and mobility compared to the many lights used for
studio lighting. Most importantly, the goal of the capture session
is different. Whereas the traditional approach is concerned with



the final result, the new computational workflow is about capturing
useful “building blocks.” Each photo aims to illuminate a portion of
the scene in an interesting way that may be used later in combination
with other images. The main objective is good coverage of the scene.

After the capture session, all the images are loaded as layers into
image editing software. For each region, photographers select the
desired appearance by editing the image alpha channels and ordering
the layers appropriately. In parallel, each layer can be edited, for
instance, to increase its brightness, which is equivalent to having
a more powerful light source, but with all the advantages of using
editing software, such as instant feedback and unlimited undo. Only
when this process is done, that is, after all the adjustments and
after combining the layers according to their alpha channels, is the
final image produced. Further editing may occur, for instance to
remove unwanted elements, but this is not in the scope of our work.
See [Kelley 2011; Guanzon and Blake 2011] for examples.

2.2 Objectives of Photographic Lighting

There are many ways to illuminate a scene in photography. We found
a few recurring trends based on interviews with professionals [Kelley
2012] and field reports [Kelley 2011; Guanzon and Blake 2011].

Discrete Reasoning. Photographers think of lighting as the dis-
crete combination of a few standard configurations. For instance,
the key light illuminates the main subject, and the fill light is aimed
at shadows to control how dark they are. While the exact setups
depend on each photographer and scene, decomposing illumination
into a small number of objectives is standard practice. We match
this approach with our basis lights that address a few well-defined
goals, e.g., controlling shadow darkness.

Curves and Lines. Photographers identify a few important geo-
metric features of the scene that they seek to accentuate in the final
result. These features are typically occluding contours that separate
two objects at different depth, surface discontinuities such as creases,
and curved regions that are characteristic of the object’s shape. To
emphasize these features, photographers set the illumination up so
that a highlight falls on one side and a shadow on the other. To help
users accentuate scene edges and curved regions, we first analyze the
input images to identify these features and then propose an energy
function that favors high contrast around them. This defines what
we call the edge light.

Light Quality. Photographers seek a “good light”. While the con-
cept is elusive, a few properties stand out. Harsh highlights and
hard shadow boundaries are undesirable because they tend to dis-
tract from the scene. Overly dark shadows are also to be avoided
because they hide the scene content. We propose a few options to
mimic photographers’ solutions to these issues. We simulate area
light sources with several point sources to soften the highlight and
shadows. We offer a fill light to control the darkness of the shadows,
and let users restrict the extent of a light, which can be useful to
prevent undesirable highlights and shadows.

2.3 Our Approach

We propose an approach inspired by the photographers’ workflow
described in the previous two sections. First, we describe the input
data. Then, building upon our observations about the types of lights
used, and lighting practices, we propose a set of basis light sources
and controls that assist users in achieving powerful effects.

Input Photos. We use input data similar to what photographers
capture, that is, a few tens or more photos taken from a fixed view-
point and with a different lighting configuration each time, typically

using a single flash light. We assume that the light sources are ap-
proximately uniformly distributed in the scene and that their power
is approximately constant. Further, we assume that the input set
of images is white balanced with respect to the color of the flash
light, i.e., the light source appears white in the input photos. For
the datasets that we acquired ourselves, we used a remotely trig-
gered flash unit and moved it at a different position after each shot,
covering the entire scene in about 100 pictures. This is a rather
mechanical process, where the main goal is to get a good coverage
of the whole scene, with no particular planning. For a single data set,
we spent around 20 minutes photographing it. We put a camera on a
tripod and walked around with a remotely triggered flash. Exposure
was fixed so that the flash dominated the other lights. For the Library
scene, (Fig. 8), we also took a few images with longer exposure so
that the outside is visible. We tried to keep ourselves out of the shots,
but in the occasional pictures where the equipment/photographer
was visible, we manually masked it out, so that those regions are not
considered later. This pre-processing step has to be done once.

Basis Lights. We propose an edge light that emphasizes edges and
curved regions in the scene, a diffuse color light that emphasizes the
underlying colors, and a fill light that provides more even illumina-
tion. For each of these lights, we formulate an energy function that
models the objective, e.g., large gradients that align with the main
scene features for the edge light. Minimizing the energy gives us a
set of coefficients that we use to combine the input images.

Modifiers. We also introduce controls to mimic the effects of stan-
dard light modifiers. For instance, we embed the input images into
a weighted graph based on their similarity and apply a diffusion
process on this graph to modify a given set of coefficients to ap-
proximate the shadow-softening effect of an umbrella or a soft box.
Other modifiers include per-object and regional modifiers that let us
control the lighting for objects, like using a snoot, or to change the
relative lighting of foreground vs. background.

The User Process. The user starts from a base image, for example
the average of the image stack or a single image from the stack, and
then they edit the stack using basis lights and modifiers. They first
try to arrive at some globally reasonable solution, and then further
refine the scene to identify either objects or parts of the scene that
need more attention through edge enhancement, more light, or other
lighting effects. See the supplementary for example sessions.

In allowing the user to pick individual objects, and applying an
optimization of lighting for that particular object, we introduce in-
consistent lighting in a scene. However, this is acceptable based on
perceptual research about human insensitivity to lighting inconsis-
tencies [Ostrovsky et al. 2005].

We evaluate our approach on several test cases demonstrating that
it enables the design of sophisticated lighting environments with a
small set of meaningful degrees of freedom, instead of a complex
physical setup or the tedious manipulation of tens of layers. We
further demonstrate the ease of lighting for novices and professionals
using our basis lights in this new workflow.

3 Basis Lights

We propose a set of basis lights, which we relate to standard photog-
raphy practices. Some of those lights correspond to actual lighting
scenarios, commonly used in photography. The fill light, directly cor-
responds to lights used by photographers. Basis lights, like the edge
light and the diffuse color light, address standard objectives such as
emphasizing edges and curved areas, and revealing the diffuse color
of objects, respectively.

We find the basis lights through an optimization scheme, that looks



for the best linear combination of the input images, such that a
certain objective is minimized. We first introduce some notation,
and then describe the objective functions for our three basis lights:
fill, edge, and diffuse color.

Standard Definitions and Notation. Throughout the paper, we
use Ii(p) to denote the RGB components of a pixel p in the ith

input image. We work with sRGB values that are not gamma
compressed, i.e. we apply inverse gamma correction by assum-
ing 2.2 gamma. We refer to the intensity of a pixel as Īi(p) =
dot(Ii(p), (0.2990, 0.5870, 0.1140)), defined as a weighted aver-
age of its RGB channels. We name N the number of input images.
We use W = (1, 1, 1)T for the white color. We rely on angles
between RGB vectors to reason about color saturation. We use the
notation ∠(C1,C2) = arccos(dot(C1/‖C1‖,C2/‖C2‖)) for the
angle between the two colors C1 and C2. In several instances, we
use a weighting function wi(p) = Īi(p)/(Īi(p) + ε) that varies be-
tween 0 for low values of Īi(p) and 1 for high values. This function
is useful to reduce the influence of dark pixels that are more noisy.
In all our experiments, we use ε = 0.01, assuming that the RGB
channels range between 0 and 1.

3.1 Fill Light

The role of the fill light is to provide ambient lighting that gives
approximately even illumination everywhere. This is the light that
illuminates the shadows, i.e., it controls how dark they are. Since we
assume that the input lights are roughly uniformly distributed, we
could use the average of all the input images, 1

N

∑
i Ii. However,

since the light distribution is not perfectly uniform, the average may
exhibit some large intensity variations. We improve over this simple
average by giving more importance to bright pixels using the wi
weights, which reduces the influence of dark noisy pixels:

Ifill(p) =

∑
i wi(p) Ii(p)∑

i wi(p)
(1)

where i is the index over all images. Figure 2 compares the simple
average image to our actual fill light Ifill using the weighted average.

3.2 Edge Light

As discussed in Section 2.2, photographers often seek to emphasize
the main edges and curved areas in the scene. A common approach
is to position the lighting such that it creates a tonal variation around
those regions of interest. In particular, highlights and shadows
are among the main building blocks through which photographers
achieve this [Hunter et al. 2011]. We define the edge light to assist
them with this task. We proceed in two steps; first, we analyze
the input images to identify the features to accentuate, and then
we linearly combine the input images to emphasize the detected
features, the mixture coefficients being a solution to an optimization
problem that we define.

(a) Average image (b) Weighted average

Figure 2: Compared to the average (a), the weighted average (b)
produces more even illumination , which we use as a fill light.

We define the features that we want to emphasize as edges in the
input images that look persistent under the changing lighting condi-
tions. Those can be due to geometric discontinuities in the scene, or
more persistent highlights and shadows, which generate discontinu-
ities in the observed images. However, occasional hard shadows and
sharp highlights also produce image discontinuities but we are not
interested in them, since creating highlights and shadows that com-
pete with the main features of a scene is something photographers
try to avoid [Hunter et al. 2011].

The key observation of our approach is that main edges of the scene
are always located at the same place in the image, whereas disconti-
nuities due to occasional highlights and shadows move depending
on where the light source is. By observing the statistics at a given
location, we can differentiate between a persistent scene feature and
ephemeral edges due to occasional illumination effects. The former
appears consistently in all images while the latter is only present
once or a few times, i.e., it is an outlier. Our approach builds upon
this observation and uses robust statistics to extract a map of the
main scene features. We tested a few options such as computing
the robust max or the median gradient at each pixel. However, we
found that the solution that we present below performs better for
our goal of emphasizing persistent edges. We compare against the
robust max and median gradients in Figure 3.

Our approach uses the fact that edges due to occasional highlights
and shadows have an inconsistent orientation. To exploit this phe-
nomenon, at each pixel, we build the histogram of the gradient
orientations. In practice, we use bins that span 5◦. To prevent dark
noisy pixels from perturbing the process, we weight the contribution
of each pixel using its wi weight. Also, to differentiate between
flat regions and vertical edges, small gradients of magnitudes less
than 0.001 are handled separately. Then, within the largest bin, we
pick the gradient of maximum amplitude. Intuitively, this process
selects the strongest gradient that aligns with the most persistent
orientation at every pixel. This gives us a target gradient map G.
We seek the edge light as a linear combination of the input images:
Iedge =

∑
i λi Ii. To find the mixture coefficients λi, we minimize

the following weighted least-squares energy function:

arg min{λi}

∑
p

h(p)
∥∥∇(∑

i

λi Ii(p)
)
−G(p)

∥∥2 (2)

where, the per-pixel weights h(p) give more influence to pixels
that have a peaked orientation histogram, that is, pixels that have a
well-defined orientation. We define h by normalizing the histograms
to 1 so that we can compare them across pixels, and picking the
value of the largest bin at each pixel.

Discussion. The effect of our edge light is not to avoid all shadows
and highlights, which would be undesirable from a photographic
point of view. By optimizing for lighting that maximizes gradi-
ents that align with the main scene features, it favors highlights
and shadows that align with them (Fig. 5a. 6). This behavior is
reminiscent of the line drawing technique of Judd et al. [2007] who
motivate their approach by characterizing the lines worth drawing as
the ones that appear across multiple lighting configurations. From
this perspective, our edge light seeks to produce an image in which
discontinuities would be a good line drawing of the scene.

3.3 Diffuse Color Light

The objective of the diffuse color light is to emphasize the base
color of objects. To reason about scene colors, we use a simple
diffuse+specular image formation model in which the diffuse color
can be arbitrary, and the specular color is the same as the light color.

First, we consider the case of a colorful object. We seek to design an
energy function that favors images in which the diffuse component



(a) Robust max (b) Median (c) Ours

Figure 3: We compare our gradient map against two other alterna-
tives for emphasizing edges. Using the robust max gradients can
produce results that emphasize distracting elements, like the shad-
ows on the seat of the chair (a). The median gradients are more
robust to occasional shadow boundaries, but other edges are also
de-emphasized (b). In comparison, our proposed gradients better
capture the main scene features and their orientations.

is strong compared to the specular reflection. Similar to Tan et
al. [2004] we observe that because the specular component is white,
the stronger it is, the less saturated the observed color is. Formally,
we consider a pixel I = dD+ sW where D is the diffuse color and
d its intensity, W = (1, 1, 1)T the white color, and s the specular
intensity. We characterize the saturation by the angle ∠(I,W)
between the observed color I and the white color W. For a fixed
d value, this angle decreases when s increases. This motivates the
following energy term:

arg max{λi}

∑
p

ŵ(p)∠
(∑

i

λi Ii(p),W
)

(3)

where, ŵ(p) =
∑
i λi Ii(p)/(

∑
i λi Ii(p) + ε) is a term that pre-

vents selection of linear combination of lights that produce dark
pixels, that tend to be noisier. With Equation 3, we seek a linear
combination of input images that maximizes the angle with the
white color, while preventing the selection of dark pixels.

This approach works well for colorful objects, that is, when
∠(D,W) � 0. However, this term is less effective for objects
of neutral color, i.e., when D ≈ W. For neutral colored objects,
changes in specular intensity create only small angle variations. And
most importantly, the optimization becomes sensitive to colored
inter-reflections. For such neutral objects, even the small change of
saturation generated by light reflecting off nearby colored objects
has a significant impact on the energy value. In our experiments,
using the previous energy term alone produced images in which gray
objects have strong colored inter-reflections, which looked unpleas-
ant. We address this issue with a second energy term based on the
observation that the average image lowers the contribution of rare
illumination effects, such as strong inter-reflections and highlights,
which are undesirable features based on our diffuse color light defi-
nition. We design an energy term that encourages similarity between
the average image and our result:

arg min{λi}

∑
p

∠(
∑
i

λi Ii,
1

N

∑
i

Ii) (4)

Since we seek to use this term only for neutral colors, else the
solution will tend towards the average, we use a balancing term that
equals 1 only for neutral colors and has lower values otherwise:

α(p) = exp(−∠(
1

N

∑
i

Ii(p),W)2/2σ2)) (5)

with σ = 0.5. Figure 4 shows the significance of this term.

Putting the two terms together, and realizing that the goal is to maxi-
mize Equation 3, but minimize Equation 4, we obtain the coefficients

of the diffuse color light Idiffuse by minimizing:

arg min{λi}

∑
p

[
α(p) ∠

(∑
i

λi Ii(p),
1

N

∑
i

Ii(p)
)

−
(
1− α(p)

)
ŵ(p)∠

(∑
i

λi Ii(p),W
)]

(6)

We minimize this function using an interior point method with finite
differences to approximate the gradients (see Figures 4 and 5b).

(a) Saturation term only (b) Both terms

Figure 4: The color of a neutral object, like the white ceiling, can be
dominated by interreflections from nearby objects. We propose per-
pixel weights that encourage more similarity between the average
image and our result for pixels that look neutral on average.

Summary. In summary, we have designed energy terms for each of
the three basis lights: fill light, edge light and diffuse color lights. We
solve for the linear combination of images, and their corresponding
weights, that minimize the energy terms.

(a) Edge light (b) Diffuse color light (c) Fill light

Figure 5: Our edge light, optimized for the red chair puts more
emphasis on the main edges (a), whereas the diffuse color light
reveals more of the deep red colors (b). We use the weighted average
image as a fill light that provides more even illumination (c).

4 Modifiers

In addition to the basis lights described in the previous section, we
also introduce modifiers that alter the properties of these lights in
ways that mimic standard practices in photography. The per-object
lighting modifier restricts the light’s extent, the regional lighting
modifier balances the illumination intensity between different re-
gions of the scene, and the soft lighting modifier modifies the lights
so that they produce softer shadows and highlights.

4.1 Per-Object Lighting Modifier

This is the simplest of our modifiers. It is inspired by equipment
like snoots that photographers use to control the spread of lights.
We let users select objects in the image. Then, we compute the fill,
edge, and diffuse color lights as described in the previous section.
The only difference is that we only consider the pixels within the
selected object. Users can then locally mix these three lights. To



ensure smooth blending with the rest of the image, we apply a cross
bilateral filter [Eisemann and Durand 2004; Petschnigg et al. 2004]
to the binary selection, using the intensities of the current result
as the guiding image. We use the fast cross bilateral filtering by
Paris et al. [2009] to transform the binary selection into weighting
masks that respect the edges for each of the basis lights. Then,
in our interactive interface we approximate the weighting mask of
the current combination of basis lights by linearly blending their
corresponding masks. This produces a continuous mask that “snaps”
at the main scene edges, which yields satisfying results. We also
experimented with simple Gaussian blur but this generated severe
halos, and also with multiscale blending [Burt and Adelson 1983]
but color artifacts appeared.

4.2 Soft Lighting Modifier

This modifier aims for an effect akin to umbrellas and soft boxes,
that is, simulating area light sources that produce soft shadows and
highlights. Our strategy is to approximate an area light source by a
set of nearby point sources. However, in our context, the position of
the light sources is unknown a priori.

We address this problem with an approach inspired by Winnemöller
et al. [2005] who showed that for two images taken from the same
viewpoint with two different point lights, the spatial distance be-
tween the lights is correlated to the difference between the observed
images: close light sources generate similar looking images and
distant sources create different images. They demonstrate that this
can be used to recover the positions of lights on a sphere. However,
they mention that more general configurations are challenging.

For our soft lighting modifier, we build upon the same correlation
between light position and image appearance, and sidestep the dif-
ficulties stemming from general light configurations by directly
modifying the light mixture coefficients without explicitly recover-
ing the light positions. We implicitly embed the input images into
a weighted graph based on their similarity and apply a diffusion
process on this graph to modify a given set of mixture coefficients
{λi} to approximate the effect of soft box lighting. We define a
N ×N matrix S with coefficients:

Sij = exp(−‖Ii − Ij‖2/2σs
2) (7)

and a vector Λ = (λ1, . . . , λN )T. Intuitively, multiplying Λ by S
spreads the contribution of each light to the nearby sources using the
image similarity ||Ii − Ij || as a proxy for the spatial distance. The
σs parameter controls how far the intensity of each light is diffused.
As is, this approach does not preserve the overall illumination inten-
sity. We experimented with a few options and found that a simple
global rescaling works well and is computationally inexpensive. To
summarize, our soft lighting modifier is defined as:

softσs
(Λ) =

‖Λ‖
‖SΛ‖SΛ (8)

To gain intuition, we observe two extreme σs settings. For σs → 0,
the modifier does nothing as one would expect, that is, point light
sources remain as is. And for σs →∞, the output coefficients are
all equal, i.e., the output is the average of the input images, which
is in some sense the largest area light that we can simulate with our
data. Other values of σs provide approximations to area light sources
of intermediate sizes as shown in Figure 6c.

4.3 Regional Lighting Modifier

Photographers carefully balance light intensities in a scene to either
emphasize a specific region or to do the opposite. We propose
our regional lighting modifier to assist this process. We seek to

(a) Input images (4 out of 129) (b) Edge light

(c) With the soft lighting modifier (d) Adding fill light

Figure 6: Basket. The edge light emphasizes the main edges of the
scene, which tends to produce sharp highlights and deep hard shad-
ows (b). Applying the soft lighting modifier softens the highlights
and the shadow boundaries and keeps the shadows dark (c). The
fill light has a complementary effect; it brightens the shadows and
keeps their boundaries and the highlights sharp (d).

provide a simple way to balance the lighting across the scene at
a coarse level. Fine-grain adjustments can be made with our per-
object modifier. Our observation is that the PCA decomposition
of the input images extracts the main modes of variation of the
illumination. In particular, for scenes that can be decomposed into
“regions” illuminated independently of each other, e.g., foreground
versus background, or left versus right, the first PCA component
captures this structure well.

We build our modifier upon this observation. Since PCA assumes
an additive mode of variation, and light interaction with materials is
multiplicative, we work in the log domain. Further, because we seek
to only modulate pixel intensities without altering their color, we
work with the intensity images {Īi}. First, we estimate the first PCA
component P of the log intensities {ln(Īi)}. To avoid perturbing the
overall image intensity, we enforce a zero mean onto P by defining:

P̂ = P − 1

N

∑
p

P (p) (9)

As is, P̂ often exhibits undesirable shadow boundaries. We remove
them by applying a cross bilateral filter [Paris and Durand 2009] to
P̂ with the current global result (a.k.a. the smooth blending of all
locally and globally optimized basis lights) as the guiding image.
Finally, we create a mapM = exp(βP̂ ) where β is a user parameter
controlling the magnitude of the effect: β = 0 does not alter the
result, β > 0 emphasizes the regions where P̂ > 0 by making
them brighter and the rest darker, and β < 0 has the opposite effect,
i.e., it emphasizes the P̂ < 0 regions. The M map is multiplied
pixel-wise to the current result to obtain the final result. The effect
of this modifier is shown in Figure 7.



(a) Significant intensity differences (b) Emphasize the left region

(c) Original lighting (β = 0) (d) Emphasize the right region

Figure 7: Our regional lighting modifier can be used to move the
emphasis between the two regions that show significant intensities
differences in the input images. We detect these regions automati-
cally, by looking at the first PCA vector of the input intensities (a).

5 Results

We now describe our implementation and the user interface of our
prototype. Then, we demonstrate our approach on a variety of scenes,
and show comparisons with related work.

5.1 Implementation

We use a combination of C++ and Matlab in our prototype system.
The part that optimizes the basis lights is an offline process, which
we implemented in Matlab, since it was less time critical. We use
Matlab to solve the constrained linear and non-linear optimizations
problems that correspond to our basis-light objectives. The timing
for this step depends on the size of the regions, but it can take from
a few seconds up to 10 minutes, when the region is the whole image.
However, this offline process can be done in parallel for all pre-
segmented objects and basis lights. In our user interface, in order to
achieve interactive speeds, we do the image blending on the GPU.

In Table 1 we describe each scene, the resolution of the input images,
the number of objects that we segmented, and the time for optimiza-
tion, both per object and per image. We pre-compute the basis lights
for the set of pre-segmented objects and the whole image so that
users do not have to wait. Last two columns are max-per-object and
full image timings.

5.2 User Interface

We now briefly describe our prototype interactive interface where
users can explore a variety of lighting designs. For every object, the
pre-computed basis lights (edge, diffuse color, fill) can be mixed by
changing their relative contributions with sliders. Depending on the
user’s preferences, this can be done in two ways: (1) by preserving
the overall intensity using normalized weights that add to one, or
(2) by not normalizing. This is controlled by the checkbox “Keep
intensities constant”, visible in the supplementary video. In addition
to that, we also let users control a simple exposure slider.

For every local object (selected by clicking on the object, and using
the checkbox “Show local lighting”), the sliders control the object-
based lighting. Segmenting the image into regions is beyond the

scope of this paper, and we assume it is done by the user. When
a region is first selected and the local lighting enabled, the initial
exposure is set to match that of the global lights.

Users can also interactively change the strength of the soft light-
ing modifier to control the softness of the shadows and highlights
(Fig. 6c). To ensure a consistent behavior across scenes, we nor-
malize the image differences in Equation 7 so that the largest one is
1. To enable interactive editing, for each light, we precompute the
effect of the modifier for 100 regularly spaced values of σs between
0.01 and 10. At run-time, we linearly interpolate the values of the
two samples that are closest to the requested parameter.

Our last slider controls the regional modifier. This allows users to in-
teractively change the emphasis in the scene, by smoothly modifying
the per-pixel exposure, through the parameter β (Fig. 7).

5.3 Image Results

We now demonstrate our results on a range of scenes.

Cafe. In Figure 1, we show results for a larger interior scene that
has a variety of objects with different shapes and materials. For
example, the red chair has strong glossy components, and at the same
time, a deep red color. Our edge light better reveals the shape of the
chair, by emphasizing highlights (Fig. 5a). Our diffuse color light
shows more of the deep red color of the chair (Fig. 5b). Our system
allows novice users to easily explore different lighting designs, by
mixing the basis lights in various proportions, globally or per pre-
segmented objects (Fig. 1c). In the supplemental material we show 6
more results, which demonstrates that even novice users can produce
non-trivial variations using our system.

Library. The Library in Figure 8 shows an example of an indoor
room, where an outside view is also visible through a window. We
gave our data set to a professional photographer, with the instructions
to create a result that looks good to him. Figure 8b shows his result,
achieved in 20 minutes, using the full power of Photoshop. We gave
the same scene to novice users, who were able to explore various
lighting designs, using our system. For example, in Figure 8c our
user used more diffuse color light and locally decreased the exposure
to better show the black color of the sofa. Diffuse color light was
also used to emphasize the deep red of the armchair. Other results
available in the supplemental material show that even novice users
are able to produce nontrivial variations.

House. Figure 9, third row, shows an example of a big outdoor
scene. Lighting this scene by walking around with a single light
is particularly useful and one of the few options at this time of the
day, when the ambient lighting is low. In the supplemental material
we show the two regions found by our regional lighting modifier.
For this scene, the regions roughly correspond to objects closer to
the ground, and objects closer to the sky, which exhibit significant
intensity differences in the input data set. Users of our system can
use this for an artistic control to add more contrast between the
lighting in those two regions. In the supplemental video we show all
other steps used to generate this result.

Basket. Figure 6b shows the result of our edge light, applied to
the entire scene. One of the main edges in this scene separate the
foreground objects from the background table, and our edge light
emphasized those further (Fig. 6b). However, in this cluttered scene,
occasional shadows can arise for many lighting positions, producing
distracting shadows in the edge light solution. In our system, users
can interactively apply the soft lighting modifier to simulate a larger
area light source. This can be used to soften the hard shadows on
the table, cast by the fruits. The soft lighting modifier can also be
used to soften the highlights on the tomato (Fig. 6c). A fill light can



be used to add even illumination to the whole scene, which provides
more details in dark regions, including shadows (Fig. 6d). We want
to stress the difference between the soft lighting modifier and the
fill light Although at their extreme values they both produce some
version of the average image, their intermediate effect is different.
The soft lighting modifier simulates a gradual increase of the cur-
rent light source, by combining nearby lights and weighting them
appropriately, whereas the fill light cross fades between the current
illumination and the average image.

Los Feliz. In Figure 10, we show results for a stack of images
that we received from a professional photographer (naive to our
research). This is a set that was not captured or processed by us. The
photographer also gave us his preferred final result for that scene.
We demonstrate in the supplemental video that we were able to
achieve a similar effect in a few seconds, rather than half an hour.
In particular, our edge light applied to the whole scene has captured
the gist of the result produced by the professional.

5.4 Dependency on the Input Images

In Figures 11 and 12 , we evaluate the dependency of our system on
the number and quality of the input images. Figure 11, row 1 shows
the results of our edge light optimized for 11 different segments,
such as the red chair, the central sofa, the green wall, etc. In the
supplemental material we show all pre-segmented regions. Figure 11,
row 2 shows the results of our diffuse color light, optimized for the
same set of segments. We conducted two tests based on the image
selection. In the first test, we randomly select 5 and then 15 images
from the original data set, (Fig. 11b,d). In the second test, 5 and
then 15 images were carefully selected, so that they contain useful
features such as lighting that emphasizes the edges, or lighting that
reveals the underlying material, (Fig. 11c,e). First, our evaluation
suggests that a small number of random shots are insufficient to
produce good features across all parts of this large scale scene,
(Fig. 11b,d). Second, even if carefully chosen, if the number is
too small (5) it is not enough for a scene of this size, (Fig. 11c).
Finally, post-hoc it was possible for us to find 15 images that would
produce reasonable basis lights, (Fig. 11e). So, it might be possible
for a person with a lot of experience to make use of our basis lights
with a smaller number of carefully planned shots. However, even
experienced photographers use the earlier work flow (capturing many
images) because they are worried they could miss something and
do not want to take chances. Further, in Figure 12 we show that the
quality of our soft lighting modifier is more closely related to the
number of input images. The reason is that a more uniform sampling
of the lighting in the scene produces more close-by lights. These are
needed for the gradual simulation of large area lights, computed by
our soft lighting modifier.

5.5 Comparison with Related Work

In Figure 9, we compare with two other systems that share some
common goals with ours. Exposure Fusion [Mertens et al. 2007]
expects a sequence of images with different exposures, and produces
a single, well-exposed image. Their system was primarily designed
for scenes with constant lighting and high dynamic range. In com-
parison, our input image sequences with dynamic lighting moving
around the scene introduce new challenges. When applied to our
datasets, Exposure Fusion produces unsatisfactory results (Fig. 9,
second column). Further, their results appear flat since they seek to
expose the entire scene, including the shadow areas, equally well.

Figure 9, third column, shows results from MLIC [Fattal et al. 2007],
which is more closely related to our goals, as they work on similar
input data: a static scene under dynamic lighting. However, they
propose an automatic system, that emphasizes details over different

Scene Size Images Objects Max (min) Full (min)
Cafe 1.5MP 112 11 4 9

Library 1.0MP 83 13 3 8
Basket 1.2MP 129 9 1 9
House 1.5MP 149 6 3 10
Sofas 1.5MP 32 7 0.5 2

Kitchen 1.5MP 127 7 4 10
Table 1: Number of regions and time for optimizing our set of basis
lights on those regions and the full scene.

scales. As a result, they also tend to flatten the look of the image,
and decrease its realism by mixing information from different scales,
under different lighting. While this works well on single objects
as demonstrated in the original paper, it is less successful on large
scenes. In comparison, we generate plausible pleasant lights, based
on common photography practices.

5.6 User Validation

To validate our contribution we evaluated our idea with novice users
and expert photographers.

For the expert evaluation, we asked 3 experienced photographers
to comment on the merits of our basis lights. We sent them two
Photoshop projects: one containing the full stack of input images,
and a second project with a reduced set of images that represent our
basis lights, optimized for a few pre-segmented objects. We asked
each of them to spend some time working with both image stacks.
The goal of this study was to see whether our basis lights could
give them a good starting point, while saving them time wasted in
finding and blending features from the original images. They were
all enthusiastic about the lights, and reported that working with the
reduced image stack made their workflow more efficient, compared
to going through tens of input images. They also reported that our
basis lights would be useful in their workflow, but sometimes they
had to apply additional adjustments, like color balance and light
levels to achieve a desired effect. However, this type of adjustments
is orthogonal to our work. See the supplemental material for their
results using the full image stack and our reduced image stack.

We also tested our system with 7 novice users who had little or no
experience with photography. The goal of this study was to show that
our prototype system can allow ordinary users to explore different
options and achieve sophisticated lighting designs in a couple of
minutes. Figure 8b shows the result of a professional photographer
using Photoshop with our reduced image stack. Figure 8c shows
results on the same scene generated by a novice user interacting
with our system for the first time. The task was not to match the
solution of the professional, as Photoshop allows them to apply
many adjustments, like nonlinear curves to increase contrast, which
is orthogonal to our project. However, we showed the professional’s
result to our users, just for a minute, as an example of a good
lighting design. We then asked them to explore solutions in an open-
ended manner. Our system allowed users to rapidly explore different
lighting designs and produce visually pleasing results (Fig. 8c). We
show results of 6 other users in the supplemental material. On
average, users spend 15 minutes on this data set.

In the supplementary material, we show another evaluation on the
“Cafe” scene, where we gave users 5 to 10 minutes to explore dif-
ferent lighting designs, using our system. Then, we asked them
to switch to Photoshop and spend the same amount of time, using
the full, unprocessed image stack. They were instructed to look
for similar features as the one they produced using our system.
Our experiment showed that for novice users the results were poor;
searching and blending features from the full stack of input images is
a nontrivial task which prevents them from producing good results.



(a) Library, 4 out of 83 images (b) Result of a professional (20min in Photoshop) (c) Novice user, using our system for 16min

Figure 8: Our evaluation with novice users shows that our system allows them to explore non-trivial lighting designs (c) in a short amount of
time, comparable in quality to what a professional photographer would achieve, using the full power of Photoshop in 20 minutes (b).

5.7 Discussion and Limitations

Our approach is a user-driven creation process meant to help users
create compelling images. However, not all slider configurations
produce such images, e.g., if one uses only the fill light to illuminate
the scene, the result will look dull. That said, our experiments show
that even novice users are able to generate quality results.

In general, our results do not correspond to a physical setup. For
instance, our regional lighting and per-object modifiers do not alter
the illumination in a physical way. However, they are close to what
could be produced using blockers, and our results look plausible. In
addition, the core of our approach is based on linear combinations
of the input lights, which corresponds to actually turning on the
lights at the same time with the appropriate intensity. This further
contributes to generating plausible images.

Finally, image editing software offers virtually infinite control over
the result whereas our approach covers a smaller design space. How-
ever, we argue that for most users, unbounded editing capability is
actually a hindrance more than a help since it requires advanced
skills and a lot of time, which is confirmed by our experiments. For
the few users with mastery of advanced editing tools, we do not
offer a complete set, but we envision that they would first use our
approach to quickly obtain a satisfying result and, if needed, they
would later refine it with standard photo editing software.

6 Conclusion and Future Work

Lighting is critical to good photography. There is a new workflow
emerging for lighting static scenes, where photographers capture
many images of the scene with a single (or small set of) light(s) in
different locations to create a set of input images that serve as data
to a later compositing stage. This workflow gives the photographers
a lot of flexibility in post-process, and is faster in time-constrained
shots, but dealing with the many images after that is difficult.

We have introduced a set of optimizations to help the photogra-
phers assemble all these images into a small set of basis lights and
modifiers that are easy and fast to user in an interactive editing ses-
sion. The photographer can use these lights to achieve common
photography goals like accentuating highlights, filling shadows, and
emphasizing object color. Our studies with both novice and profes-
sional users shows that this approach is a significant improvement
over the traditional workflow.

There are multiple areas of future work. One possibility is to explore
other types of basis lights related to common photography practices,
such as rim lighting that emphasizes contours, or lighting that better

reveals the glossy behavior of objects. Another interesting avenue
for future work would be the development of an interactive system
that could assist the acquisition process, by guiding the placement
of lights that achieve a desired effect. Finally, we would like to
explore better optimization techniques for the basis light objectives,
like multi-grid on GPU, which could make this step interactive.
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Figure 12: Our soft lighting modifier, applied to the lighting in (a)
shows that a small number of images (15), even if carefully selected,
do not provide enough close-by lights, needed for the gradual simu-
lation of large area lights, (b). In (c) we show that the effect of our
soft lighting modifier improves when used with the full image set.


