
SLAMinDB: Centralized graph databases for mobile robotics

Dehann Fourie*, Samuel Claassens*, Sudeep Pillai, Roxana Mata, and John Leonard (Fellow, IEEE)

Abstract— Robotic systems typically require memory
recall mechanisms for a variety of tasks including localiza-
tion, mapping, planning, visualization etc. We argue for a
novel memory recall framework that enables more complex
inference schemas by separating the computation from its
associated data. In this work we propose a shared, cen-
tralized data persistence layer that maintains an ensemble
of online, situationally-aware robot states. This is realized
through a queryable graph-database with an accompanying
key-value store for larger data. In turn, this approach is
scalable and enables a multitude of capabilities such as
experience-based learning and long-term autonomy. Using
multi-modal simultaneous localization and mapping and
a few example use-cases, we demonstrate the versatility
and extensible nature that centralized persistence and
SLAMinDB can provide. In order to support the notion of
life-long autonomy, we envision robots to be endowed with
such a persistence model, enabling them to revisit previous
experiences and improve upon their existing task-specific
capabilities.

I. Introduction

Realizing tangible value from robotic data requires
a versatile and highly-accessible data representation.
Novel database technologies provide advantages in
representation, manipulation, and extraction. We argue
the benefits of graph databases in robotics by exploring
spatio-temporal representation and centralized persis-
tence. This enables situationally-aware querying and
inference of the robot’s task-specific state at any point
in its history. We view this as a critical component in
the robot’s ability to learn newer representations from
previous experiences.

We propose a two-tier persistence architecture as
depicted in Fig. 1 that maintains independent databases
for: (i) A graph that provides both the master data
index as well a store for relational, queryable data (e.g.
the robot’s Maximum-A-Posteriori state estimate); (ii)
A key-value store retaining arbitrarily large sensor data
(e.g. RGB and Depth (RGB-D) imagery and laser scans).

Through potential use-cases and experiments, we
emphasize the flexibility of graph databases for a mul-
titude of concurrent tasks: (i) Post-hoc loop closure

*Equal contributors, dehann@csail.mit.edu is with the Joint
Program at Massachusetts Institute of Technology and Woods Hole
Oceanographic Institution; spillai@csail.mit.edu, {rmata,
jleonard}@mit.edu are with Massachusetts Institute of Technology,
Cambridge, MA, 02139, USA; sclaassens.ad@gmail.com is a senior
software engineer with General Electric.

This work was partially supported by the Office of Naval Research
under grants N00014-11-1-0688 and N00014-13-1-0588 and by the
National Science Foundation under grant IIS-1318392, which we
gratefully acknowledge.

Robot
SLAM Solver

Fig. 1. Conceptual description of a navigation graph centralized
robot data persistence and recall system. The graph database pro-
vides an efficient spatio-temporal search index while the larger sensor
data is retained in the key store.

detection and incorporation; (ii) Continuous factor-
graph solving for simultaneous localization and map-
ping; (iii) Incorporation of post-processed information
such as per-pixel semantic segmentation of individual
keyframes; (iv) Querying relevant scene entities as
shown in Fig. 5.

Next we present three major themes relating to a
central navigation and data store system. We showcase
three data queries which illustrate the benefits of a
central database system in robotics, followed by related
work and limitations. We present an implementation
discussion and experimental results using a Turtlebot
robot [1].

II. Principal Themes

Our approach emphasizes three core requirements
in a robotics system: Random access via query relating to
interaction with collected data in unpredictable ways;
A Centralized architecture relating to in-situ interaction
with the data from multiple, weakly independent pro-
cesses; and Horizontal scalability relating to offloading
large computation in real-time.

A. Random Access Queries

Insertion, modification, and extraction from any per-
sistence framework should be as efficient as possible.
The underlying complexity of this requirement is that
an architect has to address the variety of different roles.
We are proposing that a pose-keyed graph fulfils a
good balance of ease-of-access with insertion speed.
The natural structure of the graph also allows custom
keying to both index and retrieve specialized datasets
from the collective data (such as keying data by tracked
features).



Three example queries are provided in Section V to
demonstrate how the graph database enables random-
access queries.

B. Centralized Architecture
Local processing of sensory data reduces the need

for large-bandwidth communication systems, however
it also isolates the data and places large demands on
the processing power encapsulated in the robot. This is
relevant in exploratory robotics, where data volumes,
bandwidth and latency are fundamental concerns dur-
ing design. Domestic and urban environments, how-
ever, offer greater communications bandwidth but large
scale robotic processing power remains expensive.

The question becomes one of balancing local robot
processing with large scale centralized processing. In
these settings, centralizing the data would allow: (i)
long-term data accessibility by any number of agents;
(ii) minimization of local, client-side processing; (iii)
sharing of data and analysis between different sessions
and robots; (iv) aggregation and refinement of the
collective data (e.g. summary maps).

C. Horizontal Scalability and Concurrency
Requiring horizontal scalability enforces that the un-

derlying data structure may be processed by multiple
independent applications. We argue that a horizontally
scalable system is advantageous as we are not con-
straining the system to a single application. Rather, new
agents may be introduced at will, and the underlying
structure should support operation by any number of
concurrent applications.

III. Related Work
Automation of a robot in unpredictable environments

requires a map, or contextual reference, to be generated
from sensor data in a automated manner. A graphical
depiction (or factor graph [2]) is a good representation
for collecting and inferring variables of interest over
all the data [3]. A variety of factor graph based Simul-
taneous Localization and Mapping (SLAM) solutions
exist, in particular [4], [5], which utilize parametric
representations of the sensor readings and the world.

Our work on a database-centered approach to SLAM
follows from, among others, three major requirements
on SLAM system. Firstly, we do not know ahead of
time which data or situations may be of interest. As
a result, robot systems capabilities are limited in our
ability to utilize and infer traits, patterns, trends or
things from gathered sensor data. For example, auto-
mated discovery of physical objects can be improved
by leveraging optimized spatial estimates for a series
of images [6] rather than treating spatial and image
information separately.

Secondly, our abilities are constrained by available
computational power, ultimately resulting in less robust
’artificial intelligence’. This work is partly motivated

by ongoing research into non-parametric solutions for
SLAM [7] which requires higher computational load,
but offers more robust solutions than previous meth-
ods. In general, the method’s ability to work with
and interact with data should not be hindered by the
physical location of the captured data, or by some com-
plicated access process to recover a specific seemingly
random piece of data.

Thirdly, large volumes of data and robust inference
techniques require larger computation resources, such
as multi-processor architectures, which in turn places
large concurrency demands on the design of a robotic
computational system. Previous work by Newman et al.
[8] used a database and querying language, in the con-
text of SLAM, as an aid to finding loop closures from
robot data. Consider an even bigger dataset [9] where
common locations are searched by working through
large amounts of camera image data from a car driv-
ing multiple kilometers. The requirement for efficient
storage and concurrent computation becomes critical as
long-term, multi-vehicle solutions are considered [10].

An objective assessment of SLAM solutions suggest
that many applications do not necessarily require a
high speed SLAM solution to achieve low latency
navigation. Concurrent smoothing and filtering work
by [11] makes deeper assessment on how fast a large
SLAM solution needs to be, and finds a robust, elegant
analytical method to separate the low latency estimate
from the large data fusion (or SLAM) process. This line
of reasoning allows us to investigate slower, but much
more versatile data management strategies, such as a
database-centric approach.

Database systems have traditionally been used for
storing large amounts of transactional data, in which
tabulated data mostly adheres to a set relational struc-
ture. Table and relations are designed beforehand, so
that an operational system can add new rows and
manipulate values in existing columns.

Relational databases perform well for a variety of
applications [12], but are limited when the connections
between data are rapidly changing; a dominant feature
in SLAM systems being used and developed in the
robotics community today.

Recent work by Nelson et al. [13] strongly argues for
database driven long-term storage and data retrieval
in robotics. Such data accumulation systems show per-
formance benefits when using a database for searching
over temporal and spatial cues, or integrating the back-
end navigation solution to a database server [14], [10].

However, past work has focused on using a relational
database structure as the primary mechanism of data
storage, together with SQL queries for data retrieval.
The required Entity-Relationship model for designing
such databases assumes a specific mechanism of map-
ping and localization acting on the raw data, a mech-
anism which might not satisfy the interface needs of a
new technique [15]. Moreover, these database methods



Time
RGBDepth

OdometryQueryable(Neo4j)Blob-store(MongoDB)
Keyframe data(Odometry, RGB, Depth etc.) Keyframe edge Temporaledge b/w allsensor data Temporaledge b/w samesensor stream

Fig. 2. An illustration of the two-tier architecture that is maintained and stored in a graph-based data layer with nodes represented by the
keyframes (consisting of RGB and Depth imagery from the Turtlebot) and edges (in blue: connecting the keyframes via odometry estimates
from the wheel encoders on the Turtlebot). The SLAM estimates are stored in a lightweight and queryable Neo4j layer, while the large sensory
information such as RGB and Depth imagery corresponding to the associated keyframes are stored in a MongoDB key-value store with simple
key-based lookup from the Neo4j layer.

require validity checking for each new datum and are
not able to integrate new data into the map online [10].
This method doesn’t scale because of the necessary
re-incorporation of all data for each query of metric
computation, thus precluding online augmentation of
the map [15].

IV. Graph Databases for Robotics
We argue that relational databases are a critical

step forward as they provide: (i) a rich scalable data
structure where robots and task-specific processing
are not required to store the complete graph in-
memory; (ii) centralization of the data persistence layer
so interacting-processors may operate concurrently on
the shared data; (iii) a relational query language for
powerful data extraction where only the relevant data
is returned to the client.

However, using a relational database for data stor-
age has drawbacks, as: (i) it requires the graph be
represented as tables and tabular relationships, which
causes unnecessary, constant translation from graph to
tabular structure; (ii) it limits flexibility as the relational
structure must be defined beforehand and is difficult
to modify in situ; (iii) large sensory data will bloat
the database with binary blob elements, negatively
affecting the overall database performance.

Classic relational databases represent data and re-
lationships using a tabular structure. Similarly, graph
databases represent data and relationships using a na-
tive graph datastructure. Unlike statically typed tables
in relational databases, graph databases allow for richer
data types and complex relationships [16]. Accompa-
nying the richer elements is a query language that can
interrogate and traverse the data structure.

We propose a native graph database and two-tier
storage structure to offload large sensory data to a
NoSQL key-value store. NoSQL key-value stores are
designed for efficient insertion and extraction, which is
highly applicable for persisting the larger sensory data.
This is done to realize a ’starved graph’, i.e. a graph
that can be efficiently leveraged for querying often-used
data and relationships, with the ability to extract the

larger binary on demand (image and sensor data). The
keys are stored in the graph, providing a link between
the two systems. Users of the persistence system choose
which data should be included in the graph and which
should be offloaded, and this can change dynamically.
This architecture allows additional systems and data to
be bound to the graph without bloating the structure.

Prior to discussing implementation or experimental
results, we wish to highlight the advantages of the
centralized robot graph database with a few working
examples. Consider that in all cases the query execution
is performed on the server-side, resulting in a small
but relevant fraction of the complete dataset being
transferred to the client.

V. Working Examples
Three example queries are chosen to illustrate how

the structure can simplify otherwise complicated ran-
dom access queries. We use Cypher syntax, a declar-
ative graph database language that is native to Neo4j
[17].

A. Temporal Queries
Computing the start and end positions from a

ROS bag [18] or datafile involves scanning the com-
plete dataset. The SLAMinDB graph representation al-
lows a succinct query to perform server-side searches
from indexed properties (such as timestamp). Given
that n.timestamp is the timestamp parameter and
n.SLAM Estimate we wish to extract:

Listing 1 Retrieving the latest refined pose estimate
MATCH n:POSE
WHERE n.timestamp = max(n.timestamp)
AND exists(n.SLAM_Estimate)
RETURN n.label, n.SLAM_Estimate

The solver is computing the SLAM
solution concurrently—captured by the
exists(n.SLAM Estimate)—if this exists then we have
a valid SLAM estimate. Omitting it would retrieve the
latest raw pose in the SLAMinDB implementation. As



the solution is calculated in-situ, the simple conditional
creates an index-searched operation that is arguably
difficult with flat file datasets.

Similarly we can retrieve the start location of the
refined graph by simply changing our search criterion:

Listing 2 Retrieving the initial refined pose estimate
MATCH n:POSE
WHERE n.timestamp = min(n.timestamp)
AND exists(n.SLAM_Estimate)
RETURN n.label, n.SLAM_Estimate

In multi-agent scenarios, the graph retains the com-
plete history of all agents. Queries can be constructed
that relate information of interest (such as identified
objects, proximity, or time) to the cumulative history of
the robots. Additional indexing allows the results to be
efficiently extracted. An example of such an extraction
would be retrieval of the latest pose (n.SLAM Estimate)
and sensor data (n.bigData) for ROBOT1 during its fifth
session, SESSION5:

Listing 3 Retrieving the latest refined pose estimate for
ROBOT1 during SESSION5 run
MATCH (n:POSE:ROBOT1:SESSION5)
AND n.timestamp = max(n.timestamp)
AND exists(n.SLAM_Estimate)
RETURN n.label, n.SLAM_Estimate, n.bigData

B. “Foveation” and Spatial Queries
In addition to temporal queries, the graph can lever-

age position as a filter. A useful example of such a
query would be to extract all nodes within a vicinity
and within view. This is referred to as a foveate query
and can be implemented by modifying the WHERE
clause. Additionally we are making use of two server-
side user-defined functions which augment the query
language with SLAMinDB-specific functionality. The
following query will return all factor graph nodes with
a [2,5] meter range and within a 45o field-of-view:

Listing 4 Foveation calculation as Cypher query
WITH [0, 0] as position, 3.14159/4.0 as fov
MATCH (n)
WHERE
// Region filtering

cg.withinDist2D(n, position, 2, 5)
AND
// Frustum cutoff filtering

cg.withinFOV2D(n, position, fov)
RETURN n

User-defined functions and procedures can address
scenarios where often-used queries should be encapsu-
lated, or in cases where procedural steps are required.
For reference, we have included a simplified form of
the cg.withinFOV2D function:

...

...

...

...

ROBOT1 Nodes

ROBOT2 Nodes

Sensor Frustums

Point of Interest

Fig. 3. Illustration of foveation query and node selection for multiple
robots in the centralized SLAM-aware database.

Listing 5 Simplified form of the cg.withinFOV2D user-
defined function in Java
@UserFunction
public boolean withinFOV2D(

@Name("node") Node node,
@Name("position") List<Double> pos,
@Name("fov") double fovRad

) {
double[] pose = (double[])node.getProperty("MAP_est");
double poseAng = pose [2];
//Calc pose-forward and pose-to-position vectors
SimpleMatrix

pose2POI = toVec(pos.get(0)-pose[0],pos.get(1)-pose[1]),
poseFor = toVec(Math.cos(poseAng),Math.sin(poseAng));

pose2POI = pose2POI.divide(pose2POI.normF());
//Use dot product to determine if within FOV
return Math.acos(pose2POI.dot(poseFor)) <= fovRad;

}

User-defined procedures allow more comprehensive
code to be embedded server-side and if (as in the case
above) we can optimize the search on the server, the
foveate query can be succinctly expressed as:

Listing 6 Foveation calculation as user-defined proce-
dure
CALL cg.foveate2D([0, 0], 2, 5, 3.14159/4.0)

C. Interactive SLAM
Graph relationships provide rich functionality for

generating and traversing elements. Consider two con-
current processes in SLAMinDB: one processing the
sensor data and suggesting potential loop closures,
and the second processing a parallel solver consuming
the changes when suitable. The two agents can be on
different systems, operating with minimal interaction
as fully decoupled applications.

The production of the loop closures could, for ex-
ample, be a supervised application. In the event that a
loop closure is confirmed, an edge can be introduced
to indicate to the solver that it has new relationships
to process. This can be done in the graph with the
following update query:



Listing 7 Introducing edges in the case of a loop closure
MATCH (n:LANDMARK), (m:LANDMARK)
WHERE n.label="l10" and m.label="l84"
SET (n)-[r:SAMELANDMARK]-(m)

When the SLAM solver is in a suitable state to
integrate the new relationships, it can consume the
unique edges and produce the correct function nodes:

Listing 8 Solver retrieval of edges during client-side
graph update
MATCH (n)-[r:SAMELANDMARK]-(m)
RETURN n.label, m.label, r

The refined graph is updated in place, resulting
in incremental improvement of the dataset without
processing off-line or requiring complex handshaking.

VI. Implementation
The experimental implementation makes use of a

Neo4j graph database [17] for the graph persistence
and a MongoDB NoSQL database [19] for the key-value
store1 as shown in Fig. 2. The codebase was developed
principally in Julia [20] with the robot front-end and
image recognition in Python 2. The integration of both
the Multi-Modal iSAM solver (Caesar.jl) [7] and the
underlying data persistence layer (CloudGraphs.jl) is
referred to as SLAMinDB.

On insertion, data partitioned into four categories:
(i) Labels for indexed searching; (ii) Properties for
searching and filtering; (iii) Packed data for local vertex
storage; (iv) Large object storage for MongoDB storage.

Labels and properties can be used to build relational
queries and traverse the graph in task-specific ways.
Vertices, for example, can be labelled when AprilT-
ags [21] are detected, and the properties can contain
more detail about the specific tag. The packed data
permits critical binary data to be stored in the vertices -
a compromise between the large data store and simple
properties. Custom labelled edges can also be inserted,
developers to insert task-specific traversals which aug-
ment the existing factor graph.

Large sensor data is trimmed from the vertices and
persisted in MongoDB. The vertices are appended with
the MongoDB keys to maintain the relationship be-
tween the two stores. The separation is opaque to graph
consumers, which operate via the CloudGraphs API,
splitting and re-splicing as the data as required.

VII. Experiments
We demonstrate the key elements discussed above

through a concrete example of robot navigation and

1The code for the experiment is available at https://github.com/
dehann/Caesar.jl and https://github.com/GearsAD/CloudGraphs.jl

2 Pybot is available at https://github.com/spillai/pybot

mapping. This choice led us to develop a SLAM-
style factor graph solver directly at the database-level,
admitting concurrent access, search, visualization and
computation.

A. Illustrating Concurrency and Random Access
We are also particularly interested in the ability to

offload computation from the robot, whereby more
post-hoc / in-situ agents, or human operators, can
interact with the data in a rich manner.

In our experiments, we used a Turtlebot outfitted
with a RGB-D structured light camera and demonstrate
tangible experimental results relating to the three main
themes discussed in Section II: Random query access,
centralized and atomic transactional structure, and hor-
izontal scalability. The robot is tele-operated in an
AprilTag-laden office environment for benchmarking
purposes. Through an interactive procedure, we in-
corporate cross-session navigational loop closures—via
AprilTags—as constraints to the SLAM factor-graphs
from each session.

Figure 4 shows a visualization of the merged map
reconstructed from the Turtlebot data. The local pro-
cesses, designed to be light-weight, communicates
relevant measurements back to the central database
for SLAM solver consumption. Typically, the central
database is hosted on a more powerful server computer,
while the the robot connects to it through a low-
bandwidth network. The local robot processes incre-
mentally pushes new marginalized measurements to
the centralized database, all while the database con-
sumes and solves with these added constraints inde-
pendent of each other. Larger key-value entries such as
raw color and depth imagery from the RGB-D sensor
are stored in a local MongoDB instance. These entries
are synchronized with the server MongoDB data store
at lower priority as permitted by network availability.
Additionally, we generate globally unique identifiers at
the initial commit to the local store, which will become
globally available as the network availability allows.

At any point in time, the robot may choose to run its
own queries against the central database. For example,
the latest available Maximum-A-Posteriori (MAP) loca-
tion estimate (independently computed by the SLAM
agent) can be required using the query presented in
Section V-A. Depending on network traffic and length
of network between the robot and server, this query
nominally takes on the order of tens to hundreds of
milliseconds to run. We’d like to emphasize that the
query sent and returning result are only small single
line text strings, with most computation happening on
the central server.

The server computes and then returns the latest
available SLAM pose estimate. The ability to make such
queries has made an otherwise complicated processes
remarkably simple. The robot may now incorporate
these return results, registered against a previously



A

B C

Fig. 4. Composite 3D reconstruction by a ”decoupled” visualization process (as depicted in Fig. 1) from three Turtlebot trajectory sessions;
where individual keyframe structured-light point clouds are projected from multi-modal SLAM [7] optimized trajectories via the graph
database. The SLAM solution was computed on a server while the robot produced data. A database query similar to Listing 1 would all low
bandwidth transport of latest unique pose SLAM estimates to the robot. Loop closure constraints internal to and across sessions are affected
by visual AprilTags sparsely placed in the scene. The session to the right has color labels given by SegNet segmentation [22], showing floors,
walls, objects and more. The top-right image shows a close up area with two doors and a painting in RGB color palette directly from recorded
key frame images.

known pose ID to improve its own location estimate.
A process not entirely dissimilar from how the Apollo
spacecraft navigated to the moon and back, resetting
the spacecraft’s local estimates using Earth-based radio
navigation and computation.

B. Illustrating Third Party Interactions
Now lets focus on operations done elsewhere in

the system. Dedicated, larger computational tasks may
very well be placed near or on the same server com-
puters. The SLAM solution is one key example. We use
a powerful non-parametric SLAM solver [7] to query,
infer and insert current best Maximum-a-Posteriori esti-
mates back into respective vertices of the database. The
estimates provided by the SLAM service therefore be-
come available for global consumption via the database.

In Fig. 4, we see pose-slaved point clouds from
three Turtlebot robot trajectories. These multi-session
maps contain internal loop closures, and thanks to the
common factor graph persistence, can also share infor-
mation among sessions. By using sightings of AprilTags
and current best estimates of robot keyframe pose
locations, we can manually introduce new relationships
in the graph to affect cross-session loop closures.

As a further interaction example, we can easily re-
trieve two or three RGB keyframe images from the large
key store corresponding to poses of interest, at which
point we could confirm or ignore that loop closure
would be inserted.

We are able to make cross-session modifications,
also discussed earlier in Section V-C, with a single
query. These modifications can occur as the SLAM

service is solving the factor graph, while the robot is
simultaneously injecting more information, and even
more processes are affecting in-session loop closures.
Concurrency fields in the database vertices allow si-
multaneous and atomic changes to the shared graph
structure.

Furthermore, since the database acts as a central
store of data, it becomes fairly simple to attach other
batch processes. In our case, we use SegNet [22] of
all keyframe images for image segmentation. We also
insert the segmentation output image into the Mongo
key store with a unique identifier, co-registered in the
thin graph database.

The visualization is another process, as depicted ear-
lier in Fig. 1, which attaches to the database and recov-
ers relevant information. Pose state, SLAM solver val-
ues of interest, depth point cloud, RGB & segmentation
color palette for each pose can then be be visualized as
required. Again, this process is greatly simplified by
the ability to query over all the information and only
retrieve (transport) the bits relevant to that specific user
query.

The visualizations in Fig. 4 shows three robot trajec-
tory sessions. The right-hand side segment shows one
session’s point cloud with segmentation color palette
for floors, walls, and objects. We can now use the
common data persistence to enhance training on the
segmentation system, leveraging the SLAM-aware in-
formation available in the database.



Fig. 5. Foveation + Pixel-wise segmentation (SegNet).: Specify 3 out of the 5 queried nodes. Cropped and color modified keyframe SLAM-
aware images, which were recovered through the foveate query (Section V-B), to ease the detection of a common object in the world. This test
case does not yet use the common sighting of a painting in the SLAM solution. An independent process may now manipulate the persistent
database centralized factor graph to introduce new loop closure constraints based on object detections of the painting.

C. Specialized Queries

A centralized graph database system can help us
develop dreaming capabilities by handling the low-level
data indexing and searching. For our final illustration
we will focus on the idea of foveation, as shown in
Fig. 3, where we use SLAM inferred (or optimized)
keyframe pose geometry as meta information to aid our
search. The geometry enables efficient server-side spa-
tial searches over potentially large volumes of sensory
data.

Using the query described in Section V-B, we inspect
poses on the database which might see a specific point
in space. Querying poses of interest, we can then
retrieve the larger data, i.e. RGB, depth or segmented
images, from the Mongo key store.

As a further step, we now superimpose the SegNet
artwork labels for images shown in Fig. 5 and can review
such sightings: either to include new loop closure mea-
surements for the SLAM solution, or improve training
data for segmentation of artwork.

VIII. Conclusion

This paper demonstrates the applicability of a cen-
tralized factor-graph for data persistence. By leveraging
the natural structure of the factor graph as the prin-
cipal data representation in a robotic mobile system
we realize a model that supports: (i) Random access
for data; (ii) Centralization of data; (iii) Horizontal
scalability. There are several advantages of relating
most robotic data to a single versatile index, which are
demonstrated in the examples. While centralizing the
factor graph in such a manner may at first not seem
an optimal choice, we show that the advantages of
using dedicated data layer technologies far outweigh
the marginal increase in complexity to existing robotic
navigation and recall systems, and that this is superior
to local, independently operating solutions, especially
with regard to cooperative agents.

References

[1] Open Source Robotics Foundation Inc., “Turtlebot 2: Open-
source development kit for apps on wheels.” 2016. [Online].
Available: http://www.turtlebot.com/

[2] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs
and the sum-product algorithm,” IEEE Transactions on informa-
tion theory, vol. 47, no. 2, pp. 498–519, 2001.

[3] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and
mapping (SLAM): Part ii,” IEEE Robotics & Automation Magazine,
vol. 13, no. 3, pp. 108–117, 2006.

[4] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental
smoothing and mapping,” IEEE Transactions on Robotics, vol. 24,
no. 6, pp. 1365–1378, 2008.

[5] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and
F. Dellaert, “iSAM2: Incremental smoothing and mapping using
the bayes tree,” The International Journal of Robotics Research, p.
0278364911430419, 2011.

[6] S. Pillai and J. Leonard, “Monocular SLAM supported object
recognition,” in Proceedings of Robotics: Science and Systems (RSS),
Rome, Italy, July 2015.

[7] D. Fourie, J. Leonard, and M. Kaess, “A nonparametric belief
solution to the Bayes tree,” in IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems, IROS, Daejeon, Korea, Oct 2016, to appear.

[8] P. Newman and K. Ho, “SLAM-loop closing with visually salient
features,” in proceedings of the 2005 IEEE International Conference
on Robotics and Automation. IEEE, 2005, pp. 635–642.

[9] M. Cummins and P. Newman, “Appearance-only SLAM at large
scale with fab-map 2.0,” The International Journal of Robotics
Research, vol. 30, no. 9, pp. 1100–1123, 2011.

[10] P. Mühlfellner, P. Furgale, W. Derendarz, and R. Philippsen,
“Designing a relational database for long-term visual mapping,”
2015.

[11] M. Kaess, S. Williams, V. Indelman, R. Roberts, J. J. Leonard, and
F. Dellaert, “Concurrent filtering and smoothing,” in Information
Fusion (FUSION), 2012 15th International Conference on. IEEE,
2012, pp. 1300–1307.

[12] J. J. Miller, “Graph database applications and concepts with
neo4j,” in Proceedings of the Southern Association for Information
Systems Conference, Atlanta, GA, USA, vol. 2324, 2013.

[13] P. Nelson, C. Linegar, and P. Newman, “Building, curating,
and querying large-scale data repositories for field robotics
applications,” in Field and Service Robotics. Springer, 2016, pp.
517–531.

[14] W. Churchill and P. Newman, “Experience-based navigation
for long-term localisation,” The International Journal of Robotics
Research, vol. 32, no. 14, pp. 1645–1661, 2013.

[15] P. Mühlfellner, M. Bürki, M. Bosse, W. Derendarz, R. Philippsen,
and P. Furgale, “Summary maps for lifelong visual localization,”
Journal of Field Robotics, 2015.

[16] “Apache Tinkerpop: The benefits of graph computing,” http:
//tinkerpop.apache.org/, accessed: 2017-02-20.

[17] “Neo4j: The world’s leading graph database,” https://neo4j.
com/, accessed: 2017-02-20.

[18] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Ng, “ROS: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3. Kobe,
Japan, 2009, p. 5.

[19] “MongoDB: For giant ideas,” https://www.mongodb.com/, ac-
cessed: 2017-02.

[20] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Ju-
lia: A fresh approach to numerical computing,” arXiv preprint
arXiv:1411.1607, 2014.

[21] E. Olson, “Apriltag: A robust and flexible visual fiducial sys-
tem,” in Robotics and Automation (ICRA), 2011 IEEE International
Conference on. IEEE, 2011, pp. 3400–3407.

[22] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for image segmen-
tation,” arXiv preprint arXiv:1511.00561, 2015.


